烃类热裂解
- 格式:docx
- 大小:47.92 KB
- 文档页数:20
二、烃类热裂解原理1. 烃类的热裂解反应裂解过程中的主要中间产物及其变化可以用图5-1-01作一概括说明。
按反应进行的先后顺序,可以将图5-1-01所示的反应划分为一次反应和二次反应,一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。
二次反应主要是指由一次反应生成的低图5-1-01 烃类裂解过程中一些主要产物变化示意图级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。
二次反应不仅降低了低级烯烃的收率,而且还会因生成的焦或碳堵塞管路及设备,破坏裂解操作的正常进行,因此二次反应在烃类热裂解中应设法加以控制。
现将烃类热裂解的一次反应分述如下。
(1)烷烃热裂解烷烃热裂解的一次反应主要有:①脱氢反应:R-CH2-CH3<==>R-CH=CH2+H2②断链反应:R-CH2-CH2-R’→R-CH=CH2+R’H不同烷烃脱氢和断链的难易,可以从分子结构中键能数值的大小来判断。
一般规律是同碳原子数的烷烃,C-H键能大于C-C键能,故断链比脱氢容易;烷烃的相对稳定性随碳链的增长而降低。
因此,分子量大的烷烃比分子量小的容易裂解,所需的裂解温度也就比较低;脱氢难易与烷烃的分子结构有关,叔氢最易脱去,仲氢次之,伯氢最难;带支的C-C键或C-H键,较直链的键能小,因此支链烃容易断链或脱氢;裂解是一个吸热反应,脱氢比断链需供给更多的热量;脱氢为一可逆反应,为使脱氢反应达到较高的平衡转化率,必须采用较高的温度;低分子烷烃的C-C键在分子两端断裂比在分子链中央断裂容易,较大分子量的烷烃则在中央断裂的可能性比在两端断裂的大。
(2)环烷烃热裂解环烷烃热裂解时,发生断链和脱氢反应,生成乙烯、丁烯、丁二烯和芳烃等烃类;带有侧链的环烷烃,首先进行脱烷基反应,长侧链先在侧链中央的C-C链断裂一直进行到侧链全部与环断裂为止,然后残存的环再进一步裂解,裂解产物可以是烷烃,也可以是烯烃;五碳环比六碳环稳定,较难断裂;由于拌有脱氢反应,有些碳环,部分转化为芳烃;因此,当裂解原料中环烷烃含量增加时,乙烯收率会下降,丁二烯、芳烃的收率则会有所增加。
烃类热裂解反应的特点与规律1.烃类热裂解反应的特点烃类热裂解反应具有以下特点:①无论断链还是脱氢反应,都是热效应很高的吸热反应;②断链反应可以视为不可逆反应,脱氢反应则为可逆反应③存在复杂的二次反应;④反应产物是复杂的混合物。
2.烃类热裂解反应的一般规律(1)烷烃的裂解反应规律;①同碳原子数的烷烃,C-H键能大于c-c键能,断链反应比脱氢反应容易。
②烷烃分子的碳链越长,越容易发生断链反应。
③烷烃的脱氢能力与其结构有关,叔氢最易,仲氢次之,伯氢再次之。
④含有支链的烷烃容易发生裂解反应。
乙烷不发生断链反应,只发生脱氢反应。
(2)环烷烃的裂解反应规律①侧链烷基比环烷烃容易裂解,长侧链中央的c-c键先断裂,含有侧链的环烷烃裂解比无侧链的环烷烃裂解的烯烃收率高。
②环烷烃脱氢反应生成芳烃,比开环反应生成烯烃容易。
