苏教版高一数学必修一函数的定义域和值域
- 格式:doc
- 大小:479.15 KB
- 文档页数:12
江苏省铜山县高中数学第二章函数2.1.2 函数的值域及图象教案苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省铜山县高中数学第二章函数2.1.2 函数的值域及图象教案苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省铜山县高中数学第二章函数2.1.2 函数的值域及图象教案苏教版必修1的全部内容。
2。
1函数的值域及图象(预习部分)教学目标1.理解函数图象的意义;2.能正确画出一些常见函数的图象;3.会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;4.从“形"的角度加深对函数的理解.教学重点1. 会画简单函数的图象,并能利用图象判断函数值的变化趋势;2. 能求一些简单函数的值域。
教学难点1. 会画简单函数的图象,并能利用图象判断函数值的变化趋势;2。
掌握求函数的函数值,掌握函数值域的几种常用求法.四.教学过程(一)创设情境,引入新课见必修一教材第23页实例3.(二)推进新课1.函数图象的定义: 将函数()()y f x x A =∈自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数定义域内的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为()(){},|x f x x A ∈,即()(){},|,x y y f x x A =∈,所有这些点组成的图形就是函数()y f x =的图象. 注意:函数()y f x =的图象与其定义域、值域的对应关系是:函数()y f x =的图象在x 轴上的射影构成的集合对应着函数的定义域,在y 轴上的射影构成的集合对应着函数的值域.2.几个基本函数的图象 函数图象 常数函数()()f x a a R =∈一次函数()()0f x kx b k =+≠二次函数()()20f x ax bx c a =++≠反比例函数()()0k f x k x =≠3。
苏教版高一数学函数及定义域一.课题:函数(1)--函数概念二.教学目的:1. 能用映射的概念理解函数的概念,掌握函数符号"",掌握区间的概念;2. 培养学生理解抽象概念的能力。
三.教学重点、难点:函数的概念四.教学过程:(二)新课讲解:1.函数的定义:(1)传统定义:设在一个变化过程中有两个变量与,如果对于的每一个值,都有唯一的一个值与它对应,那么就说是自变量,是的函数,自变量的取值的集合叫做定义域,自变量的值对应的的值叫做函数值,函数值的集合叫做函数的值域。
(2)近代定义:如果都是非空的数集,那么到的映射:就叫做到的函数,记作,其中,,原象的集合叫做函数的定义域,象的集合()叫做函数的值域。
说明:①映射:,都是非空的数集;②函数的三要素:定义域、值域、对应法则;③函数符号表示"是的函数",可简记为函数,有时也用。
④的意义:自变量取确定的值时,对应的函数值用符号表示;⑤定义域:自变量的取值的集合,值域:函数值的集合;⑥两个函数相同:当且仅当函数的三要素全相同。
例2.判断下列各组中的两个函数是否是同一函数?为什么?(1)(不是同一函数,定义域不同)(2)(不是同一函数,定义域不同)(3)(不是同一函数,值域不同)(4)(是同一函数)(5)(不是同一函数,定义域、值域都不同)3.区间的概念:设是两个实数,而且,规定:(1)满足不等式的实数的集合叫做闭区间,表示为;(2)满足不等式的实数的集合叫做开区间,表示为;(3)满足不等式或的实数的集合叫做半开半闭区间,表示为,.这里的实数与都叫做相应区间的端点。
在数轴上,这些区间可以用一条以和为端点的线段来表示(如下表),在图中,用实心点表示包括在区间内的端点,空心点表示不包括在区间内的端点。
定义名称符号数轴表示闭区间开区间半开半闭区间半开半闭区间说明:1.实数集也可以用区间表示为,""读作"无穷大",""读作"负无穷大",""读作"正无穷大";2.满足,,,的实数的集合分别表示为,,,.3.用区间表示下列集合:(1);(2)且;(3)或.解:(1);(2);(3).例2.求下列函数的定义域:(1);(2);(3).解:(1),即;(2),即;(3)且,即.说明:从本例可以看出,求函数的定义域时通常有以下几种情况:①如果是整式,那么函数的定义域是实数集;②如果是分式,那么函数的定义域是使分母不等于零的实数的集合;③如果为二次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;④如果是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合。
函数的表示方法::【学习目标】了解构成函数的要素有定义域、对应法则、值域,会求一些简单函数的定义域和值域;掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单的应用。
【要点梳理】要点一、构成函数的三要素:1.定义域、对应关系、值域(1)构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);(2)两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.2.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:x a x b a b<<={x|a≤x≤b}=[a,b];{|}(,);(]x a x b a b{|},≤<=;<≤=;[){|},x a x b a b(][)≤=∞≤=+∞.{|}-,; {|},x x b b x a x a要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。
3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。
要点诠释:若两个函数的定义域与值域相同,是否为相等函数?(不一定。
如果函数y=x和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx与y=cosx,其定义域为R,值域都为[-1,1],显然不是相等函数。
第五章函数概念与性质5.1函数的概念和图象 (1)第1课时函数的概念 (1)第2课时函数的图象 (5)5.2函数的表示方法 (9)5.3函数的单调性 (16)第1课时函数的单调性 (16)第2课时函数的最大值、最小值 (19)5.4函数的奇偶性 (23)5.1函数的概念和图象第1课时函数的概念知识点1函数的概念函数的定义一般地,给定两个非空实数集合A和B,如果按照某种对应关系f,对于集合A中的每一个实数x,在集合B中都有唯一的实数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数函数的记法从集合A到集合B的一个函数通常记为y=f(x),x∈A函数的定义域在函数y=f(x),x∈A中,所有的x(输入值)组成的集合A叫做函数y=f(x)的定义域.函数的值域若A是函数y=f(x)的定义域,则对于A中的每一个x(输入值),都有一个y(输出值)与之对应,则将所有输出值y组成的集合{y|y=f(x),x∈A}称为函数的值域1.有人认为“y=f(x)”表示的是“y等于f与x的乘积”.这种看法对吗?[提示]不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象,f是对应关系.知识点2同一函数(1)定义域和对应关系都相同的两个函数.(2)函数的对应关系和定义域都确定后,函数才能够确定.(3)给定函数时要指明函数的定义域,对于用表达式表示的函数,如果没有指明定义域,那么,就认为函数的定义域是指使得函数表达式有意义的输入值的集合.2.定义域和值域都相同的函数是同一个函数吗?[提示]不一定是,如函数y=x,x∈[0,1],和y=x2,x∈[0,1].定义域和值域都相同,但不是同一个函数.考点类型1函数的概念【例1】判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N,对于任意的x∈A,x→|x-2|;(3)A=R,B={正实数},对任意x∈A,x→1x2;(4)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(5)A=[-1,1],B={0},对于任意的x∈A,x→0.[思路点拨]求解本题的关键是判断在对应关系f的作用下,集合A中的任意一个元素在集合B中是否都有唯一的元素与之对应.[解](1)对于A中的元素,如x=9,y的值为y=±9=±3,即在对应关系f 之下,B中有两个元素±3与之对应,不符合函数的定义,故不能构成函数.(2)对于A中的元素x=22,在f作用下,|22-2|∉B,故不能构成函数.(3)A中元素x=0在B中没有对应元素,故不能构成函数.(4)依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应关系f之下,在B中都有唯一元素与之对应,依函数的定义,能构成函数.(5)对于集合A中任意一个实数x,按照对应关系在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.判断一个对应关系是否为函数的标准是什么?[提示](1)A、B必须是非空数集.(2)A中任何一个一元素在B中必须有元素与其对应.(3)A 中任一元素在B 中必有唯一元素与其对应.总结:函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”而不能是“一对多”.类型2 求函数的定义域【例2】 求下列函数的定义域.(1)f (x )=3x -83x -2; (2)f (x )=x +1+12-x . [解] (1)要使f (x )有意义,则有3x -2>0,∴x >23,即f (x )的定义域为⎝ ⎛⎭⎪⎫23,+∞. (2)要使f (x )有意义,则⎩⎨⎧x +1≥0,2-x ≠0⇒x ≥-1且x ≠2, 即f (x )的定义域为[-1,2)∪(2,+∞).求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零.(2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.类型3 求函数的值域或函数值【例3】 已知f (x )=x 2-4x +2.(1)求f (2),f (a ),f (a +1)的值;(2)求f (x )的值域;(3)若g (x )=x +1,求f (g (3))的值.[思路点拨](1)将x=2,a,a+1代入f(x)即可;(2)配方求值域;(3)先求g(3)再算f(g(3)).[解](1)f(2)=22-4×2+2=-2,f(a)=a2-4a+2,f(a+1)=(a+1)2-4(a+1)+2=a2-2a-1.(2)f(x)=x2-4x+2=(x-2)2-2≥-2,∴f(x)的值域为[-2,+∞).(3)g(3)=3+1=4,∴f(g(3))=f(4)=42-4×4+2=2.在例3中,g(x)=x+1,求f(g(x)),g(f(x)).[解]f(g(x))=g(x)2-4g(x)+2=(x+1)2-4(x+1)+2=x2-2x-1,g(f(x))=f(x)+1=x2-4x+2+1=x2-4x+3.1.函数值f(a)就是a在对应关系f下的对应值,因此由函数关系求函数值,只需将f(x)中的x用对应的值(包括值在定义域内的代数式)代入即得.2.求f(g(a))时,一般要遵循由里到外逐层计算的原则.3.配方法是一种常用的求值域的方法,主要解决“二次函数型”的函数求值域.类型4抽象函数求定义域【例4】(1)已知函数y=f(x)的定义域为[1,4],则f(x+2)的定义域为________.