第四节-裂解气深冷分离流程
- 格式:doc
- 大小:1.05 MB
- 文档页数:21
第四节-裂解气深冷分离流程概述裂解气深冷分离流程在炼油厂和化工厂中是非常重要的一项工艺。
这个过程对于获取高品质的化工产品以及液化石油气都具有非常重要的意义。
本文档旨在介绍裂解气深冷分离流程的基本原理与操作步骤。
流程步骤1. 深冷工艺深冷工艺主要是将高温、高压、高含硫量的原料经过深度冷却,使其产生多相变化,最终得到分离出来的多种物质。
深冷工艺的目的是将液化剂和气态物质分离开来,以便后续的工艺使用。
常见的深冷工艺有“三废一补”、汽车空调制冷、LNG(液化天然气)制造等。
在炼油厂中,采用的是“三废一补”的深冷工艺。
该工艺通过将裂解气经过逐级冷却,以产生不同的相变,分离出不同的化学品。
2. 裂解气深冷分离流程一般来说,裂解气的深度低温分离过程是指将干气分离成凝液、可液化气、气体等组分的过程。
裂解气深冷分离流程的步骤主要有以下几个:2.1 初步压缩在深冷系统操作之前,需要对气体进行初步压缩以达到具体的温度和压力要求。
压缩之后的裂解气含有高温高压的愈浓愈稠的液滴,如果不进行深度分离,会直接影响工艺的连续性和稳定性。
2.2 稳压降温首先需要保持高效的物质传热方式,使得气体得以冷却至-160°C以下的低温,同时混合凝固物与可液化物。
由于不同的物质具有不同的凝固和汽化点,所以通过这个过程就可以将不同物质进行分离。
这就是所谓的“温度降落”。
2.3 蒸发-冷凝随着温度的降低,裂解气中的烃类分子被压缩成固态。
由于蒸发和冷凝存在于整个深冷过程中,因此需要对这两个过程进行非常精细的控制。
2.4 分离和处理分离和处理的目的是将凝结出的液滴、可液化气和气态组分分离开,同时删除大量的杂质和硫化物。
同时需要对每种化学品进行合适的储存和处理方式,以保证各个工序的高效运转。
结论裂解气深冷分离流程是炼油厂和化工厂中非常重要的一项工艺。
深冷系统操作需要逐级降温,经过蒸发-冷凝的过程最终分离出不同的组分。
对不同的化学品进行精细的处理和储存能够保证这个过程的高效进行。
第四节-裂解气深冷分离流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII返回目录第四节裂解气深冷分离流程思考题:1.简述三种深冷分离流程并画简图,三种深冷分离流程有什么不同点和不同点脱丙塔塔底温度为什不能超过100℃2.什么叫“前冷”流程,什么叫“后冷”流程?前冷3.流程有什么优缺点4.脱甲烷塔在深冷分离中的地位和作用是什么?脱甲烷塔的特点是什么?5.脱甲烷过程有哪两种方法,各有什么优缺点6.乙烯塔在深冷分离中的地位是什么?乙烯塔应当怎样改进5.简述影响乙烯回收的诸因素。
一、深冷分离流程生产流程的确定要考虑基建投资、能量消耗、运转周期、生产能力、产品成本以及安全生产等各方面的因素。
有了工艺以后,怎样实现工艺问题就属于工程上的问题。
1、三种深冷分离流程(思考题1)典型的深冷分离流程,主要有顺序分离流程、前脱乙烷流程和前脱丙烷流程三种,以下分别介绍这三种流程。
(1)顺序分离流程顺序分离流程见图1-34(P73)。
裂解气的预处理包括碱洗、压缩和脱水过程。