③低碳数的环比多碳数的环难以裂解。
裂解原料中的环烷烃含量增加,乙烯收率下降,而丁二烯和芳烃的收率有所提高。
(3)各种烃类热裂解的反应规律①烷烃:正构烷烃,最有利于生成乙烯、丙烯,分子量越小,烯烃的总收率越高;异构烷烃的烯烃总收率低于同碳原子数的正构烷烃。
②环烷烃:生成芳烃的反应优于生成单烯烃的反应;含环烷烃较多,丁二烯和芳烃的收率较高,而乙烯和丙烯的收率较低。
③芳烃:无侧链芳烃的裂解,基本不生成烯烃;有侧链芳烃的裂解,其侧链逐步断链及脱氢;芳环的脱氢缩合反应,主要生成稠环芳烃,直至结焦。
④烯烃:大分子量的烯烃裂解反应,生成低级烯烃和二烯烃。
各类烃的热裂解反应的难易顺序为:正构烷烃>异构烷烃>环烷烃>芳烃。
烃类热裂解当今世界,⽯油化⼯产业已经成为全球经济发展的⽀柱产业之⼀,⽽烃类热裂解技术则是⽯油化⼯产业中不可或缺的重要技术。
本⽂将重点介绍烃类热裂解的基本概念、原理及其在⽯油化⼯产业中的应⽤。
烃类热裂解是⼀种重要的⼯业过程,可⽤于原油精制、⽯油化⼯等领域。
烷烃的热反应主要有两类:⼀是C-C键断裂⽣成较⼩分⼦的烷烃和烯烃;⼆是C-H键断裂⽣成碳原⼦数保持不变的烯烃及氢⽓。
在烷烃分⼦中,C-C键更易于断裂,因为键能相对较⼩;⽽异构烷烃中的C-C键及C-H键的键能都⼩于正构烷烃,因此,异构烷烃更易于断链和脱氢。
因此,在相同条件下,异构烷烃⽐正构烷烃更易产⽣烯烃。
这是因为C-H 键键⻓较短,键能⼤于C-C键。
在热裂解过程中,费托蜡4#可获得更⾼的单程转化率和α-烯烃收率,分别为65.0%和53.0%。
不同原料蜡液相产物分布及LAO碳数分布如图3所⽰。
五种原料都⽣成了极少量异构烯烃和芳烃等副产物,α-烯烃含量随原料碳数的增加⽽提⾼。
这些结果表明,选择适当的原料蜡和反应条件可以有效地提⾼烃类热裂解的转化率和选择性。
烃类热裂解是⼀项复杂的过程,需要深⼊了解其基本原理和⼯艺条件。
烃类热裂解的⼯业应⽤主要包括⽯油化⼯、⽣物质转化、液化煤、催化转化等领域。
这些应⽤领域对烃类热裂解的要求各不相同,需要针对不同的应⽤进⾏相应的⼯艺研究。
什么是烃类热裂解烃类热裂解是指在⾼温、⾼压、⽆氧或缺氧的条件下,将⾼分⼦烃类化合物分解成低分⼦烃类化合物的化学反应。
这种反应是烃类加⼯的基础,通过这种⽅法可以获得⼀系列的烃类产品,如⼄烯、丙烯、丁⼆烯等。
烃类热裂解的原理烃类热裂解的反应机理⾮常复杂,但可以归纳为以下三个阶段:1. 烷基⾃由基形成阶段:在⾼温下,⾼分⼦烃类化合物被加热并断裂,形成烷基⾃由基。
2. 反应中间体形成阶段:烷基⾃由基与⾼分⼦烃类化合物发⽣反应,形成各种反应中间体。
3. 产物⽣成阶段:反应中间体进⼀步发⽣反应,形成低分⼦烃类产物。
第三章烃类热裂解引言:乙烯、丙烯和丁二烯等低级烯烃分子中具有双键,化学性质活泼,能与许多物质发生加成、共聚或自聚等反应,生成一系列重要的产物,是化学工业的重要原料。
工业上获得低级烯烃的主要方法是将烃类热裂解。
烃类热裂解是将烃类原料(天然气、炼厂气、石脑油、轻油、柴油、重油等)经高温(750℃以上)、低压(无催化剂)作用,使烃类分子发生碳链断裂或脱氢反应,生成分子量较小的烯烃、烷烃和其他分子量不同的轻质和重质烃类。