(2)已知函数y=f(x+2)的定义域为[1,4],则f(x)的定义域为________.(3)已知函数y=f(x+3)的定义域为[1,4],则f(2x)的定义域为________.1.在y=f(x)中,f(x)的定义域指的是什么?x是什么?[提示]f(x)的定义域指的是x的范围,其中x是函数的自变量.2.在函数y=f(x+1)中,自变量是谁?而它的定义域指的是什么?[提示]y=f(x+1)中自变量为x,其定义域指的是x的范围.(1)[-1,2] (2)[3,6] (3)⎣⎢⎡⎦⎥⎤2,72 [(1)由题知对于f (x +2)有x +2∈[1,4],∴x ∈[-1,2],故f (x +2)的定义域为[-1,2].(2)由题知x ∈[1,4],∴x +2∈[3,6],∴f (x )的定义域是[3,6].(3)由题知x ∈[1,4],∴x +3∈[4,7],对于f (2x )有2x ∈[4,7],∴x ∈⎣⎢⎡⎦⎥⎤2,72, 即f (2x )的定义域为⎣⎢⎡⎦⎥⎤2,72.]抽象函数的定义域(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值范围即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值范围,g (x )的取值范围即为f (x )的定义域.用较为口语化的语言可以将上述两类题型的解法合并成两句话:①定义域指自变量的取值范围.(告诉我们已知什么,求什么)②括号内范围相同.(告诉我们如何将条件与结论联系起来)第2课时 函数的图象知识点1 函数的图象将自变量的一个值x 0作为横坐标,相应的函数值f (x 0)作为纵坐标,就得到坐标平面上的一个点(x 0,f (x 0)).当自变量取遍函数定义域A 中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为{(x ,f (x ))|x ∈A },即{(x ,y )|y =f (x ),x ∈A },所有这些点组成的图形就是函数y =f (x )的图象.1.函数的图象是否可以关于x 轴对称?[提示] 不可以,如果关于x 轴对称,则在定义域内一定存在一个自变量x 0,有两个值和x0相对应,不符合函数的定义.2.函数y=f(x),x∈A的图象与直线x=m(垂直于x轴的直线)的交点有几个?[提示]0或1个,具体来说,当m∈A,由函数的定义,它们有唯一交点,当m∉A,它们无交点.知识点2作图、识图与用图(1)画函数图象常用的方法是描点作图,其步骤是列表、描点、连线.(2)正比例函数与一次函数的图象是一条直线,反比例函数的图象是双曲线,二次函数y=ax2+bx+c(a≠0)的图象是抛物线,开口方向由a值符号决定,a>0,图象开口向上,a<0时,图象开口向下,对称轴为x=-b 2a.考点类型1作函数的图象【例1】作出下列函数的图象,并求函数的值域.(1)y=3-x(|x|∈N*且|x|<3);(2)y=x2-2x+2(-1≤x<2).[解](1)∵|x|∈N*且|x|<3,∴定义域为{-2,-1,1,2},∴图象为直线y=3-x上的4个孤立点,如图.由图象可知,值域为{5,4,2,1}.(2)y=x2-2x+2=(x-1)2+1(x∈[-1,2)),故函数图象为二次函数y=(x-1)2+1图象上在区间[-1,2)上的部分,如图,x=1时,y=1;x=-1时,y=5,∴函数的值域为[1,5].(变条件)将例1(2)中的定义域改为[0,3),函数的图象与值域变成怎样了?[解]图象变成函数y=(x-1)2+1在[0,3)上的部分图象,如图.∵x=1时,y=1;x=3时,y=5.∴值域变为[1,5).怎样画函数的图象?[提示]1.画函数的图象,需首先关注函数的定义域.定义域决定了函数的图象是一系列点、连续的线或是其中的部分.2.描点作图,要找出关键“点”,再连线.如一次函数的图象描出端点或与坐标轴的交点,两点连线即得;二次函数的图象描出端点或与坐标轴的交点、顶点,连线即得.连线时还需标注端点的虚实.3.函数的图象能体现函数的定义域、值域.这就是数形结合思想.类型2函数图象的应用【例2】已知函数f(x)=-x2+2x+3的图象如图所示,据图回答以下问题:(1)比较f(-2),f(0),f(3)的大小;(2)求f(x)在[-1,2]上的值域;(3)求f(x)与y=x的交点个数;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.[解](1)由题图可得f(-2)=-5,f(0)=3,f(3)=0,∴f(-2)<f(3)<f(0).(2)在x∈[-1,2]时,f(-1)=0,f(1)=4,f(2)=3,∴f(x)∈[0,4].(3)在图象上作出直线y=x的图象,如图所示,观察可得,f(x)与y=x有两个交点.(4)原方程可变形为:-x2+2x+3=k,进而转化为函数y=-x2+2x+3,x ∈[-1,2]和函数y=k图象的交点个数问题,移动y=k易知0≤k<3或k=4时,只有一个交点.∴0≤k<3或k=4.1.函数图象较形象直观的反映了函数的对称性,函数的值域及函数值随自变量变化而变化的趋势.2.常借助函数图象求解以下几类问题(1)比较函数值的大小;(2)求函数的值域;(3)分析两函数图象交点个数;(4)求解不等式或参数范围.类型3利用图象的平移变换作函数图象【例3】用平移图象的方式作出y=2+1x-1的图象,并说明函数y=2+1x-1的值域.y=2+1x-1的图象与y=1x的图象有怎样的关系?[提示]两者图象完全一样,位置不同.y=2+1x-1可以看作y=1x先向右移动1个单位,又向上移动2个单位得到.[解]从图象可以看出y=2+1x-1的值域为(-∞,2)∪(2,+∞).函数图象的平移变换(1)左右平移:a>0时,y=f(x)的图象向左平移a个单位得到y=f(x+a)的图象;a>0时,y=f(x)的图象向右平移a个单位得到y=f(x-a)的图象.(2)上下平移:b>0时,y=f(x)的图象向上平移b个单位得到y=f(x)+b的图象;b>0时,y=f(x)的图象向下平移b个单位得到y=f(x)-b的图象.5.2函数的表示方法知识点1函数的表示方法1.函数三种表示法的优缺点是什么?[提示]知识点2 分段函数(1)在定义域内不同部分上,有不同的解析表达式.像这样的函数,通常叫做分段函数. (2)分段函数定义域是各段定义域的并集,其值域是各段值域的并集.(3)分段函数图象:画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象.分段函数是一个函数,因此应在同一坐标系中画出各段函数图象.2.分段函数是几个函数构成的吗?[提示] 分段函数是一个函数,而不是几个函数.考点类型1 求函数解析式【例1】 求下列函数的解析式.(1)已知f (x )为一次函数,f (2x +1)+f (2x -1)=-4x +6,求f (x );(2)已知f (x +1)=x +2x ,求f (x );(3)已知f (x )为一次函数,且f (f (x ))=4x -1,求f (x );(4)若f (x )+2f (-x )=1x ,求f (x ).[解] (1)设f (x )=ax +b (a ≠0),f (2x +1)=a (2x +1)+b ,f (2x -1)=a (2x -1)+b ,f (2x +1)+f (2x -1)=4ax +2b =-4x +6,所以⎩⎨⎧ 4a =-4,2b =6,解得⎩⎨⎧ a =-1,b =3,即函数f (x )的解析式为f (x )=-x +3.(2)令x +1=t (t ≥1), 则x =t -1,x =(t -1)2, ∴f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(3)设所求函数f (x )=kx +b (k ≠0),所以f (f (x ))=f (kx +b )=k (kx +b )+b =k 2x +kb +b =4x -1,则⎩⎨⎧k 2=4,kb +b =-1,解得⎩⎪⎨⎪⎧k =2,b =-13或⎩⎨⎧k =-2,b =1, 所以f (x )=2x -13或f (x )=-2x +1. (4)∵f (x )+2f (-x )=1x ,①用-x 替换x 得f (-x )+2f (x )=-1x ,② ②×2-①得3f (x )=-2x -1x =-3x ,∴f (x )=-1x .求函数解析式的常用方法(1)待定系数法:已知函数f (x )的函数类型,求f (x )的解析式时,可根据类型设出其解析式,将已知条件代入解析式,得到含待定系数的方程(组),确定其系数即可.(2)换元法:令t =g (x ),注明t 的范围,再求出f (t )的解析式,然后用x 代替所有的t 即可求出f (x ),一定要注意t 的范围即为f (x )中x 的范围.(3)配凑法:已知f (g (x ))的解析式,要求f (x )时,可从f (g (x ))的解析式中拼凑出“g (x )”,即用g (x )来表示,再将解析式两边的g (x )用x 代替即可.(4)代入法:已知y =f (x )的解析式求y =f (g (x ))的解析式时,可直接用新自变量g (x )替换y =f (x )中的x .(5)方程组法(消去法),适用于自变量具有对称规律的函数表达式,如:互为倒数⎝ ⎛⎭⎪⎫f (x ),f ⎝ ⎛⎭⎪⎫1x ,互为相反数(f (-x ),f (x ))的函数方程,通过对称构造一个对称方程组,解方程组即可.在构造对称方程时,一般用1x 或-x 替换原式中的x 即可.类型2 分段函数的求值问题【例2】已知函数f (x )=⎩⎨⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.试求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值.[解] 由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2×(-3) =3-2 3.因为f ⎝ ⎛⎭⎪⎫-52=-52+1=-32,-2<-32<2,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-32=⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32 =94-3=-34.1.(变结论)本例条件不变,若f (a )=3,求实数a 的值.[解] ①当a ≤-2时,f (a )=a +1,所以a +1=3,所以a =2>-2不合题意,舍去.②当-2<a <2时,a 2+2a =3, 即a 2+2a -3=0. 所以(a -1)(a +3)=0, 所以a =1或a =-3.因为1∈(-2,2),-3∉(-2,2),所以a=1符合题意.③当a≥2时,2a-1=3,所以a=2符合题意.综合①②③,当f(a)=3时,a=1或a=2.2.本例条件不变,若f(x)>3,求x的取值范围.[解]①当x≤-2时,x+1>3得x>2,又x≤-2,所以x∈∅.②当-2<x<2时,x2+2x>3得x>1或x<-3,又-2<x<2,所以1<x<2.③当x≥2时,2x-1>3,得x>2,又x≥2,所以x>2,综上有x的取值范围是1<x<2或x>2.1.分段函数求函数值的方法(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.类型3分段函数的图象及应用【例3】已知函数f(x)=-x2+2,g(x)=x,令φ(x)=min{f(x),g(x)}(即f(x)和g(x)中的较小者).(1)分别用图象法和解析式表示φ(x);(2)求函数φ(x)的定义域,值域.[解] (1)在同一个坐标系中画出函数f (x ),g (x )的图象如图①.① ②由图①中函数取值的情况,结合函数φ(x )的定义,可得函数φ(x )的图象如图②.令-x 2+2=x 得x =-2或x =1. 