A
6
55
O•
D
B
5
6 E
5C
球的体积
祖暅原理:两等高的几何体若在所有等
高处的水平截面的面积相等,则 这两个几的体积?
球的体积
设球的半径为R,截面半径为r,平
面与截面的距离为 l
那么 r = R2 l 2
因此 S圆 = r 2
= (R2 l 2 ) = R2 l 2
r
分析:正方体内接于球,则由球和正方体都是中心对称图形可知, 它们中心重合,则正方体对角线与球的直径相等。
D A
C B
D A
C B
D1 A1
O C1
B1
D1 A1
O C1
B1
变题1.如果球O和这个正方体的六个面都相切,则有S=——。 变题2.如果球O和这个正方体的各条棱都相切,则有S=——。
关键:找正方体的棱长a与球半径R之间的关系
练习1:长方体的共顶点的三个侧面积分别 为 3 、 5 、15 ,则它的外接球的表面积 为 __________
练习:2把一个半径为R的球放在墙角,且与墙角 的三个面都相切,则球心与墙角顶点的距离() 3在球面上有四点P, A, B,C,已知PA, PB, PC两 两垂直,且PA PB PC a,则球的表面积()
l
R
o
lll l o
球的体积
设球的半径为R,截面半径为r,平
面与截面的距离为 l
那么 r = R2 l 2
因此 S圆 = r 2
= (R2 l 2 ) = R2 l 2
r
l
R
o
l o
o
球的体积
设球的半径为R,截面半径为r,平
面与截面的距离为 l