烃类热裂解非常复杂,具体体现在:(1)原料复杂:烃类热裂解的原料包括天然气、炼厂气、石脑油、轻油、柴油、重油甚至是原油、渣油等;(2)反应复杂:烃类热裂解的反应除了断裂或脱氢主反应外,还包括环化、异构、烷基化、脱烷基化、缩合、聚合、生焦、生碳等副反应;(3)产物复杂:即使采用最简单的原料乙烷,其产物中除了H2、CH4、C2H4、C2H6、外,还有C3、C4、等低级烷烃和C5以上的液态烃。
烃类热裂解按原料的变化可分为:在低级不饱和烃中,以乙烯最重要,产量也最大。
乙烯产量常作为衡量一个国家基本化学工业的发展水平的标志。
表3-l和表3-2列举了世界主要国家与地区的乙烯生产能力。
烃类热裂解制乙烯的生产工艺主要为原料烃的热裂解和裂解产物分离。
本章将分别予以讨论。
第一节热裂解过程的化学反应1.1烃类裂解的反应规律1.1.1烷烃的裂解反应(1)正构烷烃正构烷烃的裂解反应主要有脱氢反应和断链反应对于C5以上的烷烃还可能发生环化脱氢反应。
脱氢反应是C-H键断裂的反应,生成碳原子数相同的烯烃和氢,其通式为C5以上的正构烷烃可发生环化脱氢反应生成环烷烃。
如正己烷脱氢生成环己烷。
断链反应是C-C键断裂的反应,反应产物是碳原子数较少的烷烃和烯烃,其通式为相同烷烃脱氢和断链的难易,可以从分子结构中碳氢键和碳碳键的键能数值的大小来判断。
表3-3给出了正、异构烷烃的键能数据。
由表3-3的数据看出如下规律:①同碳原子数的烷烃C-H键能大于C-H键能,断链比脱氢容易;②随着碳链的增长,其键能数据下降,表明热稳定性下降,碳链越长裂解反应越易进行。
烃类热裂解第四节裂解气深冷分离流程一、深冷分离流程1、三种深冷分离流程问题1:深冷分离流程包括哪些如何定义?他们的共同点和不同点各是什么?问题2:画出顺序流程示意图,并作简要流程叙述。
典型的深冷分离流程,主要有顺序分离流程、前脱乙烷流程和前脱丙烷流程三种,以下分别介绍这三种流程。
(1)顺序分离流程:按碳原子的个数从低到高的顺序用精馏塔逐个分开的分离流程。
甲烷富氢甲烷2111裂解气I-IIIIV,V乙烷910345乙烯C41067甲烷8丙烯11丙烷C5以上图1-34顺序深冷分离流程1-碱洗塔;2-干燥塔;3-脱甲烷塔;4-脱乙烷塔;5-乙烯塔;6-脱丙烷塔;7-脱丁烷塔;8-丙烯塔;9-冷箱;10-加氢脱炔反应器;11-绿油塔顺序分离流程见图1-34,裂解气经过离心式压缩机压缩后,送入碱洗塔,脱去硫化氢、二氧化碳等酸性气体。
碱洗后的裂解气经过压缩机去干燥器脱水,干燥后的裂解气在前冷箱中分离出富氢气体,再进入脱甲烷塔,塔顶脱去甲烷馏分,塔底的液体是C2以上馏分,进入脱乙烷塔,脱乙烷塔的塔顶分出C2馏分,塔底的液体为C3以上馏分。
从脱乙烷塔塔顶出来的C2馏分经过换热升温,进行气相加氢脱乙炔气,脱乙炔以后的气体进入绿油塔,在绿油塔内用乙烯塔来的侧线馏分洗去绿油,干燥,然后送去乙烯塔。
脱乙烷塔塔底的液体进入脱丙烷塔,在塔顶分出C3馏分,塔底的液体为C4以上馏分,液体里面含有二烯烃,易聚合结焦,所以脱丙烷塔塔底温度不宜超过一百度,并且必须加入阻聚剂。