结合图②,得出φ(x )的解析式为φ(x )=⎩⎨⎧-x 2+2,x ≤-2,x ,-2<x <1,-x 2+2,x ≥1.(2)由图②知,φ(x )的定义域为R ,φ(1)=1, ∴φ(x )的值域为(-∞,1].分段函数图象的画法(1)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.类型4 分段函数的实际应用【例4】 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.[解] 过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为四边形ABCD 是等腰梯形,底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm , 又BC =7 cm ,所以AD =GH =3 cm. (1)当点F 在BG 上,即x ∈[0,2]时,y =12x 2;(2)当点F 在GH 上,即x ∈(2,5]时,y =x +x -22×2=2x -2;(3)当点F 在HC 上,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合(1)(2)(3),得函数的解析式为y =⎩⎪⎨⎪⎧12x 2,x ∈[0,2],2x -2,x ∈(2,5],-12(x -7)2+10,x ∈(5,7].图象如图所示.分段函数图象的画法(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)用分段函数解决实际问题时要注意两点①确定好分段的标准,正确的写出分段函数的表达式;②考虑自变量的实际意义,注意自变量的取值范围.5.3函数的单调性第1课时函数的单调性知识点1单调增(减)函数的概念设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2.当x1<x2时,都有(1)f(x1)<f(x2)①称y=f(x)在区间I上是增函数.②I称为y=f(x)的增区间.(2)f(x1)>f(x2)①称y=f(x)在区间I上为减函数.②I称为y=f(x)的减区间.1.增(减)函数定义中的x1、x2有什么特征?[提示]定义中的x1、x2有以下3个特征.(1)任意性,即“任意取x1、x2”中“任意”二字绝不能去掉.证明时不能以特殊代替一般.(2)有大小,通常规定x1<x2.(3)属于同一个单调区间.知识点2函数的单调性与单调区间如果函数y=f(x)在区间I上是增函数或减函数,那么称函数y=f(x)在区间I 上具有单调性,增区间和减区间统称为单调区间.2.函数y=1x在定义域上是减函数吗?[提示] 不是,y =1x 在(-∞,0)上递减,在(0,+∞)上也递减.但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.考点类型1 利用函数图象求单调区间【例1】 作出下列函数的图象,并写出单调区间. (1)y =x 2-4;(2)y =-2x ;(3)f (x )=⎩⎨⎧(x -2)2,x ≥0,x +4,x <0.[解] 三个函数图象如图(1)(2)(3).(1) (2) (3)(1)y =x 2-4的单调递减区间为(-∞,0],递增区间为[0,+∞). (2)y =-2x 的单调增区间为(-∞,0),(0,+∞),无递减区间. (3)f (x )的单调增区间为(-∞,0],[2,+∞),递减区间为[0,2].应用图象确定单调性的关键是什么?[提示] 应掌握各种基本函数的图象的形状,并能通过图象的“上升”或“下降”趋势来找到函数的递增或递减区间.但应注意端点是否在定义域内.当函数的单调区间不唯一时,中间用“,”隔开或用“和”连接.但不能用“或”和“∪”连接.类型2 函数单调性的判定与证明【例2】 证明函数f (x )=x +1x 在(0,1)上是减函数.[证明] 设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0, ∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x 在(0,1)上是减函数.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.类型3 函数单调性的应用【例3】 已知函数f (x )是定义在[-2,2]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围为________.⎣⎢⎡⎭⎪⎫0,32 [∵f (x )是定义在[-2,2]上的增函数,且f (x -2)<f (1-x ), ∴x -2<1-x , ∴x <32.又f (x )的定义域为[-2,2], ∴⎩⎨⎧-2≤x -2≤2,-2≤1-x ≤2, ∴⎩⎨⎧0≤x ≤4,-1≤x ≤3,∴0≤x ≤3,综上,0≤x <32.]1.利用函数单调性的定义比较大小,一方面是正向应用,即若y =f (x )在给定区间上是增函数,则当x 1<x 2时,f (x 1)<f (x 2),当x 1>x 2时,f (x 1)>f (x 2);另一方面是逆向应用,即若y =f (x )在给定区间上是增函数,则当f (x 1)<f (x 2)时,x 1<x 2,当f (x 1)>f (x 2)时,x 1>x 2.当y =f (x )在给定区间上是减函数时,同理可得相应结论.2.根据函数的单调性研究参数的取值范围,往往会根据函数在某一区间上的增减性确定不等式,此时常需要将含参数的变量单独移到一侧,用变量的范围推出参数的范围.第2课时 函数的最大值、最小值知识点 函数的最大值与最小值 (1)函数的最大值一般地,设y =f (x )的定义域为A .如果存在x 0∈A ,使得对于任意的x ∈A ,都有f (x )≤f (x 0),那么称f (x 0)为y =f (x )的最大值,记为y max =f (x 0).(2)函数的最小值一般地,设y =f (x )的定义域为A .如果存在x 0∈A ,使得对于任意的x ∈A ,都有f (x )≥f (x 0),那么称f (x 0)为y =f (x )的最小值,记为y min =f (x 0).函数的最值与值域是一回事吗?[提示] 不是.最值与值域是不同的,值域是一个集合,而最值只是这个集合中的一个元素.考点类型1 利用图象求函数的最值 【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x,x >1.求f (x )的最大值、最小值.[解]作出函数f(x)的图象(如图).由图象可知,当x=±1时,f(x)取最大值为f(1)=f(-1)=1.当x=0时,f(x)取最小值为f(0)=0,故f(x)的最大值为1,最小值为0.图象法求函数最值的一般步骤类型2利用单调性求函数的最值【例2】已知函数f(x)=xx-1.(1)用函数单调性定义证明f(x)=xx-1在(1,+∞)上是单调减函数;(2)求函数f(x)=xx-1在区间[3,4]上的最大值与最小值.[解](1)证明:设x1,x2为区间(1,+∞)上的任意两个实数,且1<x1<x2,则f(x1)-f(x2)=x1x1-1-x2x2-1=(x2-x1)(x1-1)(x2-1),因为1<x1<x2.所以x2-x1>0,x1-1>0,x2-1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2).故函数f(x)=xx-1在(1,+∞)上为单调递减函数.(2)由上述(1)可知,函数f(x)=xx-1在[3,4]上为单调递减函数,所以在x=3时,函数f(x)=xx-1取得最大值32;在x=4时,函数f(x)=xx-1取得最小值43.(变条件)求函数f(x)=xx-1在[-4,-3]上的最值.[解]任取x1,x2∈[-4,-3]且x1<x2,则f(x1)-f(x2)=x1x1-1-x2x2-1=(x2-x1)(x1-1)(x2-1).∵x1,x2∈[-4,-3],∴x1-1<0,x2-1<0.又x1<x2,∴x2-x1>0,∴f(x1)-f(x2)>0,∴f(x1)>f(x2),∴f(x)在[-4,-3]上单调递减,∴f(x)max=f(-4)=4 5,f(x)min=f(-3)=3 4,∴f(x)在[-4,-3]上最大值为45,最小值为34.1.当函数图象不好作或无法作出时,往往运用函数单调性求最值.2.函数的最值与单调性的关系(1)若函数在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b);(2)若函数在闭区间[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b),最小值为f(a);(3)求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最大(小)值.类型3 二次函数的最值【例3】 求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值.二次函数f (x )的对称轴在区间[2,4]可能存在几种位置关系?[提示] 对称轴在[2,4]的左侧即a <2,在区间[2,4]内即2≤a ≤4,在区间[2,4]的右侧即a >4.[解] ∵函数图象的对称轴是x =a ,∴当a <2时,f (x )在[2,4]上是增函数,∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2. ∴f (x )min =⎩⎨⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.1.在本例条件下,求f (x )的最大值. [解] ∵函数图象的对称轴是x =a , ∴当a ≤3时,f (x )max =f (4)=18-8a , 当a >3时,f (x )max =f (2)=6-4a . ∴f (x )max =⎩⎨⎧18-8a ,a ≤3,6-4a ,a >3.2.在本例条件下,若f (x )的最小值为2,求a 的值.[解]由本例解析知f (x )min =⎩⎨⎧6-4a,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.当a <2时,6-4a =2,a =1;当2≤a ≤4时,2-a 2=2,a =0(舍去); 当a >4时,18-8a =2,a =2(舍去). ∴a 的值为1.求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间内,在区间左侧,在区间右侧)来决定,当开口方向或对称轴位置不确定时,需要进行分类讨论.5.4函数的奇偶性知识点1奇函数与偶函数的概念(1)偶函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有-x∈A,并且f(-x)=f(x),那么称函数y=f(x)是偶函数.(2)奇函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有-x∈A,并且f(-x)=-f(x),那么称函数y=f(x)是奇函数.如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性.具有奇偶性的函数,其定义域有何特点?[提示]定义域关于原点对称.知识点2奇、偶函数的图象性质(1)偶函数的图象关于y轴对称,图象关于y轴对称的函数一定是偶函数.(2)奇函数的图象关于原点对称,图象关于原点对称的函数一定是奇函数.考点类型1函数奇偶性的判断【例1】(1)若函数f(x)的图象如图所示,则f(x)为________函数.(填“奇”或“偶”或“非奇非偶”)(2)判断下列函数的奇偶性. ①f (x )=2|x |;②f (x )=x +1+ln(1-x ); ③f (x )=4-x 2+x 2-4; ④f (x )=1-x 2|x +2|-2.[思路点拨] (1)观察图象的对称性.