裂解气的分离
- 格式:ppt
- 大小:1.36 MB
- 文档页数:68
裂解气的精馏分离流程及注意事项下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!I. 概述裂解气是一种重要的化工原料,其组分复杂,需要进行精馏分离才能得到纯净的产品。
裂解气的净化与分离
裂解气是组成复杂的气体混合物,其中,既有目的产物乙烯、丙烯,又有副产物丁二烯、饱和烃共,还有一氧化碳、二氧化碳、炔烃、水和含硫化合物等杂质。
为获取纯度单一的烯烃及其他馏分,必须对裂解气进行分离和提纯。
裂解气分离的方法有多种,工业上主要采用深冷分离法和油吸收精馏分离法。
(l)深冷分离法是将裂解气中除甲烷、氢以外的其他烃类全部冷凝为液体,然后根据各组分相对挥发度的不同,采用精馏操作逐一分离的方法。
裂解气的深冷分离是裂解气分离的主要方法,其技术指标先进,产品质量好,收率高。
但是分离流程复杂,动力设备多,需要大量的低温台金钢材,投资较高,适用于加工精度高的大工业生产。
(2)油吸收精馏分离法根据裂解气各组分在某种吸收剂中的溶解度不同,采用吸收剂吸收除氢和甲烷外的组分,然后用精馏的方法再把各组分从吸收剂中遥一分离的方法。
该法工艺流程简单,动力设备少,仅需少量合金钢,投资少。
但是,经济技术指标和产品纯度较差,适用于中小型石油化工企业。
裂解气分离设计1 引言1.1裂解气制取乙烯的意义乙烯是基本有机化学工业最重要的产品,它的发展带动着其他基本有机化工产品生产的发展,因此乙烯的产量往往标志着一个国家基本有机化学工业发展的水平。
乙烯生产的发展,使其他基本有机化工产品的生产也有了很大的增长。
并在开发新工艺,新技术,简化生产方法,降低原料单耗,开辟新的原料路线,提供新产品,防治环境污染等方面取得了较大的进展。
轻油裂解制乙烯技术研究始于20世纪30年代,经过60多年的发展,裂解技术日臻成熟,目前世界乙烯产量的98%以上。
与之相应的深分离方法也最为成熟,目前占据世界乙烯市场分离技术主要分为三大类,分别为顺序分离技术、前脱丙烷前加氢技术和前脱乙烷前加氢技术。
烃类经过裂解制得了裂解气,裂解气的组成是很复杂的,其中既有有用的组分,也含有一些有害的杂质。
裂解气的分离的任务就是除去裂解气中有害杂质,分离出单一烯烃产品或烃的馏分,为基本有机化学工业和高分子化学工业等提供原料。
为了得到高纯度的产品,必须对裂解气进行分离裂解技术在继续开发中,主要以下列问题为目标:1扩大重质原料的应用和裂解炉对原料改变的适应能力;2减小能耗,降低成本;3新的裂解技术研究。
降低产品成本是任何一个厂家的总目标,它与管理、产销、工艺技术水平密切相关,新的裂解技术研究有开发耐高温的裂解管材、催化裂解。
1.2流程方案的依据确定设计方案总的原则是在可能的条件下,尽量采用科学技术上的最新成就,使生产达到技术上最先进、经济上最合理的要求,符合优质、高产、安全、低消耗的原则。
为此,必须具体考虑如下几点: ①满足工艺和操作的要求所设计出来的流程和设备,首先必须保证产品达到任务规定的要求,而且质量要稳定,这就要求各流体流量和压头稳定,入塔料液的温度和状态稳定,从而需要采取相应的措施。
其次所定的设计方案需要有一定的操作弹性,各处流量应能在一定范围内进行调节,必要时传热量也可进行调整。