经预处理的裂解气在前冷箱中分离出富氢气体和馏分,富氢气体甲烷化作为加氢氢气;馏分经脱甲烷塔和脱乙烷塔分别脱去甲烷和C2馏分。
从脱乙烷塔塔顶出来的C2馏分经过气相加氢脱乙炔气,脱乙炔以后的气体进入乙烯塔,实现乙烷与乙炔的分离。
脱乙烷塔塔底的液体进入脱丙烷塔,在塔顶分出C3馏分,塔底的液体为C4以上馏分,液体里面含有二烯烃,二烯烃容易聚合结焦,所以脱丙烷塔塔底温度不宜超过100℃,并且必须加入阻聚剂。
为了防止结焦堵塞,脱丙烷塔一般有两个再沸器,以便轮换检修使用。
(思考题1)脱丙烷塔塔顶蒸出的C3馏分,加氢脱除丙炔和丙二烯,再进入丙烯塔进行精馏。
脱丙烷塔的塔底液体脱丁烷及进行后续工作。
顺序分离流程的特点:1)以轻油(60~200℃的馏分)为裂解原料,常用顺序分离流程法;2)技术成熟,运转平稳可靠,产品质量好,对各种原料有比较强的适应性,流程比较长,分馏塔比较多,深冷塔(脱甲烷塔)消耗冷量比较多,压缩机循环量和流量比较大,消耗定额偏高;3)按裂解气组成和分子量的顺序分离,然后再进行同碳原子数的烃类分离,例如乙烷和乙烯、丙烷和丙烯分开;4)顺序分离流程采用后加氢脱除炔烃的方法。
第四节裂解气深冷分离流程一、深冷分离流程二、脱甲烷塔及操作条件三、乙烯塔和丙烯塔(一)乙烯塔馏分经过加氢脱炔之后,进入乙烯塔进行精馏,塔顶得到乙烯产品,塔底产品为乙烷。
C2乙烯塔的重要性:乙烯的纯度要求要达到聚合级,冷量消耗大,乙烯塔在深冷分离装置中是一个比较关键的塔。
(乙烯塔是出乙烯产品的精馏塔)1.操作条件表1-33 乙烯塔操作条件表1-33(P76)是乙烯塔的操作条件。
从表中可以看出,乙烯塔的操作条件大体上可以分成两类:一类是低压法,塔的操作温度比较低;另一类是高压法,塔的操作温度比较高。
从图1-38(P77)可以看出:随着操作压力的增加,乙烯和乙烷的相对挥发度将减小;随着操作温度的增加,乙烯和乙烷的相对挥发度也减小。
由此可见,操作压力对相对挥发度有较大的影响,一般可以采取降低操作压力的办法来增大相对挥发度,从而使精馏塔的塔板数和回流比降低。
见图1-39。
操作压力降低以后,精馏塔的操作温度也降低,因而需要制冷剂的温度级位低,对精馏塔的材质有比较高的要求,从这些方面来看,操作压力低是不利的,还是高一些好。
操作压力的选择还要考虑乙烯的输送压力。
此外,压力的确定还要与整个流程相适应。
综上所述,乙烯塔操作压力的确定可有下列因素来决定:制冷的能量消耗、设备投资、产品乙烯的输送压力以及脱甲烷塔的操作压力等因素来决定的。
2.乙烯塔的改进由图1-40(P77)可以看出,精馏段靠近塔顶的塔板温度变化很小,而在提馏段各塔板的温度变化较大。
因此乙烯塔要求精馏段塔板数比较多,回流比也比较大。
乙烯塔的精馏段要求有较大的回流比,但是提馏段要求的回流比不大。
因此,近年来采用中间再沸器(或理解成中间换热器、中间加热器)的办法来回收冷量。
这种方法可以节省冷量约17%(占整个乙烯塔冷量的17%)。
这是乙烯塔的一个改进。
见图1-41(P78)。
例如,乙烯塔的操作压力为1.9MPa,塔底温度为-5℃,可以用丙烯蒸汽作为再沸器的热源,这样即可以将丙烯蒸汽冷凝成为丙烯液体,又可以回收了塔底的冷量。