(2)利用奇偶性的定义,先确定定义域,再看f (x )与f (-x )的关系. (1)偶 [因为函数的图象关于y 轴对称,所以函数是偶函数.](2)[解] ①因为函数的定义域为(-∞,0)∪(0,+∞),关于原点对称. 又f (-x )=2|-x |=2|x |=f (x ),所以函数f (x )是偶函数. ②定义域要求⎩⎨⎧x +1≥0,1-x >0,所以-1≤x <1,所以f (x )的定义域不关于原点对称, 所以f (x )是非奇非偶函数. ③由⎩⎨⎧4-x 2≥0,x 2-4≥0,得x ∈{2,-2},定义域关于原点对称,且f (±2)=0, 所以f (x )既是奇函数又是偶函数.④由⎩⎨⎧ 1-x 2≥0,|x +2|-2≠0, 得⎩⎨⎧-1≤x ≤1,x ≠0且x ≠-4,所以函数的定义域为[-1,0)∪(0,1].此时f (x )=1-x 2|x +2|-2=1-x 2x ,x ∈[-1,0)∪(0,1],所以f (-x )=1-(-x )2-x =-1-x 2x =-f (x ),所以函数f (x )是奇函数.判断函数奇偶性的方法(1)定义法(2)图象法若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.此法多用于选择题中.类型2奇偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.[解](1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.[解](1)如图所示.(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y 轴对称. (2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.类型3 利用函数的奇偶性求解析式【例3】 (1)函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求f (x )的解析式;(2)设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.[解] (1)设x <0,则-x >0, ∴f (-x )=-(-x )+1=x +1, 又∵函数f (x )是定义域为R 的奇函数, ∴f (-x )=-f (x )=x +1, ∴当x <0时,f (x )=-x -1. 又x =0时,f (0)=0,所以f (x )=⎩⎨⎧-x -1,x <0,0,x =0,-x +1,x >0.(2)∵f (x )是偶函数,g (x )是奇函数, ∴f (-x )=f (x ),g (-x )=-g (x ). 由f (x )+g (x )=1x -1,① 用-x 代替x 得f (-x )+g (-x )=1-x -1, ∴f (x )-g (x )=1-x -1,② (①+②)÷2,得f (x )=1x 2-1; (①-②)÷2,得g (x )=x x 2-1.把本例(2)的条件“f(x)是偶函数,g(x)是奇函数”改为“f(x)是奇函数,g(x)是偶函数”,再求f(x),g(x)的解析式.[解]∵f(x)是奇函数,g(x)是偶函数,∴f(-x)=-f(x),g(-x)=g(x),又f(x)+g(x)=1x-1,①用-x代替上式中的x,得f(-x)+g(-x)=1-x-1,即f(x)-g(x)=1x+1.②联立①②得f(x)=xx2-1,g(x)=1x2-1.利用函数奇偶性求解析式的方法(1)“求谁设谁”,即在哪个区间上求解析式,x就应在哪个区间上设.(2)要利用已知区间的解析式进行代入.(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).提醒:若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,但若为偶函数,未必有f(0)=0.类型4奇偶函数的单调性【例4】已知函数f(x)是奇函数,其定义域为(-1,1),且在[0,1)上为增函数.若f(a-2)+f(3-2a)<0,试求a的取值范围.1.若f(x)为奇函数,f(3-2a)与f(2a-3)有何关系?[提示]f(3-2a)=f[-(2a-3)]=-f(2a-3).2.f(a-2)+f(3-2a)<0怎样转化和求解?[提示]由f(a-2)+f(3-2a)<0得f(a-2)<-f(3-2a)=f(2a-3),利用单调性求解,注意定义域.[解] ∵f (a -2)+f (3-2a )<0, ∴f (a -2)<-f (3-2a ). ∵f (x )为奇函数, ∴-f (3-2a )=f (2a -3), ∴f (a -2)<f (2a -3). ∵f (x )在[0,1)上为增函数, ∴f (x )在(-1,1)上单调递增,∴⎩⎨⎧-1<a -2<1,-1<2a -3<1,a -2<2a -3,解得1<a <2.1.函数奇偶性和单调性的关系(1)若f (x )是奇函数,且f (x )在[a ,b ]上是单调函数,则f (x )在[-b ,-a ]上也为单调函数,且具有相同的单调性.(2)若f (x )是偶函数,且f (x )在[a ,b ]上是单调函数,则f (x )在[-b ,-a ]上也为单调函数,且具有相反的单调性.2.利用单调性和奇偶性解不等式的方法(1)充分利用已知的条件,结合函数的奇偶性,把已知不等式转化为f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再利用单调性脱掉“f ”求解.(2)在对称区间上根据奇函数的单调性一致,偶函数的单调性相反,列出不等式或不等式组,求解即可,同时要注意函数自身定义域对参数的影响.。
第六章幂函数、指数函数和对数函数6.1幂函数 (1)6.2指数函数 (6)第1课时指数函数的概念、图象与性质 (6)第2课时指数函数的图象与性质的应用 (11)6.3对数函数 (16)第1课时对数函数的概念、图象与性质 (16)第2课时对数函数的图象与性质的应用 (20)6.1幂函数知识点1幂函数的概念一般地,我们把形如y=xα的函数称为幂函数,其中x是自变量,α是常数.知识点2幂函数的图象和性质1.幂函数的图象在同一平面直角坐标系中,幂函数y=x,y=x2,y=x3,y=x,y=x-1的图象如图所示:2.幂函数的性质y=x y=x2y=x3y=x y=x-1定义域R R R[0,+∞)(-∞,0)∪(0,+∞)值域R[0,+∞)R[0,+∞)(-∞,0)∪(0,+∞)奇偶性奇函数偶函数奇函数非奇非奇函数偶函数单调性在(-∞,+∞)上单调递增 在(-∞,0]上单调递减,在[0,+∞)上单调递增在(-∞,+∞)上单调递增在[0,+∞) 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递减定点(1,1),(0,0)(1,1),(0,0) (1,1),(0,0) (1,1),(0,0)(1,1)考点类型1 幂函数的概念 【例1】 (1)下列函数:①y =x 3;②y =⎝ ⎛⎭⎪⎫12x;③y =4x 2;④y =x 5+1;⑤y =(x -1)2;⑥y =x ;⑦y =a x (a >1).其中幂函数的个数为( )A .1B .2C .3D .4(2)已知y =(m 2+2m -2)x m2-2+2n -3是幂函数,求m ,n 的值.(1)B [幂函数有①⑥两个.] (2)[解] 由题意得⎩⎨⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.1.幂函数y =x α满足的三个特征 (1)幂x α前系数为1;(2)底数只能是自变量x ,指数是常数; (3)项数只有一项.2.求幂函数解析式时常用待定系数法,即设解析式为f (x )=x α,根据条件求出α.类型2 比较大小【例2】 比较下列各组数中两个数的大小: (1)⎝ ⎛⎭⎪⎫13与⎝ ⎛⎭⎪⎫14;(2)⎝ ⎛⎭⎪⎫-23-1与⎝ ⎛⎭⎪⎫-35-1; (3)0.25与6.25;(4)1.20.6与0.30.4;(5)(-3)与(-2).[思路点拨] 可以借助幂函数y =x 2的单调性或化为同指数或借助于中间量进行比较.[解] (1)∵y =x 是[0,+∞)上的增函数,且13>14, ∴⎝ ⎛⎭⎪⎫13>⎝ ⎛⎭⎪⎫14. (2)∵y =x -1是(-∞,0)上的减函数, 且-23<-35,∴⎝ ⎛⎭⎪⎫-23-1>⎝ ⎛⎭⎪⎫-35-1. (3)0.25=⎝ ⎛⎭⎪⎫14=2,6.25=2.5.∵y =x 是[0,+∞)上的增函数,且2<2.5, ∴2<2.5,即0.25<6.25.(4)由幂函数的单调性,知1.20.6>10.6=1,0.30.4<10.4=1,从而0.30.4<1.20.6. (5)由幂函数的奇偶性,(-3)=3>0,(-2)=-2<0, 所以(-3)>(-2).比较幂值的大小,关键在于构造适当的函数(1)若指数相同而底数不同,则构造幂函数;若指数相同、底数不在同一单调区间,则用奇偶性;(2)若指数与底数都不同,需考虑是否能把指数化为相同,是否可以引入中间量.类型3 幂函数的图象及应用【例3】 点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ). [解] 设f (x )=x α,g (x )=x β. ∵(2)α=2,(-2)β=-12, ∴α=2,β=-1,∴f (x )=x 2,g (x )=x -1.分别作出它们的图象,如图所示.由图象知,(1)当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x ); (2)当x =1时,f (x )=g (x ); (3)当x ∈(0,1)时,f (x )<g (x ).1.解决幂函数图象问题应把握研究一般的方法 (1)求幂函数的定义域,再判定奇偶性;(2)先研究第一象限的图象与性质,再根据奇偶性(对称性)研究其它象限的图象.2.幂函数在第一象限的图象与性质(1)α>0,幂函数的图象恒经过(0,0),(1,1),在[0,+∞)是增函数. (2)α<0,幂函数的图象恒经过(1,1),在(0,+∞)上是减函数. 3.幂函数图象在第一象限内随指数变化而变化的规律(1)在第一象限内直线x =1的右侧,图象从上到下,相应的指数由大变小;(2)在第一象限内直线x =1的左侧,图象从下到上,相应的指数由大变小.类型4 幂函数性质的综合应用【例4】 已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上单调递减,求满足(a +1)<(3-2a )的a 的取值范围.1.函数图象关于y 轴对称,函数有怎样的奇偶性? [提示] 偶函数. 2.x>y时,x 、y 与0的大小关系有多少种?[提示] 0<x <y ,x <y <0,x >0>y .[解] ∵函数在(0,+∞)上递减,∴3m -9<0,解得m <3. 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. ∴有(a +1)<(3-2a ).∵y =x在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a ,或a +1<0<3-2a ,解得23<a <32或a <-1. 所以a 的取值范围为(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32.1.本题在解答过程中易出现忽略对底数的分类讨论而产生漏解. 2.求解此类题目的关键是弄清幂函数的概念及幂函数的性质. 解决此类问题可分为两大步:第一步,研究幂函数的奇偶性(图象对称性)、第一象限的图象的单调性求出m 的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a 的取值范围.6.2指数函数第1课时指数函数的概念、图象与性质知识点1指数函数的概念一般地,函数y=a x(a>0,a≠1)叫作指数函数,它的定义域是R.