因此,在必要的位置上要装置调节阀门,在管路中安装备用支线。
裂解气分离设计范文裂解气分离设计是一种常见的化工过程,用于将原料气体进行分离和提纯。
该过程主要用于石油化工工业中,在裂解炉中对重质石油化工原料进行热裂解,生成炼油气等多种气体组分,然后通过分离和提纯过程,将所需的各种气体分离出来。
裂解气分离设计的关键步骤包括原料气体的预处理、主分离过程和后处理过程。
其中,原料气体的预处理是为了去除杂质和调整气体组分的组成,以满足下一步的分离要求。
该步骤通常包括氢气、烯烃、硫化氢和一氧化碳等气体的除去,并根据具体工艺要求,调整气体组分的比例。
主分离过程是指将原料气体中的不同组分进行有效分离的过程。
常用的主分离技术包括吸收、膜分离、吸附和蒸馏等。
吸收是指通过溶剂将原料气体中的特定组分吸收到液相中,从而达到分离的目的。
常用的溶剂包括乙二醇、N-甲基吡咯烷酮和脱氟溶剂等。
膜分离是通过选择适当的膜材料,根据不同气体分子的大小和极性差异,使其通过膜的速率不同,从而实现分离。
吸附是指利用吸附剂的亲和性差异,将原料气体中的特定组分吸附到固体表面上,然后通过调整吸附条件,使吸附剂释放出被吸附的组分。
蒸馏是利用原料气体中各组分的沸点差异,通过加热和冷凝的方式,将各组分逐一分离出来。
后处理过程是指对分离出来的气体进行进一步净化和提纯的过程。
常见的后处理技术包括冷却凝结、压缩和吸附等。
冷却凝结是将气体通过冷却和压缩,使其凝结成液体,然后通过重力分离或离心分离的方式,将液体与气体分离。
压缩是将气体通过增加压力,使其体积减小,从而使其中的杂质浓度增加,然后通过吸附或冷却凝结的方式将杂质去除。
吸附是通过在固体表面上吸附分子的方式,将气体中的杂质吸附到固体表面上,从而净化气体。
裂解气分离设计的关键是选择合适的分离技术和优化操作条件。
在选择分离技术时,需要考虑气体组分的差异和目标分离效果,并综合考虑经济性、操作简便性和安全性等因素。
优化操作条件可以通过调整温度、压力、流量和各组分的比例等参数,以达到最佳的分离效果和经济效益。
第一章烃类热裂解第三节裂解气的净化与分离一、概述(一)裂解气的组成和分离要求问题1:什么叫裂解气?1. 烃类经过裂解制得了裂解气,裂解气的组成是很复杂的,其中含有很有用的组份,也含有一些有害的杂质(见表1-23)。
裂解气净化与分离的任务就是除去裂解气中有害的杂质,分离出单一稀烃产品或烃的馏分,为基本有机化学工业和高分子化学工业等提供原料。
表1-23 轻柴油裂解气组成2. 需要净化与分离的裂解气,是由裂解装置送过来的。
3.裂解气的定义:它已经脱除了大部份C5以上的液态烃类,它是一个含有氢气,C1-C5的烃类和少量杂质气体的复杂气态混合物。
4.裂解气的分离要求:见表1-24,1-25.表1-24 乙烯聚合级规格表1-25 丙烯聚合极规格(二)裂解气分离方法简介问题2:深冷分离法的分离原理是什么?1.工业生产上采用的裂解气分离方法,主要有深冷分离法和油吸收精馏分离法两种。
本章重点介绍深冷分离方法。
2.在基本有机化学工业中,冷冻温度小于等于-100度的称为深度冷冻,简称“深冷”。