裂解气分离工艺流程授课内容:●裂解气分离工艺流程●裂解气分离过程操作知识目标:●掌握裂解气分离原则流程●掌握裂解气分离过程操作步骤和方法能力目标:●混合物精馏分离方案设计●混合物精馏分离过程操作条件制定思考与练习:●裂解气分离工艺流程主要由哪些过程构成?●裂解气分离过程操作主要异常现象及处理方法第四节裂解气深冷分离一、深冷分离流程1.深冷分离的任务裂解气经压缩和制冷、净化过程为深冷分离创造了条件—高压、低温、净化。
深冷分离的任务就是根据裂解气中各低碳烃相对挥发度的不同,用精馏的方法逐一进行分离,最后获得纯度符合要求的乙烯和丙烯产品。
2.三种深冷分离流程深冷分离工艺流程比较复杂,设备较多,能量消耗大,并耗用大量钢材,故在组织流程时需全面考虑,因为这直接关系到建设投资、能量消耗、操作费用、运转周期、产品的产量和质量、生产安全等多方面的问题。
裂解气深冷分离工艺流程,包括裂解气深冷分离中的每一个操作单元。
每个单元所处的位置不同,可以构成不同的流程。
目前具有代表性三种分离流程是:顺序分离流程,前脱乙烷分离流程和前脱丙烷分离流程。
(1)顺序分离流程顺序分离流程是按裂解气中各组分碳原子数由小到大的顺序进行分离,即先分离出甲烷、氢,其次是脱乙烷及乙烯的精馏,接着是脱丙烷和丙烯的精馏,最后是脱丁烷,塔底得碳五馏分。
图2-4 顺序分离工艺流程简图1—压缩Ⅰ、Ⅱ、Ⅲ段;2—碱洗塔;3—压缩Ⅳ、Ⅴ段;4—干燥器;5—冷箱;6—脱甲烷塔;7—第一脱乙烷塔;8—第二脱甲烷塔;9—乙烯塔;10—加氢反应器;11—脱丙烷塔;12—第二脱乙烷塔;13—丙烯塔;14—脱丁烷塔;15-甲烷化;16-氢气干燥器顺序深冷分离流程如图2-4所示。
裂解气经过压缩机Ⅰ、Ⅱ、Ⅲ段压缩(1),压力达到1.0MPa,送入碱洗塔(2),脱除酸性气体。
碱洗后的裂解气再经压缩机的Ⅳ、Ⅴ段压缩(3),压力达到3.7MPa,送入干燥器(4)用分子筛脱水。
干燥后的裂解气进入冷箱(5)逐级冷凝,分出的凝液分为四股按其温度高低分别进入脱甲烷塔(6)的不同塔板,分出的富氢经过甲烷化(15)脱除CO及干燥器(16)脱水后,作为碳二馏分和碳三馏分加氢脱炔用氢气。
第四节-裂解气深冷分离流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII返回目录第四节裂解气深冷分离流程思考题:1.简述三种深冷分离流程并画简图,三种深冷分离流程有什么不同点和不同点脱丙塔塔底温度为什不能超过100℃2.什么叫“前冷”流程,什么叫“后冷”流程?前冷3.流程有什么优缺点4.脱甲烷塔在深冷分离中的地位和作用是什么?脱甲烷塔的特点是什么?5.脱甲烷过程有哪两种方法,各有什么优缺点6.乙烯塔在深冷分离中的地位是什么?乙烯塔应当怎样改进5.简述影响乙烯回收的诸因素。
一、深冷分离流程生产流程的确定要考虑基建投资、能量消耗、运转周期、生产能力、产品成本以及安全生产等各方面的因素。
有了工艺以后,怎样实现工艺问题就属于工程上的问题。
1、三种深冷分离流程(思考题1)典型的深冷分离流程,主要有顺序分离流程、前脱乙烷流程和前脱丙烷流程三种,以下分别介绍这三种流程。
(1)顺序分离流程顺序分离流程见图1-34(P73)。