知识点2指数函数的图象和性质a>10<a<1图象性质定义域R值域(0,+∞)定点图象过点(0,1),图象在x轴的上方函数值的变化x>0时,y>1;x<0时,0<y<1x>0时,0<y<1;x<0时,y>1单调性在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数奇偶性非奇非偶函数1.指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?[提示]指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.2.为什么底数应满足a>0且a≠1?[提示]①当a≤0时,a x可能无意义;②当a>0时,x可以取任何实数;③当a=1时,a x=1(x∈R),无研究价值.因此规定y=a x中a>0,且a≠1.考点类型1指数函数的概念【例1】(1)下列函数中,是指数函数的个数是()①y=(-8)x;②y=2x2-1;③y=a x;④y=2·3x.A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________.(1)D (2)19 [(1)①中底数-8<0,所以不是指数函数; ②中指数不是自变量x ,而是x 的函数, 所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由f ⎝ ⎛⎭⎪⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19.]1.判断一个函数是否为指数函数,要牢牢抓住3点 (1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1.2.求指数函数的解析式常用待定系数法.类型2 利用单调性比较大小 【例2】 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫34-1.8与⎝ ⎛⎭⎪⎫34-2.6;(2)⎝ ⎛⎭⎪⎫58与1; (3)0.6-2与⎝ ⎛⎭⎪⎫43;(4)⎝ ⎛⎭⎪⎫130.3与3-0.2;(5)0.20.6与0.30.4;(6) ⎝ ⎛⎭⎪⎫23,⎝ ⎛⎭⎪⎫23,⎝ ⎛⎭⎪⎫25.[思路点拨] 观察底数是否相同(或能化成底数相同),若相同用单调性,否则结合图象或中间值来比较大小.[解] (1)∵0<34<1,y =⎝ ⎛⎭⎪⎫34x在定义域R 内是减函数,-1.8>-2.6, ∴⎝ ⎛⎭⎪⎫34-1.8<⎝ ⎛⎭⎪⎫34-2.6.(2)∵0<58<1,∴y =⎝ ⎛⎭⎪⎫58x在定义域R 内是减函数.又∵-23<0, ∴⎝ ⎛⎭⎪⎫58>⎝ ⎛⎭⎪⎫580=1, ∴⎝ ⎛⎭⎪⎫58>1.(3)∵0.6-2>0.60=1,⎝ ⎛⎭⎪⎫43<⎝ ⎛⎭⎪⎫430=1, ∴0.6-2>⎝ ⎛⎭⎪⎫43.(4)∵⎝ ⎛⎭⎪⎫130.3=3-0.3,y =3x 在定义域R 内是增函数,又∵-0.3<-0.2, ∴3-0.3<3-0.2,∴⎝ ⎛⎭⎪⎫130.3<3-0.2.(5)由幂函数的单调性,知0.20.6<0.30.6,又y =0.3x 是减函数,∴0.30.4>0.30.6,从而0.20.6<0.30.4.(6)∵f (x )=⎝ ⎛⎭⎪⎫23x 在R 上为减函数,∴⎝ ⎛⎭⎪⎫23<⎝ ⎛⎭⎪⎫23, ∵f (x )=x 在(0,+∞)上为增函数,∴⎝ ⎛⎭⎪⎫23>⎝ ⎛⎭⎪⎫25,所以⎝ ⎛⎭⎪⎫23>⎝ ⎛⎭⎪⎫23>⎝ ⎛⎭⎪⎫25.在进行指数式的大小比较时,可以归纳为以下3类 (1)底数同、指数不同:利用指数函数的单调性解决. (2)底数不同、指数同:利用幂函数的单调性解决.(3)底数不同、指数也不同:采用介值法.以其中一个的底为底,以另一个的指数为指数.比如a c 与b d ,可取a d ,前者利用单调性,后者利用图象.类型3 利用指数函数的单调性解不等式 【例3】 (1)解不等式⎝ ⎛⎭⎪⎫123x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,且a ≠1). [解] (1)∵2=⎝ ⎛⎭⎪⎫12-1,∴原不等式可以转化为⎝ ⎛⎭⎪⎫123x -1≤⎝ ⎛⎭⎪⎫12-1. ∵y =⎝ ⎛⎭⎪⎫12x在R 上是减函数,∴3x -1≥-1,∴x ≥0, 故原不等式的解集为{x |x ≥0}. (2)分情况讨论①当0<a <1时,函数f (x )=a x (a >0,a ≠1)在R 上为减函数, ∴x 2-3x +1>x +6, ∴x 2-4x -5>0,根据相应二次函数的图象可得x <-1或x >5.②当a >1时,函数f (x )=a x (a >0,a ≠1)在R 上是增函数. ∴x 2-3x +1<x +6,∴x 2-4x -5<0. 根据相应二次函数的图象可得-1<x <5, 综上所述当0<a <1时,x <-1或x >5, 当a >1时,-1<x <5.1.形如a x >a y 的不等式,借助y =a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.2.形如a x >b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x 的单调性求解.类型4 图象变换及其应用【例4】 (1)函数y =3-x 的图象是________.(填序号)(2)已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过第________象限.(3)函数f (x )=2a x +1-3(a >0且a ≠1)的图象恒过定点________. [思路点拨] 题(1)中可将y =3-x转化为y =⎝ ⎛⎭⎪⎫13x.题(2)中,函数y =a x +b 的图象过点(0,1+b ), 因为b <-1,所以点(0,1+b )在y 轴负半轴上. 题(3)应该根据指数函数经过定点求解.(1)② (2)一 (3)(-1,-1) [(1)y =3-x =⎝ ⎛⎭⎪⎫13x 为单调递减的指数函数,其图象为②.(2)函数y =a x (0<a <1)在R 上单调递减,图象过定点(0,1),所以函数y =a x +b 的图象在R 上单调递减,且过点(0,1+b ).因为b <-1,所以点(0,1+b )在y 轴负半轴上,故图象不经过第一象限.(3)令x +1=0,得x =-1,此时y =2a 0-3=-1,故图象恒过定点(-1,-1).]1.处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1).(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性. 2.指数型函数图象过定点问题的处理方法求指数型函数图象所过的定点时,只要令指数为0,求出对应的y 的值,即可得函数图象所过的定点.第2课时 指数函数的图象与性质的应用知识点 指数型函数形如y =ka x (k ∈R ,且k ≠0,a >0且a ≠1)的函数是一种指数型函数,这是一种非常有用的函数模型.设原有量为N ,每次的增长率为p ,经过x 次增长,该量增长到y ,则y =N (1+p )x (x ∈N ).考点类型1 求函数的定义域、值域 【例1】 求下列函数的定义域和值域: (1)y =2;(2)y =1-2x;(3)y =⎝ ⎛⎭⎪⎫12x 2-2x -3;(4)y =4x +2x +2-3.[解] (1)由x -4≠0,得x ≠4, 故y =2的定义域为{x |x ≠4}.又1x -4≠0,即2≠1,故y =2的值域为{y |y >0,且y ≠1}.(2)由1-2x ≥0,得2x ≤1,∴x ≤0, ∴y =1-2x 的定义域为(-∞,0]. 由0<2x ≤1,得-1≤-2x <0, ∴0≤1-2x <1,∴y =1-2x 的值域为[0,1). (3)y =⎝ ⎛⎭⎪⎫12x 2-2x -3的定义域为R .∵x 2-2x -3=(x -1)2-4≥-4, ∴⎝ ⎛⎭⎪⎫12 x 2-2x -3≤⎝ ⎛⎭⎪⎫12-4=16. 又∵⎝ ⎛⎭⎪⎫12x 2-2x -3>0,故函数y =⎝ ⎛⎭⎪⎫12x 2-2x -3的值域为(0,16].(4)函数 y =4x +2x +2-3的定义域为R .设t =2x ,则t >0.所以y =t 2+4t -3=(t +2)2-7,t >0. 因为函数y =t 2+4t -3=(t +2)2-7在(0,+∞)为增函数, 所以y >-3,即函数的值域为(-3,+∞).1.若将本例(2)中函数换为y =⎝ ⎛⎭⎪⎫13x-1,求其定义域. [解] 由⎝ ⎛⎭⎪⎫13x -1≥0得⎝ ⎛⎭⎪⎫13x ≥⎝ ⎛⎭⎪⎫130,∴x ≤0即函数的定义域为(-∞,0].2.若将本例(4)增加条件“0≤x ≤2”再求函数的值域.[解] 由于x ∈[0,2]则2x =t ∈[1,4],所以y =t 2+4t -3=(t +2)2-7.t ∈[1,4],∵函数y =t 2+4t -3=(t +2)2-7在[1,4]为增函数.故y ∈[2,29].1.对于y =a f (x )这类函数(1)定义域是指使f (x )有意义的x 的取值范围. (2)值域问题,应分以下两步求解: ①由定义域求出u =f (x )的值域;②利用指数函数y =a u 的单调性或利用图象求得函数的值域.2.对于y =m (a x )2+n (a x )+p (m ≠0)这类函数值域问题,利用换元法,借助二次函数求解.类型2 指数型函数的应用题【例2】 某市现有人口总数为100万人,如果年平均增长率为1.2%,试解答下列问题:(1)试写出x 年后该城市人口总数y (万人)与年份x (年)之间的函数关系式; (2)计算10年后该城市人口总数(精确到1万人).(参考数据:1.01210≈1.127) [思路点拨] 本题考查有关增长率的问题,若设原来人口总数为N ,年平均增长率为p ,则对于x 年后的人口总数y ,可以用y =N (1+p )x 表示.[解] (1)1年后城市人口总数为: y =100+100×1.2%=100(1+1.2%).2年后城市人口总数为:y =100×(1+1.2%)+100×(1+1.2%)×1.2% =100(1+1.2%)2,同理3年后城市人口总数为y =100(1+1.2%)3, …故x 年后的城市人口总数为y =100(1+1.2%)x . (2)10年后该城市人口总数为:y =100(1+1.2%)10=100×1.01210≈100×1.127 ≈113(万人).故10年后该城市人口总数约为113万人.解决实际应用题的步骤(1)领会题意,并把题中的普通语言转化为数学语言;(2)根据题目要求,分析量与量之间的关系,建立恰当的函数模型,并注意对变量的限制条件,加以概括;(3)对已经“数学化”的问题用所学的数学知识处理,求出解;(4)检验:将数学问题的解代入实际问题检查,舍去不符合题意的解,并作答.类型3 指数函数性质的综合应用【例3】 已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围; (3)求f (x )在[-1,2]上的值域.[思路点拨] (1)根据奇函数的定义,求出a ,b .(2)利用单调性和奇偶性去掉“f ”解不等式求k 的范围.(3)利用(2)中单调性求f (x )的值域.[解] (1)∵函数y =f (x )是定义域R 上的奇函数, ∴⎩⎨⎧f (0)=0,f (-1)=-f (1),∴⎩⎪⎨⎪⎧-1+b 2+a =0,-2-1+b 20+a =--21+b 22+a ,∴b =1,a =2.