♀3.分离原理就是利用裂解气中各种烃的相对挥发度不同,在低温下除了氢气和甲烷以外,把其余的烃类都冷凝下来,然后在精馏塔内精馏塔进行多组份精馏分离,利用不同的精馏塔,把各种烃逐个分离下来。
其实质是冷凝精馏过程。
4.图1-24可知,深冷分离流程可以概括成三大部份:(1)气体净化系统;(2)压缩和冷冻系统;(3)精馏分离系统.二、酸性气体的脱除问题3:酸性气体有哪些?它们有什么危害?除去方法是什么?1.由表1-23的数据可以看出,裂解气中含有的少量硫化物、二氧化碳、一氧化碳、乙炔、丁炔以及水等杂质。
2.裂解气中的酸性气体,主要是二氧化碳(CO2)和硫化氢(H2S),另外还有有机硫化物。
3.这些酸性气体含量过多时,对分离过程会带来如下的危害:(1)硫化氢能腐蚀设备管道,并能使干燥用的分子筛寿命缩短,还能使加氢脱炔用的催化剂中毒;(2)二氧化碳能在深冷的操作中结成干冰,堵塞设备和管道,影响正常生产。
两种裂解气分离流程的对比气体分离是石油、化工和天然气加工等领域的重要工艺之一、在气体分离过程中,常用的方法是利用裂解分离技术,即将混合气体通过裂解装置进行分离,使其成分不同的气体通过不同的工艺进行处理。
目前在气体分离工艺中,常用的两种裂解气分离流程是热力学循环流程(TC)和力学循环流程(MC)。
本文将对两种流程进行对比。
1.热力学循环流程(TC):热力学循环流程是一种基于温度差的分离过程,其主要包含以下几个步骤:压缩、冷却、膨胀和加热。
具体流程如下:-压缩:将混合气体通过压缩机进行压缩,增加混合气体的密度和压力。
-冷却:将压缩后的气体通过冷却装置降低其温度,使其中的一些组分开始凝结成液体,以及一部分高沸点组分开始凝结。
-膨胀:将冷却后的气体通过膨胀机膨胀,使其压力下降,温度进一步降低,使凝结的液体进一步增多。
-加热:将膨胀后的气体通过加热装置加热,将其中的低沸点组分挥发出来。
经过加热后,气体中凝结的部分液体将蒸发,成为气态。
2.力学循环流程(MC):力学循环流程是一种基于分子均匀分布状况的分离过程,其主要包含以下几个步骤:压缩、冷却、膨胀和除碳。
-压缩:将混合气体通过压缩机进行压缩,增加混合气体的密度和压力。
-冷却:将压缩后的气体通过冷却装置降低其温度,使其中的一些组分开始凝结成液体,以及一部分高沸点组分开始凝结。
-膨胀:将冷却后的气体通过膨胀机膨胀,使其压力下降,温度进一步降低,使凝结的液体进一步增多。
-除碳:将膨胀后的气体通过除碳装置,去除其中的碳氢化合物。
对比两种裂解气分离流程,可以得到以下几个方面的对比:1.分离效果:热力学循环流程主要通过调整温度和压力来进行分离,可以实现混合气体的凝结与蒸发,分离效果相对较好。
而力学循环流程主要通过冷却和膨胀来进行分离,其分离效果相对较弱。
2.设备复杂度:热力学循环流程中需要使用到加热装置,而力学循环流程中需要使用到除碳装置,相比之下,力学循环流程的设备复杂度要低于热力学循环流程。
裂解气分离工艺流程授课内容:●裂解气分离工艺流程●裂解气分离过程操作知识目标:●掌握裂解气分离原则流程●掌握裂解气分离过程操作步骤和方法能力目标:●混合物精馏分离方案设计●混合物精馏分离过程操作条件制定思考与练习:●裂解气分离工艺流程主要由哪些过程构成?●裂解气分离过程操作主要异常现象及处理方法第四节裂解气深冷分离一、深冷分离流程1.深冷分离的任务裂解气经压缩和制冷、净化过程为深冷分离创造了条件—高压、低温、净化。