为了防止结焦堵塞,脱丙烷塔一般有两个再沸器,以便轮换检修使用。
脱丙烷塔塔顶蒸出的C3馏分,里面含有丙炔和丙二烯,进入加氢脱炔反应器,加氢脱除丙炔和丙二烯,然后进入绿油塔,脱除加氢带入的甲烷、氢气,再进入丙烯塔进行精馏,丙烯塔的塔顶蒸出纯度为99.9%的丙烯产品,丙烯塔的塔底液体为丙烷馏分。
脱丙烷塔的塔底液体进入脱丁烷塔,在脱丁烷塔内分成C4馏分和C5以上馏分,C4馏分和C5以上馏分分别送往下道工序,进一步分离加工和利用。
(2)前脱乙烷分离流程:是以乙烷和丙烯为分离界限,将轻组分例如氢气、甲烷、乙烯、乙烷等,和重组份例如丙烯、丙烷、丁烯、丁二烯、丁烷和C5以上组分等在第一个精馏塔内首先分开的分离流程。
前脱乙烷分离流程示意图见图1-35,裂解气经过压缩、碱洗、干燥等工序之后,在3.6MPa(36atm)左右首先进入脱乙烷塔。
脱乙烷塔塔底出来的是C3以上的重组分,进入脱丙烷塔。
脱乙烷塔塔顶出来的是C2以上的轻组分,这股物流先送去加氢,然后再进入脱甲烷塔。
脱甲烷塔塔顶出来的甲烷、氢气在冷箱中进行分离;脱甲烷塔塔底出来的C2馏分,则在乙烯塔中分离成乙烯和乙烷。
脱乙烷塔的塔底液体依次进入脱丙烷塔、脱丁烷塔、丙烯塔等,分离成丙烯、丙烷、C4馏分和C5以上馏分。
前脱乙烷分离流程的特点:由于脱乙烷塔的操作压力比较高,这样势必造成塔底温度升高,结果可使塔底温度高达80~100C以上,在这样高的温度下,不饱和重质烃及丁二烯等,容易聚合结焦,这样就影响了操作的连续性。
重组份含量越多,这种方法的缺点就越突出。
(3)前脱丙烷分离流程:是以丙烷和丁烯为分离界限,轻组分例如氢气、甲烷、乙烯、乙烷、丙烯、丙烷等,和重组份例如丁烯、丁二烯、丁烷和C5以上组分等在第一个精馏塔内首先分开的分离流程。
前脱丙烷分离流程示意图见图1-36。
裂解气经过三段压到0.96MPa(约为9.6atm),经碱洗、干燥等工序之后,冷却到-15摄氏度,进入脱丙烷塔,C4以上馏分从脱丙烷塔塔底分出,然后进入脱丁烷塔,分离成C4馏分和C5以上馏分。
脱丙烷塔塔顶出来的C3以下轻组分,进入压缩机四段,压缩升压到3.7MPa(36.6atm),进入加氢脱炔反应器,然后送往冷箱。
在冷箱中分离出富氢气体,其余馏分进入脱甲烷塔,甲烷馏分从脱甲烷塔的塔顶蒸出来,脱甲烷塔的塔底液体送到脱乙烷塔。
在脱乙烷塔C2馏分和C3馏分分离开,塔顶出来的C2馏分至乙烯塔中分离成乙烯和乙烷。
C3馏分在丙烯塔中分离成丙烯和丙烷。
前脱丙烷分离流程的特点:C2以上馏分不进行压缩,减少了聚合现象的发生,节省了压缩功,减少了精馏塔和再沸器的结焦现象,适合于裂解重质油的裂解气分离。
2、三种深冷分离流程的比较上述三种深冷分离流程,比较起来,有共同之处,也有不同之处,各有优缺点。
三种流程的共同点:(1)先将不同碳原子数的烃类分开,再分离同一碳原子数的烯烃和烷烃,采取先易后难的分离顺序。
表1-29低级烃类的主要物理常数例如,C1和C2、C2和C3的分离比较容易;而乙烷和乙烯、丙烷和丙烯的分离是比较困难的。