(2)由(1)知f (x )=1-2x 2(2x +1)=-12+12x +1,设x 1,x 2∈R 且x 1<x 2, 则f (x 2)-f (x 1)=12x 2+1-12x 1+1=2x 1-2x 2(2x 2+1)(2x 1+1)<0, ∴f (x )在定义域R 上为减函数, 由f (t 2-2t )+f (2t 2-k )<0恒成立, 可得f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), ∴t 2-2t >k -2t 2, ∴3t 2-2t -k >0恒成立,∴Δ=(-2)2+12k <0,解得k <-13, ∴k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-13.(3)由(2)知f (x )在R 上单调递减, ∴f (x )在[-1,2]上单调递减,∴f (x )max =f (-1)=-12+11+12=16,f (x )min =f (2)=-12+14+1=-310,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-310,16.与指数函数有关的综合应用问题往往涉及到指数函数的定义域、值域、单调性、奇偶性、最值(值域)等问题,求解时可充分借助已学的知识逐项求解.类型4 复合函数的单调性 【例4】 判断f (x )=⎝ ⎛⎭⎪⎫13x 2-2x的单调性,并求其值域.y =⎝ ⎛⎭⎪⎫13x与y =x 2-2x 的单调性分别如何? [提示] y =⎝ ⎛⎭⎪⎫13x单调递减.y =x 2-2x 在(-∞,1]上单调递减,在[1,+∞)上单调递增.[解] 令u =x 2-2x ,则原函数变为y =⎝ ⎛⎭⎪⎫13u.∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增, 又∵y =⎝ ⎛⎭⎪⎫13u在(-∞,+∞)上递减,∴y =⎝ ⎛⎭⎪⎫13x 2-2x 在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1, ∴y =⎝ ⎛⎭⎪⎫13u,u ∈[-1,+∞),∴0<⎝ ⎛⎭⎪⎫13u ≤⎝ ⎛⎭⎪⎫13-1=3,∴原函数的值域为(0,3].1.关于指数型函数y =a f (x )(a >0,且a ≠1),它由两个函数y =a u ,u =f (x )复合而成.其单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.2.求这种指数型函数的单调区间,首先求出函数的定义域,然后把函数分解成y =f (u ),u =φ(x ),通过考查f (u )和φ(x )的单调性,求出y =f (φ(x ))的单调性,其规则是“同增异减”.6.3对数函数第1课时对数函数的概念、图象与性质知识点1对数函数的概念一般地,函数y=log a x(a>0,a≠1)叫作对数函数,它的定义域是(0,+∞).1.函数y=2log3x,y=log3(2x)是对数函数吗?[提示]不是,其不符合对数函数的形式.知识点2对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0)在(0,+∞)上是增函数当0<x<1时,y<0;当x>1时,y>0在(0,+∞)上是减函数当0<x<1时,y>0;当x>1时,y<02.对数函数的“上升”或“下降”与谁有关?[提示]底数a与1的关系决定了对数函数的升降.当a>1时,对数函数的图象“上升”,当0<a<1时,对数函数的图象“下降”.知识点3反函数(1)对数函数y=log a x(a>0,a≠1)和指数函数y=a x(a>0,a≠1)互为反函数,它们的图象关于y=x对称.(2)一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x).(3)互为反函数的两个函数的图象关于直线y=x对称.(4)原函数y=f(x)的定义域是它的反函数y=f-1(x)的值域;原函数y=f(x)的值域是它的反函数y=f-1(x)的定义域.考点类型1对数函数的概念【例1】判断下列函数是否是对数函数?并说明理由.(1)y=log a x2(a>0,且a≠1);(2)y=log2x-1;(3)y=2log8x;(4)y=log x a(x>0,且x≠1).[思路点拨]依据对数函数的定义来判断.[解](1)中真数不是自变量x,∴不是对数函数;(2)中对数式后减1,∴不是对数函数;(3)中log8x前的系数是2,而不是1,∴不是对数函数;(4)中底数是自变量x,而不是常数a,∴不是对数函数.一个函数是对数函数,必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件:(1)系数为1;(2)底数为大于0且不等于1的常数;(3)对数的真数仅有自变量x.类型2对数函数的定义域【例2】求下列函数的定义域.(1)f(x)=1log12x+1;(2)f(x)=12-x+ln(x+1);(3)f(x)=log(2x-1)(-4x+8);(4)f (x )=x ln(1-2x ).[解] (1)要使函数f (x )有意义,则log 12 x +1>0,即log 12 x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)要使函数式有意义需满足⎩⎨⎧ x +1>0,2-x >0,即⎩⎨⎧x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2).(3)由题意得⎩⎨⎧-4x +8>0,2x -1>0,2x -1≠1,解得⎩⎪⎨⎪⎧x <2,x >12,x ≠1,故函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2,且x ≠1. (4)由题意知⎩⎨⎧x ≥0,1-2x >0,解得0≤x <12,∴定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x <12.求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式.类型3 比较对数式的大小 【例3】 比较下列各组值的大小: (1)log 534与log 543; (2)log 13 2与log 15 2;(3)log 23与log 54.[解] (1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log534<log543.(2)法一(单调性法):由于log132=1log213,log152=1log215,又因对数函数y=log2x在(0,+∞)上是增函数,且13>15,所以0>log213>log215,所以1log213<1log215,所以log132<log152.法二(图象法):如图,在同一坐标系中分别画出y=log13x及y=log15x的图象,由图易知:log132<log152.(3)取中间值1,因为log23>log22=1=log55>log54,所以log23>log54.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.第2课时对数函数的图象与性质的应用知识点图象变换(1)平移变换当b>0时,将y=log a x的图象向左平移b个单位,得到y=log a(x+b)的图象;向右平移b个单位,得到y=log a(x-b)的图象.当b>0时,将y=log a x的图象向上平移b个单位,得到y=log a x+b的图象,将y=log a x的图象向下平移b个单位,得到y=log a x-b的图象.(2)对称变换要得到y=log a 1x的图象,应将y=log a x的图象关于x轴对称.考点类型1与对数函数相关的图象【例1】作出函数y=|log2 (x+2)|+4的图象,并指出其单调增区间.[解]步骤如下:(1)作出y=log2x的图象,如图(1).(2)将y=log2x的图象沿x轴向左平移2个单位得到y=log2 (x+2)的图象,如图(2).(3)将y=log2(x+2)的图象在x轴下方的图象以x轴为对称轴翻折到x轴的上方,得到y=|log2 (x+2)|的图象,如图(3).(4)将y=|log2(x+2)|的图象沿y轴方向向上平移4个单位,得到y=|log2(x +2)|+4的图象,如图(4).由图可知,函数的单调增区间为[-1,+∞).1.已知y=f(x)的图象,求y=|f(x+a)|+b的图象步骤如下:y=f(x)→y=f(x+a)→y=|f(x+a)|→y=|f(x+a)|+b.2.已知y=f(x)的图象,求y=|f(x+a)+b|的图象,步骤如下:y=f(x)→y=f(x+a)→y=f(x+a)+b→y=|f(x+a)+b|.以上可以看出,作含有绝对值号的函数图象时,先将绝对值号内部的图象作出来,再进行翻折,内部变换的顺序是先变换x,再变换y.类型2值域问题x的定义域为[2,4],则函数f(x)的值域是【例2】(1)已知函数f(x)=2log12________.(2)求函数f(x)=log2(-x2-4x+12)的值域.x在定义域[2,4]上为减函数求解.[思路点拨](1)中利用f(x)=2log12(2)中注意考虑真数-x2-4x+12的范围.x在[2,4]上为减函数,(1)[-4,-2][∵f(x)=2log122=-2;∴x=2时,f(x)max=2log124=-4.x=4时,f(x)min=2log12∴f(x)的值域为[-4,-2].](2)[解]∵-x2-4x+12>0,又∵-x2-4x+12=-(x+2)2+16≤16,∴0<-x2-4x+12≤16,故log2(-x2-4x+12)≤log216=4,∴函数的值域为(-∞,4].求函数值域或最大(小)值的常用方法(1)直接法根据函数解析式的特征,从函数自变量的变化范围出发,通过对函数定义域、性质的观察,结合解析式,直接得出函数值域.(2)配方法当所给的函数是二次函数或可化为二次函数形式的(形如y =a [f (x )]2+bf (x )+c ),求函数值域问题时,可以用配方法.(3)单调性法根据在定义域(或定义域的某个子集)上的单调性,求出函数的值域.(4)换元法求形如y =log a f (x )型函数值域的步骤:①换元,令u =f (x ),利用函数图象和性质求出u 的范围;②利用y =log a u 的单调性、图象,求出y 的取值范围.类型3 对数函数的综合问题【例3】 已知函数f (x )=lg (2-x )-lg (2+x ).(1)求值:f ⎝ ⎛⎭⎪⎫12 021+f ⎝ ⎛⎭⎪⎫-12 021; (2)判断f (x )的奇偶性;(3)判断函数的单调性并用定义证明.[思路点拨] (1)利用代入法求解,(2)(3)用定义法判断奇偶性和单调性.[解] (1)f ⎝ ⎛⎭⎪⎫12 021+f ⎝ ⎛⎭⎪⎫-12 021=lg ⎝ ⎛⎭⎪⎫2-12 021-lg ⎝ ⎛⎭⎪⎫2+12 021+lg ⎝ ⎛⎭⎪⎫2+12 021-lg ⎝ ⎛⎭⎪⎫2-12 021=0. (2)由题知⎩⎨⎧2-x >0,2+x >0⇒-2<x <2, 又f (-x )=lg (2+x )-lg (2-x )=-f (x ),∴f (x )为奇函数.(3)设-2<x 1<x 2<2,f (x 1)-f (x 2)=lg 2-x 12+x 1-lg 2-x 22+x 2=lg (2-x 1)(2+x 2)(2+x 1)(2-x 2), ∵(2-x 1)(2+x 2)-(2+x 1)(2-x 2)=4(x 2-x 1)>0.又(2-x 1)(2+x 2)>0,(2+x 1)(2-x 2)>0,∴(2-x 1)(2+x 2)(2+x 1)(2-x 2)>1,∴lg (2-x 1)(2+x 2)(2+x 1)(2-x 2)>0.从而f (x 1)>f (x 2),故f (x )在(-2,2)上为减函数.对数函数性质的综合应用(1)常见的命题方式对数函数常与函数的奇偶性、单调性、最大(小)值以及不等式等问题综合命题,求解中通常会涉及对数运算.(2)解此类问题的基本思路首先要将所给的条件进行转化,然后结合涉及的知识点,明确各知识点的应用思路、化简方向,与所求目标建立联系,从而找到解决问题的思路.类型4 解对数不等式【例4】 解下列关于x 的不等式: (1)log 17 x >log 17(4-x ); (2)log a (2x -5)>log a (x -1).[解] (1)由题意可得⎩⎨⎧ x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎨⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4. 当0<a <1时,原不等式等价于⎩⎨⎧ 2x -5>0,x -1>0,2x -5<x -1,解得52<x <4. 综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 52<x <4.对数不等式的三种考查类型及解法(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论.(2)形如log a x>b的不等式,应将b化为以a为底数的对数式的形式(b=log a a b),再借助y=log a x的单调性求解.(3)形如log f(x)a>log g(x)a(f(x),g(x)>0且不等于1,a>0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.。