裂解气的预处理包括碱洗、压缩和脱水过程。
经预处理的裂解气在前冷箱中分离出富氢气体和馏分,富氢气体甲烷化作为加氢氢气;馏分经脱甲烷塔和脱乙烷塔分别脱去甲烷和C2馏分。
从脱乙烷塔塔顶出来的C2馏分经过气相加氢脱乙炔气,脱乙炔以后的气体进入乙烯塔,实现乙烷与乙炔的分离。
脱乙烷塔塔底的液体进入脱丙烷塔,在塔顶分出C3馏分,塔底的液体为C4以上馏分,液体里面含有二烯烃,二烯烃容易聚合结焦,所以脱丙烷塔塔底温度不宜超过100℃,并且必须加入阻聚剂。
为了防止结焦堵塞,脱丙烷塔一般有两个再沸器,以便轮换检修使用。
(思考题1)脱丙烷塔塔顶蒸出的C3馏分,加氢脱除丙炔和丙二烯,再进入丙烯塔进行精馏。
脱丙烷塔的塔底液体脱丁烷及进行后续工作。
顺序分离流程的特点:1)以轻油(60~200℃的馏分)为裂解原料,常用顺序分离流程法;2)技术成熟,运转平稳可靠,产品质量好,对各种原料有比较强的适应性,流程比较长,分馏塔比较多,深冷塔(脱甲烷塔)消耗冷量比较多,压缩机循环量和流量比较大,消耗定额偏高;3)按裂解气组成和分子量的顺序分离,然后再进行同碳原子数的烃类分离,例如乙烷和乙烯、丙烷和丙烯分开;4)顺序分离流程采用后加氢脱除炔烃的方法。
(2)前脱乙烷分离流程(把脱乙烷塔放在最前面)前脱乙烷分离流程以乙烷和丙烯为分离界限,前脱乙烷分离流程示意图见图1-35。
裂解气经过预处理进入脱乙烷塔。
脱乙烷塔塔顶出来的是C2以上的轻组分先加氢再进入脱甲烷塔。
脱甲烷塔塔顶出来的甲烷、氢气在冷箱中进行分离;脱甲烷塔塔底出来的C2馏分,则在乙烯塔中分离成乙烯和乙烷。
脱乙烷塔的塔底液体依次进入脱丙烷塔、脱丁烷塔、丙烯塔等,分离成丙烯、丙烷、C4馏分和C5以上馏分。
前脱乙烷分离流程的特点:由于脱乙烷塔的操作压力比较高,这样势必造成塔底温度升高,结果可使塔底温度高达80~100℃以上,在这样高的温度下,不饱和重质烃及丁二烯等,容易聚合结焦,这样就影响了操作的连续性。
重组份含量越多,这种方法的缺点就越突出。
因此前脱乙烷流程不适合于裂解重质油的裂解气分离。
(3)前脱丙烷分离流程(把脱丙烷塔放在最前面)前脱丙烷分离流程以丙烷和丁烯为分离界限,前脱丙烷分离流程示意图见图1-36。
裂解气经过三段压缩和预处理进入脱丙烷塔,塔底产品脱丁烷等后续处理。
脱丙烷塔塔顶出来的C3以下轻组分,进入压缩机四段,然后进行加氢脱炔再送往冷箱。
在冷箱中分离出富氢气体,其余馏分依次进入脱甲烷塔、脱乙烷塔、乙烯塔和丙烯塔等,依次分离出甲烷馏分、C2馏分、C3馏分、乙烯、乙烷、丙烯和丙烷。
前脱丙烷分离流程的特点:C4以上馏分不进行压缩,减少了聚合现象的发生,节省了压缩功,减少了精馏塔和再沸器的结焦现象,适合于裂解重质油的裂解气分离。
2、三种深冷分离流程的比较上述三种深冷分离流程,比较起来,有共同之处,也有不同之处,各有优缺点。
三种流程的共同点:(思考题1)(1)先将不同碳原子数的烃类分开,再分离同一碳原子数的烯烃和烷烃,采取先易后难的分离顺序。
从表1-29(P71)的沸点数据可以看出,不同碳原子数的烃类易分,同碳原子数的烃类难分。
关于分离的难易程度,可以由相对挥发度的数据来分析,见表1-31(P74)。