深冷分离的任务就是根据裂解气中各低碳烃相对挥发度的不同,用精馏的方法逐一进行分离,最后获得纯度符合要求的乙烯和丙烯产品。
2.三种深冷分离流程深冷分离工艺流程比较复杂,设备较多,能量消耗大,并耗用大量钢材,故在组织流程时需全面考虑,因为这直接关系到建设投资、能量消耗、操作费用、运转周期、产品的产量和质量、生产安全等多方面的问题。
裂解气深冷分离工艺流程,包括裂解气深冷分离中的每一个操作单元。
每个单元所处的位置不同,可以构成不同的流程。
目前具有代表性三种分离流程是:顺序分离流程,前脱乙烷分离流程和前脱丙烷分离流程。
(1)顺序分离流程顺序分离流程是按裂解气中各组分碳原子数由小到大的顺序进行分离,即先分离出甲烷、氢,其次是脱乙烷及乙烯的精馏,接着是脱丙烷和丙烯的精馏,最后是脱丁烷,塔底得碳五馏分。
图2-4 顺序分离工艺流程简图1—压缩Ⅰ、Ⅱ、Ⅲ段;2—碱洗塔;3—压缩Ⅳ、Ⅴ段;4—干燥器;5—冷箱;6—脱甲烷塔;7—第一脱乙烷塔;8—第二脱甲烷塔;9—乙烯塔;10—加氢反应器;11—脱丙烷塔;12—第二脱乙烷塔;13—丙烯塔;14—脱丁烷塔;15-甲烷化;16-氢气干燥器顺序深冷分离流程如图2-4所示。
裂解气经过压缩机Ⅰ、Ⅱ、Ⅲ段压缩(1),压力达到1.0MPa,送入碱洗塔(2),脱除酸性气体。
碱洗后的裂解气再经压缩机的Ⅳ、Ⅴ段压缩(3),压力达到3.7MPa,送入干燥器(4)用分子筛脱水。
干燥后的裂解气进入冷箱(5)逐级冷凝,分出的凝液分为四股按其温度高低分别进入脱甲烷塔(6)的不同塔板,分出的富氢经过甲烷化(15)脱除CO及干燥器(16)脱水后,作为碳二馏分和碳三馏分加氢脱炔用氢气。
裂解气分离工艺流程
裂解部分:
1.前处理:原料石油经过加热、真空防止爆炸等处理后,进入裂解炉。
2.裂解炉:在高温高压条件下,原料石油中的大分子烃化合物被裂解
成小分子烃化合物。
常见的裂解炉有催化裂解炉和热裂解炉两种。
3.分离:裂解产生的气体混合物经过瞬间冷却以及一系列分离装置进
行初步分离,得到热交换器提供的反应再生气和燃烧气。
热交换器可以回
收部分热量,提高能源利用效率。
分离部分:
4.粗分离:裂解产生的混合气经过粗分离器和压缩机进行初步分离,
得到乙烯、丙烯等轻烃组分。
其中乙烯是裂解产物中最重要的产品之一,
广泛应用于塑料、橡胶等行业。
5.提纯:乙烯和其他混合气体进一步通过精馏柱进行分离和提纯。
该
过程通过不同组分的沸点差异来分离气体,其中包括乙烯、丙烯、乙炔、
丁烯等不同组分。
6.附加处理:分离后的气体经过加压、冷却等处理,去除杂质和水分,以获得高纯度的乙烯产品。
总结起来,裂解气分离工艺流程包括前处理、裂解、分离和提纯等步骤。
通过合理的工艺设计和操作控制,可以实现高效分离和提纯裂解产生
的气体混合物,得到高纯度的乙烯等产品。
这种工艺在石油化工工业中有
重要的应用和经济价值。
工业生产上采用的裂解气分离方法
裂解气分离法是一种常用于工业生产中分离气体混合物的方法,其原
理是利用不同气体分子在一定条件下的物理性质差异,通过不同的分离方
式将混合气体分离出来。
以下将介绍常见的几种裂解气分离方法。