高一数学同步精品课堂讲、例、测(苏教版2019必修第一册)知识点8函数的概念和图像函数的概念(1)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一(唯一性)的数y 与之对应.这三性只要有一个不满足,便不能构成函数. (2)y =f (x )仅仅是函数符号,不是表示“y 等于f 与x 的乘积”,f (x )也不一定就是解析式. (3)除f (x )外,有时还用g (x ),u (x ),F (x ),G (x )等符号来表示函数.函数的图象函数图象的含义将自变量的一个值x 0作为横坐标,相应的函数值f (x 0)作为纵坐标,就得到坐标平面上的一个点(x 0,f (x 0)).当自变量取遍函数定义域A 中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为{(x ,f (x ))|x ∈A },即{(x ,y )|y =f (x ),x ∈A },所有这些点组成的图形就是函数y =f (x )的图象. 常见函数的定义域和值域1.一次函数f (x )=ax +b (a ≠0)的定义域为R ,值域是R . 2.二次函数f (x )=ax 2+bx +c (a ≠0)的定义域是R , 当a >0时,值域为⎣⎡⎭⎫4ac -b 24a ,+∞, 当a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a .3.反比例函数f (x )=kx (k ≠0)的定义域为{x |x ≠0},值域为{y |y ≠0}.求函数值域的方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到.(2)配方法:此方法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法. (3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域. (4)换元法:对于一些无理函数(如y =ax ±b ±cx ±d ),通过换元把它们转化为有理函数,然后利用有理函数求值域的方法,间接地求解原函数的值域一、求函数值或值域例题1若函数()221++=+x x a f x x ()0x ≥的值域为[),a +∞,则实数a 的取值范围是( )A .(],2-∞B .0,1C .(],1-∞D .[]1,2【答案】A【分析】由()222(1)11(1)111x x a x a a f x x x x x ++++--===+++++,然后分10a -≤和1a >判断函数的单调性,再求出其最小值,从而可求出其值域,进而可求出a 的取值范围 【详解】解:()222(1)11(1)111x x a x a a f x x x x x ++++--===+++++, 当10a -≤时,()f x 在[0,)+∞上单调递增,所以min ()(0)f x f a ==,此时1a ≤,当1a >时,由1()(1)1a f x x x -=++≥+,当且仅当1x +,即 1x =时取等号,因为()f x 在1,)+∞上单调递增,(0)f a =若()f x 的值域为[),a +∞10≤,即2a ≤,则12a <≤, 综上,2a ≤,所以实数a 的取值范围为(],2-∞ 故选:A【点睛】考查函数值域的求法,考查基本不等式的应用,解题的关键是对函数变形为()222(1)11(1)111x x a x a a f x x x x x ++++--===+++++,然后分10a -≤和1a >讨论函数的单调性,求出函数的值域,考查转化思想和计算能力,属于中档题例题2函数2212x y x-=+的值域是( ) A .11,2⎛⎤- ⎥⎦⎝B .()1,1-C .1,2⎛⎤-∞ ⎥⎦⎝D .()2,2-【答案】A 【分析】先对函数2212x y x-=+分离常数化简,即可求出值域. 【详解】()222+212332x y x x -+==-+++,因为222x +≥,所以212210x ≤+<,所以2111223x -<-+≤+,所以函数2212x y x -=+的值域是11,2⎛⎤- ⎥⎦⎝. 故答案为:A【点睛】考查值域的求法,解题的关键是先分离常数,属于常规题型.训练1设2,11()2,11x k x x f x kx x ⎧+≤-≥=⎨-<<⎩或,2()g x kx bx c =++,其中,,k b c 为实数,则下列命题中,正确的是( )A .若函数[]()y f g x =的值域为[0,)+∞,则13k ≤-.B .若函数[]()y f g x =的值域为[0,)+∞,则1k.C .存在实数,,k b c 且13k ≤-,使函数[]()y f g x =的值域为(,0]-∞.D .存在实数,,k b c 且1k ,使函数[]()y f g x =的值域为[0,)+∞.【答案】D【分析】取1,0k b c ===,可得()()f g x 的值域为[0,)+∞,可判断A 错误,D 正确;取1,02k b c =-==,可得()()f g x 的值域为[0,)+∞,可判断B 错误;根据()()f g x 的函数值不可能无限小,可判断C 错误. 【详解】对于A ,取1,0k b c ===,21,11()2,11x x x f x x x ⎧+≤-≥=⎨-<<⎩或,2()g x x =,则()()421,112,11x x x f g x x x ⎧+≤-≥=⎨-<<⎩或,可得()()f g x 的值域为[0,)+∞,故不满足13k ≤-, 故A 错误,同时也说明D 正确;对于B ,取1,02k b c =-==,21,11()2,11x x x f x x x ⎧-≤-≥⎪=⎨⎪--<<⎩或,21()2g x x =-, ()()4211,421,2x x x f g x x x ⎧-≤≥⎪⎪=⎨⎪<<⎪⎩,可得()()f g x 的值域为[0,)+∞,故不满足1k,故B 错误;对于C ,当1x ≤-或1≥x 时,()f x 的最小值是1k +,当11x -<< ,()f x 的取值在2k -和2k 之间,则可得()()f g x 的函数值不可能无限小,即不可能为(,0]-∞,故C 错误. 故选:D.【点睛】考查含有参数的复合函数的值域问题,其中涉及分段函数,解决本题的关键是选取有代表性的特殊值,根据特殊值时的值域判断,这也是解决多数问题的有效方法. 训练2函数f (x )的值域为( )A .[-43,43] B .[-43,0] C .[0,1] D .[0,43] 【答案】C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.式和平方关系联想到三角代换,二是由sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合.二、画函数的图象例题1函数2()xf x x a=+的图象不可能是( ) A . B . C . D .【答案】D【分析】对参数a 进行分类讨论,对各个选项进行分析即可得出正确答案. 【详解】函数表达式中含有参数a ,要对参数进行分类讨论, 若0a =,则21()x f x x x==,选项C 符合; 若0a >,则函数定义域为R ,选项B 符合若0a <,则x ≠,选项A 符合,所以不可能是选项D. 故选:D .【点睛】考查函数图象的识别,考查逻辑思维能力和数形结合思想,属于常考题. 例题2函数321=+x y x 的图象大致为A .B .C .D .【答案】A【详解】首先根据函数的奇偶性可以排除B 、D 选项,再根据当01x <<时,33221x x x x x<=+可排除C.详解:∈函数()321xy f x x ==+的定义域为R ,()()()()332211x x f x f x x x ---===-+-+ ∈函数()321x y f x x ==+为奇函数,其图象关于原点对称,可排除B 、D又∈当01x <<时,33221x x x x x<=+可排除C ,故选A.点睛:考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括,,0,0x x x x +-→+∞→-∞→→等.训练1函数()1=-f x x 的图象是( )A .B .C .D .【答案】B【分析】根据函数特殊位置进行排除即可. 【详解】当0x =时,10y =≠,排除C ;当12x =时,112y =<,排除A ; 当12x =-时,312y =>,排除D ; 故选:B.【点睛】函数图像选择题由函数性质以及特殊值进行排除. 训练2 已知函数()()2f ,,,dx a b c d R ax bx e=∈++的图象如图所示,则下列说法与图象符合的是A .0,0,0,0a b c d >>B .0,0,0,0a b c dC . 0,0,0,0a b c d >>D .0,0,0,0a b c d >>【答案】B 【详解】由图象可知,1x ≠且5x ≠,20ax bx c ++≠,可知20ax bx c ++=的两根为1,5,由韦达定理得12126,5b cx x x x a a+=-=⋅==,,a b ∴异号,,a c 同号,又()00df c=<,,c d ∴异号,只有选项B 符合题意,故选B.三、常见函数的定义域和值域例题1下列各函数中,表示相等函数的是( )A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log x a y a =(0a >且1a ≠)【答案】D【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log x a y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题. 例题2函数lg(2sin 1)y x =-的定义域为A .5{|,}66ππx k πx k πk Z B .2{|,}33ππx k πx k πk ZC .5{|22,}66x k x k k Z ππππ+<<+∈ D .2{|22,}33ππx k πx k πk Z【答案】C 【详解】函数有意义,则:12sin 10,sin 2x x ->∴>, 求解三角不等式可得函数的定义域为:5{|22,}66x k x k k Z ππππ+<<+∈. 本题选择C 选项.点睛:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.训练1函数()f x 的定义域为D ,若存在闭区间[],a b D ⊆,使得函数()f x 同时满足:(1)()f x 在[],a b 内是单调函数;(2)()f x 在[],a b 上的值域为[](),0ka kb k >,则称区间[],a b 为()f x 的“k 倍值区间”.