表1-31 塔的操作条件与相对挥发度在丙烯塔中,丙烯与丙烷的相对挥发度很小,分离比较困难。
在乙烯塔中,乙烯和乙烷的相对挥发度也比较小,所以也比较难于分离。
而脱甲烷塔、脱乙烷塔和脱丙烷塔的关键组份及其相对挥发度是比较大的,分离比较容易。
流程都是采取先易后难的分离顺序,即先分离各容易分离的不同碳原子数的烃类,然后再进行C2的分离和C3的分离。
(2)最终出产品的乙烯塔和丙烯塔并联安排,并且排在最后,作为二元组分精馏处理。
并联安排,相互干扰比串联安排要少一些,有利于稳定操作,有利于提高产品质量。
乙烯塔和丙烯塔的塔底液体是乙烷和丙烷,都是中间产物,不是作为裂解原料,就是作为燃料,质量要求不严格,流量又比较小,这样,就能保证塔顶产品乙烯和丙烯产品质量。
三种流程的不同点:(思考题1)(1)精馏塔的排列顺序不同:(原料的适用性不同)顺序分离流程是按组份碳原子数顺序排列的,其顺序为: 1)脱甲烷塔 2)脱乙烷塔 3)脱丙烷塔即顺序分离流程中的C1、C2、C3逐个脱除,按顺序分离。
排列顺序简称为[1 2 3]。
前脱乙烷流程的排列顺序是[2 1 3]。
前脱丙烷流程的排列顺序是[3 1 2]。
(2)加氢脱炔的位置不同:在脱甲烷塔之前进行加氢脱炔的称为前加氢。
在脱甲烷塔之后进行加氢脱炔的称为后加氢。
图1-35(P74)前脱乙烷深冷分离流程和图1-36(P74)前脱丙烷深冷分离流程都是采用前加氢脱炔流程。
(3)冷箱位置不同:在脱甲烷塔系统中有些冷凝器、换热器、节流膨胀阀和气液分离罐等设备的操作温度非常低,为了防止散冷,减少与环境接触的表面积,把这些冷设备集装在一起成箱,就称为冷箱。
比较三个流程图可以看出,图1-34的顺序分离流程和图1-36的前脱丙烷流程的冷箱是在脱甲烷塔之前。
而在图1-35的前脱乙烷流程的冷箱是在脱甲烷塔之后。
冷箱在脱甲烷塔以前的称“前冷流程”,冷箱在脱甲烷塔之后的称“后冷流程”。
(思考题2)二、脱甲烷塔及操作条件甲烷塔系统消耗冷量占分离部分总冷量消耗的42%。
由于脱甲烷塔的操作效果对产品(乙烯、丙烯)回收率、纯度以及经济性的影响最大,所以在分离设计中,对于工艺的安排、设备和材质的选择,都是围绕脱甲烷塔系统考虑的。
(思考题3)脱甲烷塔的任务就是将裂解气中氢气、甲烷以及其它惰性气体与C2以上组份进行分离,脱甲烷塔的关键组份是甲烷和乙烯。
(思考题3)在脱甲烷塔系统中,要求塔顶产品中少含乙烯,塔底产品中少含甲烷及惰性气体。
工业生产上脱甲烷过程有高压法与低压法之分。
(思考题4)1.低压法低压法分离效果好,乙烯收率高,操作条件为:压力0.18~0.25MPa (约18~25atm),塔顶温度-140 ℃左右,塔底温度-50 ℃左右。
由图1-37(P75)可以看出,操作压力高,甲烷与乙烯的相对挥发度a就比较低;相反,操作压力比较低,甲烷与乙烯的相对挥发度a就比较高。
低压法的优点:甲烷与乙烯的相对挥发度a比较大,乙烯回收率比较高,适用范围比较宽。
(思考题4)低压法的缺点:例如要用到耐低温的钢材、多一套甲烷制冷系统、流程比较复杂等。
(思考题4)2.高压法高压法的脱甲烷塔塔顶温度为-96℃左右,不必采用甲烷制冷系统,只需要用液态乙烯制冷剂就可以。