(2)最终出产品的乙烯塔和丙烯塔并联安排,并且排在最后,作为二元组分精馏处理。
I这种流程安排方法,物料比较单纯,容易保证产品纯度。
II并联安排,相互干扰比串联安排要少一些,有利于稳定操作,有利于提高产品质量。
III乙烯塔和丙烯塔的塔底液体是乙烷和丙烷,都是中间产物,不是作为裂解原料,就是作为燃料,质量要求不严格,流量又比较小,这样,就能保证塔顶产品乙烯和丙烯产品质量。
(创造了有利条件。
)三种流程的不同点:(1)精馏塔的排列顺序不同:顺序分离流程是按组份碳原子数顺序排列的,其顺序为:1)脱甲烷塔2)脱乙烷塔3)脱丙烷塔;即顺序分离流程中的C1、C2、C3逐个脱除,按顺序分离。
排列顺序简称为[123]。
前脱乙烷流程的排列顺序是[213]。
前脱丙烷流程的排列顺序是[312]。
(2)加氢脱炔的位置不同:在脱甲烷塔之前进行加氢脱炔的称为前加氢;在脱甲烷塔之后进行加氢脱炔的称为后加氢。
图1-35(P74)前脱乙烷深冷分离流程和图1-36(P74)前脱丙烷深冷分离流程都是采用前加氢脱炔流程。
前加氢的原料气中就含有氢气,不需要外加氢气,可以使流程简化。
但是加氢用的氢气用量不能控制,加氢气体中的组份也比较复杂。
图1-34(P73)顺序深冷分离流程是采用后加氢脱炔流程。
(3)冷箱位置不同:在脱甲烷塔系统中有些冷凝器、换热器和气液分离罐的操作温度非常低,为了防止散冷,减少与环境接触的表面积,把这些冷设备集装在一起成箱,就称为冷箱。
比较三个流程图可以看出,图1-34的顺序分离流程和图1-36的前脱丙烷流程的冷箱是在脱甲烷塔之前。
而在图1-35的前脱乙烷流程的冷箱是在脱甲烷塔之后。
冷箱在脱甲烷塔以前的称“前冷流程”,冷箱在脱甲烷塔之后的称“后冷流程”。
应当说明的是,上述三种流程的冷箱中位置,可以放在脱甲烷塔以前,也可以放在脱甲烷塔之后。
关于前、后冷流程的优点和缺点,在讨论脱甲烷塔的操作条件时再作论述。
上述三种流程是有代表性的深冷分离流程,各有优缺点,三种流程的优缺点见下表。
表1-31塔的操作条件与相对挥发度分离关键组分操作条件平均相塔轻重温度,摄氏度塔顶塔釜6767075.2-4935压力MPa3.42.850.750.180.571.23对挥发度5.502.192.763.121.721.09脱甲烷塔脱乙烷塔脱丙烷塔脱丁烷塔CH4C2H6C3H8C2H4C3H6-96-12i-C4H1048.3-7026C4H10C5H12C2H6C3H8乙烯塔C2H4丙烯塔C3H6二、脱甲烷塔及操作条件在深冷分离流程中,脱甲烷塔过程也就是脱甲烷塔系统是裂解气分离的关键,乙烯塔和丙烯塔是出产品的,也是很重要的。
由于脱甲烷塔的操作效果对产品(乙烯、丙烯)回收率、纯度以及经济性的影响最大,所以在分离设计中,对于工艺的安排、设备和材质的选择,都是围绕脱甲烷塔系统考虑的。
裂解气中氢气、甲烷最轻,沸点也最低,为了能分离出裂解气中的乙烯、丙烯等组份,得到合格产品乙烯、丙烯,首先要脱去氢气和甲烷。
脱甲烷塔的任务就是将裂解气中氢气、甲烷以及其它惰性气体与C2以上组份进行分离,脱甲烷塔的关键组份是甲烷和乙烯。