下列函数:∈()ln f x x =;∈()()10f x x x =>;∈()()20f x x x =≥;∈()()2011x f x x x=≤≤+.其中存在“3倍值区间”的有( ) A .∈∈ B .∈∈C .∈∈D .∈∈∈∈【答案】B【分析】根据题目所给定义,分别利用对数函数、反比例函数、二次函数、双勾函数的单调性,算出()f a 和f b ,进行分析判断即可.【详解】对于∈,函数()ln f x x =为增函数,若函数()ln f x x =存在“3倍值区间”[],a b ,则()()ln 3ln 3f a a af b b b ⎧==⎪⎨==⎪⎩,由图象可得方程ln 3x x =无解,故函数()ln f x x =不存在“3倍值区间”;对于∈,函数()()10f x x x => 为减函数,若存在“3倍值区间”[],a b ,则有()()1313f a b af b ab ⎧==⎪⎪⎨⎪==⎪⎩得:13ab =,0a >,0b >例如:13a =,1b =.所以函数()()10f x x x =>存在“3倍值区间”;对于∈,若函数()()20f x x x =≥存在“3倍值区间”[],a b ,则有()()2233f a a a f b b b ⎧==⎪⎨==⎪⎩,解得03a b =⎧⎨=⎩.所以函数函数()()20f x x x =≥存在“3倍值区间”[]0,3;对于∈,当0x =时,()0f x =.当01x <≤时,()11f x x x=+,从而可得函数()f x 在区间[]0,1上单调递增.若函数()21x f x x =+存在“3倍值区间”[],a b ,且[][],0,1a b ⊆,则有()()223131a f a a a b f b b b ⎧==⎪⎪+⎨⎪==⎪+⎩,无解.所以函数()21xf x x=+不存在“3倍值区间”. 故选:B.【点睛】本题是函数新定义问题,以及对数函数、反比例函数、二次函数、双勾函数单调性和值域等,根据函数性质及题中所给条件进行一一判断是关键.训练2函数y 的定义域是A .{|22,}2x k x k k Z πππ≤≤+∈ B .{|,}2x k x k k Z πππ≤≤+∈C .{|,}3x k x k k Z πππ≤≤+∈ D .{|,}33x k x k k Z ππππ-≤≤+∈【答案】D 【详解】要使原函数有意义,则2210cos x +≥ ,即122cos x ≥-,所以2222233k x k k Z ππππ-≤≤+∈,. 解得:33k x k k Z ππππ-≤≤+∈,.所以,原函数的定义域为{|}33x k x k k Z ππππ-≤≤+∈,.故选D .【点睛】考查了函数的定义域及其求法,考查了三角不等式的解法,解答此题的关键是掌握余弦函数线,在单位园中利用三角函数线分析该题会更加直观综合式测试一、单选题1.函数f (x )=223,1,1222,2x x x x x x x ⎧+-≤⎪<≤⎨⎪->⎩则有( )A .f (x )在x =1处不连续B .f (x )在x =2处不连续C .f (x )在x =1和x =2处不连续D .f (x )处处连续【答案】A【分析】紧抓函数连续性概念的定义即可得结果. 【详解】∈1lim x -→f (x )=0,1lim x +→f (x )=1, ∈f (x )在x =1处不连续又∈22lim ()2,lim ()2xx f x f x -+→→==,()22f = ∈f (x )在x =2处连续. 故选:A .【点睛】思路点睛:该题考查的是有关函数连续性的判断,解题思路如下: (1)观察函数解析式的特征,判断间断点的可能位置; (2)分别求函数在分界点处的左右极限; (3)结合函数连续性的定义得到结果.2.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( )A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦【答案】C【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
课 题 函数的概念和图像
授课日期及时段
教学目的
1.理解函数及其定义域、值域的概念,并能求函数的定义域、值域
2.能用描点法画函数的图像
3.了解函数的表示方法,重点掌握函数的解析法
4.了解分段函数的概念,掌握分段函数的解析式表达形式和图像的画法
5.理解函数的单调性,掌握判断函数单调性和求函数最值的方法
6.能画单调函数的图像并根据图像判断函数的增减性,求函数的最值
7.理解掌握判断函数的奇偶性的方法
了解映射的定义,明确函数与映射的异同之处
教学内容
1.函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别
2.思考:对于不同的函数如:①x x y 22
-=②1-=x y ③1
1+=x y ④()52lg +=x y ⑤x y -=11 的定义域如何确定
3.通常表示函数的方法有:
4.()x f y =的定义域为A x x A ∈21,,。
函数是增函数, 函数是减函数, 函数是奇函数, 函数是偶函数。
讲授新课: 一、函数的判断
例1.<1>下列对应是函数的是
注:检验函数的方法(对于定义域内每一值值域内是否存在唯一的值与它对应) ①x y y x =→: ②12++→x x x
<2>下列函数中,表示同一个函数的是:( ) 注:定义域和对应法则必须都相同时,函数是同一函数 A.()()()2
,x x g x x f =
= B.()()2,x x g x x f =
=
C.()()2
4,22--=+=x x x g x x f D.()()33,x x g x x f ==
练习:
1.设有函数组:①2,x y x y ==②33,x y x y ==③x x
y x y =
=,④()()
x x y x x y =<>⎩⎨⎧-=,0011 ⑤x y x y lg 2,lg 2== ⑥10
lg
,1lg x y x y =-= 其中表示同一函数的是 。
二:函数的定义域
注:确定函数定义域的主要方法 (1)若()x f 为整式,则定义域为R.
(2)若()x f 是分式,则其定义域是分母不为0的实数集合
(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题 例:1.求下列函数的定义域:
(1)2
322
---=x x x
y (2)x x y -⋅-=11
(3)x
y --=
113 (4)2253x x y -+-=
(5)()⎪⎩⎪
⎨⎧--=x
x x x f 2341 (6)t 是时间,距离()t t f 360-=
2.已知函数()x f 的定义域是[-3,0],求函数()1+x f 的定义域。
3.若函数()3
1
2
3
++-=mx mx x x f 的定义域是R ,求m 的取值范围。
练习:
1.求下列函数的定义域: (1)()142
--=
x x f ; (2)()2
14
32-+--=
x x x x f
(3)()x
x f 11111++
=
; (4)()()x
x x x f -+=
1
2.已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫ ⎝
⎛
++=342x f x f y 的定义域。
三、函数值和函数的值域
例1、求下列函数的值域:(观察法)
(1)2415+-=x x y (2)1
23
422--+-=x x x x y
例2.求函数3
27
4222++-+=x x x x y 的值域(反解法)
例3.求函数12--=x x y 的值域(配方换元法)
例4.求函数()22
415≥+-=
x x x y 的值域(不等式法)
例5.画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
(图像法) 练习:
1.求下列函数的值域:
(1)23+=x y (2)x x f -+=42)( (3)1+=x x y (4)x
x y 1+=
2.求下列函数的值域:
(1)242
-+-=x x y (2)12++=x x y (3)3
22122+-+-=x x x x y
四、函数解析式:
例1、已知11
112-=⎪⎭⎫ ⎝
⎛+x x f ,求()x f 的解析式。
(换元法)
例2.设二次函数()x f y =的最小值等于4,且()()620==f f ,求()x f 的解析式。
(待定系数法)
例3.甲同学家到乙同学家的途中有一个公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家。
如图,表示甲从出发到乙家为止经过的路程()km y 与时间()min x 的关系。
试写出)(x f y =的函数表达式。
练习: 1.已知(
)
x x x f 21+=+,求()x f 。
2、已知)(x f 是一次函数,且()()14-=x x f f ,求)(x f 的解析式。
3、设)(x f 是R 上的函数,且满足()10=f ,并且对任意实数y x ,,有()()()12+--=-y x y x f y x f ,求
()x f 的表达式。
4、求函数21-++=x x y 的值域。
五、单调性:
例1.证明:()13+-=x x f 在()+∞∞-,上是减函数。
(定义法)
2.证明:函数()x
x x f 1
+=在(]1,0上是减函数
例2.画出函数()342+-=x x x f 的图像,并由图像写出函数)(x f 的单调区间。
3、复合函数 注:定义域相同时:
()x f 1
()x f 2
()()()
x f x f x g 21±=
增
增
增
减 减 减
()x g u =
()u f y = ()()x g f y =
增 增 增 减 减 增 增 减 减 减 增
减
例:已知函数()228x x x f -+=,()()
22x f x g -=,试求()x g 的单调区间。
练习:
1.确定函数()x
x f 211-=
的单调性。
2.试判断函数()x x f a a log log =(0>a 且1≠a )在区间()+∞,1上的单调性。
3.已知()32++=ax x x f 在区间[]1,1-上的最小值为-3,求实数a 的值。
单调性的应用
例:1.已知函数()x f 对任意的R y x ∈,,总有()()()y x f y f x f +=+,且当0>x 时,()()3
2
1,0-=<f x f
(1)求证:()x f 在R 上是减函数; (2)求)(x f 在[]3,3-上的最大值、最小值。
六、奇偶性
例.判断函数奇偶性: (1)()x x x f -+-=22;
(2)()1122-+-=x x x f ;
(3)()()R a a x a x x f ∈--+=
(4)()2
212
-+-=x x x f 练习:
判断函数的奇偶性:
(1)()()x x x f 2212+=;
(2)()()
1lg 2++=x x x f ;
(3)()221lg lg x x x f +=; (4)()()x
x x x f -+-=111; (5)()()()
0022<≥⎩⎨⎧++-=x x x
x x x x f 例.奇偶性的应用 1.已知()q
x px x f ++=322是奇函数,且()352=f 。
(1)求实数q p ,的值;
(2)判断函数()x f 在()1,-∞-上的单调性,并加以证明。
2.已知函数()()
()21122++-+-=n x m x m x f ,则当n m ,为何值时,)(x f 是奇函数?
练习:
1.已知)(x f 是奇函数,且0>x 时,(),2-=x x x f 求0<x 时,求)(x f 的解析式。
2.已知定义域为R 的奇函数)(x f ,求证:若在区间[]()0,>>a b b a 上,)(x f 有最大值M ,那么)(x f 在区间[]a b --,上必有最小值-M.。