题型一
题型二
题型三
题型四
题型五
解:设圆柱的底面半径为r,高为h,如图,
ℎ = ������sin������, 2π������ = ������cos������, ������cos������ 所以 h=msin α,r= 2π , 则由题意可知: 所以 V 圆柱 =πr2h=π
������cos������ 2 · msin 2π
答案: 3 3
题型一
题型二
题型三
题型四
题型五
题型二
有关锥体体积的问题
【例2】 (1)若圆锥的轴截面是面积为9的等腰直角三角形,则其 体积等于 . (2)若正方体ABCD-A1B1C1D1的棱长为6 cm,在棱AB,AD,AA1上分 别取点P,Q,R,使得AP=2 cm,AQ=3 cm,AR=4 cm,则三棱锥A-PQR的 体积为 .
α=
������3 sin������cos2 ������ . 4π
反思 对于几何体的侧面展开图问题,要注意展开前后的“变”与“不 变”.对此题而言,为了求体积要抓住关键元素,即圆柱的底面半径、 高.
题型一
题型二
题型三
题型四
题型五
【变式训练1】 如图①是一个水平放置的正三棱柱ABCA1B1C1,D是棱BC的中点.正三棱柱的主视图如图②.则该正三棱柱 ABC-A1B1C1的体积为 .
题型一
题型二
题型三
题型四
题型五
【变式训练3】 若某几何体的三视图(单位:cm)如图,则此几何体 的体积是 .
题型一
题型二
题型三
题型四
题型五
解析:此几何体为正四棱台与正四棱柱的组合体,而 V 正四棱台 =