1.管道分水分离法:该方法主要适用于含有水或其他液体成分的气体
分离。
在一定条件下,通过调整装置内部的温度、压力等参数,使得气体
与液体发生相分离,从而实现气体与液体的分离。
2.喷嘴蓄能分离法:该方法主要适用于需要分离气体和固体颗粒的情况。
在裂解装置中设置粉尘捕集器,通过喷嘴作用将气体中的颗粒物聚集
到一定位置,然后利用装置内部的能量转换装置将气体与颗粒物分离。
3.离心分离法:该方法主要适用于密度差异较大的气体分离。
在分离
装置内部设置离心机构,通过旋转装置使气体在离心力的作用下向外部移动,从而实现不同气体分子的分离。
4.膜分离法:该方法主要通过薄膜的选择性渗透性来实现气体的分离。
通过在适当的条件下,将混合气体与薄膜接触,从而使其中的其中一种气
体分子通过薄膜孔隙,实现气体成分的分离。
5.吸附分离法:该方法主要是利用吸附剂或活性炭等物质对混合气体
中的其中一种气体分子具有选择性吸附能力,从而实现气体的分离。
通过
调节吸附剂的种类和条件,可以实现对气体混合物中不同成分的分离。
以上是几种常见的裂解气分离方法,每种方法在工业生产中都有特定
的应用场景和优劣势。
在实际应用中,可以根据需要选择适合的分离方法,从而提高生产效率和产品质量。
裂解气分离工业生产上采用的裂解气分离方法,主要有深冷分离法和油吸收精馏分离法两种。
本章重点介绍深冷分离方法。
裂解气分离分离原理:在基本有机化学工业中,把冷冻温度高于-50℃的称为浅度冷冻,简称“浅冷”;温度在-50~-100℃的称为中度冷冻;冷冻温度等于或低于-100℃的称为深度冷冻,简称“深冷”。
因为裂解气分离方法采用了-100℃以下的冷冻系统,所以工业上称为深冷分离法。
这种方法的分离原理就是利用裂解气中各种烃的相对挥发度不同,在低温下除了氢气和甲烷以外,把其余的烃类都冷凝下来,然后在精馏塔内进行多组分精馏分离,利用不同的精馏塔,把各种烃逐个分离下来。
其实质是冷凝精馏过程。
深冷分离流程:图1-24是深冷分离流程示意图:主要设备:1碱洗塔、2干燥塔、3脱甲烷塔、4脱乙烷塔、5乙烯塔、6脱丙烷塔、7脱丁烷塔、8丙烷塔、9冷箱、10加氢脱炔反应器、11绿油塔。
就分离过程来说,可以概括成三大部份:(1)压缩和冷冻系统:使裂解气加压降温,同时脱除重组分,为分离创造条件。
(2)气体净化系统:包括脱除酸性气体、脱水、脱除乙炔和脱除一氧化碳(即甲烷化,用于净化氢气)。
(3)精馏分离系统:包括一系列的精馏塔,以便分离出甲烷、乙烯、丙烯、C4馏分以及C5馏分。
顺序分离流程分离步骤是:①裂解气经过离心式压缩机压缩后,送入碱洗塔,脱去酸性气体。
减洗后的裂解气经过压缩机去干燥器脱水,干燥后的裂解气在前冷箱中分离出富氢气体,再进入脱甲烷塔,塔顶脱去甲烷馏分,塔底的液体是C2以上馏分,进入脱乙烷塔,进入脱乙烷塔的塔顶分出C2馏分,塔底的液体为C3以上馏分。
②从脱乙烷塔塔顶出来的C2馏分经过换热升温,进行气相加氢脱乙炔气,脱乙炔以后的气体进入绿油塔,在绿油塔内用乙烯塔来的侧线馏分洗去绿油,干燥,然后送去乙烯塔。
脱乙烯塔塔底的液体进入脱丙烯塔,在塔顶分出C3馏分,塔底的液体为C4馏分,液体里面含有二烯烃,易聚合结焦,所以脱丙烯塔塔底温度不适宜超过一百度,并且必须加入阻聚剂。