在脱甲烷塔系统中,要求塔顶产品中少含乙烯,塔底产品中少含甲烷及惰性气体。
塔顶产品中少含乙烯,是为了减少乙烯的损失;塔底产品中少含甲烷及惰性气体,是为了保证产品乙烯的纯度和分离精度。
脱甲烷塔的分离温度比较低,一般在-100摄氏度左右。
在冷量消耗上则要求尽可能地少。
对于气液两相的平衡系统,根据相律F=C-P+2,一个有C组份的多元系统,系统的自由度等于C。
在脱甲烷塔塔顶的操作条件下,当组成规定以后(例如乙烯在尾气中的损失等),可以自由变化的参数只有1个,温度或压力,压力确定之后,温度就不能任意变化了。
那么怎样选择脱甲烷塔的操作温度和操作压力呢?工业生产上脱甲烷过程有高压法与低压法之分。
1.低压法:低压法分离效果好,乙烯收率高,操作条件为:压力0.18~0.25MPa(约18~25atm),塔顶温度-140摄氏度左右,塔底温度-50摄氏度左右。
相对挥发度,a80504030202285321123塔顶塔底6810203040塔压,大气压0=图1-37压力对C/C相对挥发度的影响1(1大气压=0.1013MPa)由图1-37可以看出,甲烷与乙烯的相对挥发度a随着操作压力的增高而降低:操作压力高,甲烷与乙烯的相对挥发度a就比较低;相反,操作压力比较低,甲烷与乙烯的相对挥发度a就比较高。
由于低压法脱甲烷塔的操作压力比较低,甲烷与乙烯的相对挥发度a比较大,分离效果比较好。
由于操作温度比较低,乙烯回收率比较高,因此对于含氢气和甲烷比较多的裂解气也能分离。
适用范围比较宽。
虽然要用到低温级的制冷剂,但是分离比较容易,回流比比较小,每吨乙烯的能量消耗并不大,低压法的能量消耗仅为高压法的70%多一点。
虽然低压法的能耗比较低,但是低压法也有缺点,例如要用到耐低温的钢材、多一套甲烷制冷系统、流程比较复杂等。
2.高压法高压法的脱甲烷塔塔底温度为-96摄氏度左右,不必采用甲烷制冷系统,只需要用液态乙烯制冷剂就可以。
由于脱甲烷塔塔顶气体产物(尾气)压力比较高,可借助脱甲烷塔塔顶的高压气体的自身节流膨胀来获得额外的降温,这种降温方法比甲烷冷冻系统要简单一些(流程简单、设备也简单)。
另外,提高压力可缩小精馏塔的体积(塔径),所以从总投资和材质的要求来看,高压法是比较有利的。
从上述两种方法的比较来看,高压法和低压法各有优缺点,工业生产上两种方法都有采用。
表1-32列出了几个脱甲烷塔的操作条件。
表1-32脱甲烷塔操作条件厂塔径实际塔塔压温度回别板数MPa流精提合塔塔比馏馏计顶釜段段B1400/2200723.10-9160.87S1100/16003240623.10-9671.083239表中两个厂的脱甲烷塔都是前冷,有4股进料。
但是由于B塔的回流比比较小和有中间再沸器,所以塔板数比S塔的多10块塔板。
脱甲烷塔的塔顶产品是气相产品,主要甲烷和氢气,他们在塔顶的操作条件(温度、压力)下,是不能全部冷凝下来的,因此脱甲烷塔与一般的精馏塔是不相同的,一般的精馏塔塔顶产品都可以全部冷凝下来,脱甲烷塔的塔顶产品含有不凝气甲烷和氢气,所以塔顶回流的液体组成与气相产品的组成是不同的,这就是脱甲烷塔的特点。