高压法的优点:由于脱甲烷塔塔顶气体产物(尾气)压力比较高,可借助脱甲烷塔塔顶的高压气体的自身节流膨胀来获得额外的降温,这种降温方法比甲烷冷冻系统要简单一些(流程简单、设备也简单)。
另外,提高压力可缩小精馏塔的体积(塔径),所以从总投资和材质的要求来看,高压法是比较有利的。
(思考题4)高压法的缺点:甲烷与乙烯的相对挥发度a比较低,塔板数较多,回流比较大。
(思考题4)从上述两种方法的比较来看,高压法和低压法各有优缺点,工业生产上两种方法都有采用。
表1-32列出了几个脱甲烷塔的操作条件。
表1-32 脱甲烷塔操作条件脱甲烷塔的塔顶产品是气相产品,主要甲烷和氢气,他们在塔顶的操作条件(温度、压力)下,是不能全部冷凝下来的,因此脱甲烷塔与一般的精馏塔是不相同的,一般的精馏塔塔顶产品都可以全部冷凝下来,脱甲烷塔的塔顶产品含有不凝气甲烷和氢气,所以塔顶回流的液体组成与气相产品的组成是不同的,这就是脱甲烷塔的特点。
也是脱甲烷塔的特殊性。
(思考题3)三、乙烯塔和丙烯塔(一)乙烯塔C2馏分经过加氢脱炔之后,进入乙烯塔进行精馏,塔顶得到乙烯产品,塔底产品为乙烷。
乙烯塔的重要性:乙烯的纯度要求要达到聚合级,冷量消耗大,乙烯塔在深冷分离装置中是一个比较关键的塔。
(乙烯塔是出乙烯产品的精馏塔) (思考题4)1.操作条件表1-33 乙烯塔操作条件表1-33(P76)是乙烯塔的操作条件,从表中可以看出,乙烯塔的操作条件大体上可以分成两类,一类是低压法,塔的操作温度比较低;另一类是高压法,塔的操作温度比较高。
从图1-38(P77)可以看出,随着操作压力的增加,乙烯和乙烷的相对挥发度将减小;随着操作温度的增加,乙烯和乙烷的相对挥发度也减小。
由此可见,操作压力对相对挥发度有较大的影响,一般可以采取降低操作压力的办法来增大相对挥发度,从而使精馏塔的塔板数和回流比降低,见图1-39。
操作压力降低以后,精馏塔的操作温度也降低,因而需要制冷剂的温度级位低,对精馏塔的材质有比较高的要求,从这些方面来看,操作压力低是不利的,还是高一些好。
操作压力的选择还要考虑乙烯的输送压力。
此外,压力的确定还要与整个流程相适应。
综上所述,乙烯塔操作压力的确定可有下列因素来决定:制冷的能量消耗、设备投资、产品乙烯的输送压力以及脱甲烷塔的操作压力等因素来决定的。
2.乙烯塔的改进(思考题4)由图1-40(P77)可以看出,精馏段靠近塔顶的塔板温度变化很小,而在提馏段各塔板的温度变化较大。
因此乙烯塔要求精馏段塔板数比较多,回流比也比较大。
乙烯塔的精馏段要求有较大的回流比,但是提馏段要求的回流比不大。
因此,近年来采用中间再沸器(或理解成中间换热器、中间加热器)的办法来回收冷量,见图1-41(P78),这种方法可以节省冷量约17%(占整个乙烯塔冷量的17%),这是乙烯塔的一个改进。
例如,乙烯塔的操作压力为1.9MPa,塔底温度为-5C,可以用丙烯蒸汽作为再沸器的热源,这样即可以将丙烯蒸汽冷凝成为丙烯液体,又可以回收了塔底的冷量。
乙烯进料中经常含有少量甲烷,经常在进入乙烯塔之前要进入设置的第二脱甲烷塔,脱去甲烷。
如果在乙烯塔的塔顶脱甲烷可以借用乙烯塔的大量回流,这种方法比设置第二脱甲烷塔还要有利得多。