钢筋混凝土受扭构件承载力计算
- 格式:ppt
- 大小:931.50 KB
- 文档页数:39
第七章钢筋混凝土受扭构件承载力计算7.1.1.1 两种不同的受扭状态受扭构件可分为平衡扭转和附加扭转(协调扭转两大类。
前者的扭矩由静力平衡条件确定,和变形无关;后者的扭矩需根据静力平衡条件和变形协调条件求得,扭矩大小会随着结构的变形而变化,甚至消失。
这部分内容要求一般掌握。
7.1.1.2钢筋混凝土受扭构件的破坏形态及开裂扭矩1.矩形截面纯扭构件的破坏形态纯混凝土构件当截面长边中点剪应力形成的主拉应力达到混凝土抗拉强度时截面开裂,构件即告破坏。
配置抗扭钢筋后情况显著变化。
抗扭钢筋由抗扭纵筋和抗扭箍筋构成,两者缺一不可。
受扭破坏形态随这两种钢筋的配置数量和比例而不同,可以分为:(1少筋破坏,抗扭钢筋配置太少,混凝土一开裂,钢筋即屈服并可能进入强化段,发生脆性破坏,与少筋梁类似,工程中不允许发生,并规定最小配筋率来加以防止。
(2适筋破坏,两种抗扭钢筋比例恰当,数量合适,构件破坏前这两种抗扭钢筋均先后达到屈服强度,最后混凝土被压坏,构件发生延性破坏,类似于适筋梁。
这是设计受扭构件的依据。
(3超筋破坏,抗扭钢筋配置过量,混凝土先被压坏,抗扭钢筋达不到屈服强度,这是一种脆性破坏,和超筋梁类似。
工程中必须防止,方法是校核构件截面的尺寸不能过小及混凝土强度不能过低。
(4部分超筋破坏,破坏时一种抗扭钢筋屈服,另一种不屈服,一般也应避免。
方法是选择合适的配筋强度比ζ。
这部分内容应深刻理解。
2.矩形截面构件在弯、剪、扭共同作用下的破坏形态此时破坏形态按弯、剪、扭三种内力的不同比值和不同配筋情况有三种典型情况:弯型破坏、扭型破坏和扭剪型破坏。
这部分内容只需一般了解。
3.矩形截面及Ⅰ形、T形截面纯扭构件的开裂扭矩基于弹性理论,可导出假定混凝土为弹性材料时的开裂扭矩Tcr;基于塑性理论,又可导出假定混凝土为理想塑性材料时的开裂扭矩Tcu。
因为混凝土是弹塑性材料,其开裂扭矩应在两者之间,规范取纯扭构件的开裂扭矩为Tcu的0.7倍。
第六章 钢筋混凝土受扭构件承载力计算_习题讲解1、钢筋混凝土矩形截面构件,截面尺寸mm h b 450250⨯=⨯扭矩设莡值m kN T ⋅=10,旷凝土强嚦等皧为C30(2/3.14mm N f c =,),纵向钢筋和箍筋均采用HPB235级钢筋(2/210mm N f f y yv ==),试计算其配筋。
(类似习题6-1)解:(1)验算构件截面尺寸26221046.11)2504503(6250)3(61mm b h b W t ⨯=-⨯⨯=-= (6-5)c c t f mm N W T β25.0/87.01046.111010266<=⨯⨯= 2/58.33.140.125.0mm N =⨯⨯=满足c c t f W T β25.0<是规范对构件截面尺寸的限定性要求,本题满足这一要求。
(2)抗扭钢筋计算t t f mm N W T 7.0/87.01046.111010266<=⨯⨯= 按构造配筋即可。
2.已知矩形截面梁,截面尺寸300×400mm ,混凝土强度等级2/6.9(20mm N f C c =,2/1.1mm N f t =),箍筋HPB235(2/210mm N f yv =),纵筋HRB335(2/300mm N f y =)。
经计算,梁弯矩设计值,剪力设计值kN V 16=,扭矩设计值m kN T ⋅=8.3,试确定梁的配筋。
(类似习题6-2) 解:(1)按h w /b ≤4情况,验算梁截面尺寸是否符合要求 252210135)3004003(6300)3(mm b h b W t ⨯=-⨯=-=截面尺寸满足要求。
(2)受弯承载力%2.0%165.03001.14545min 〈=⨯==y t f f ρ;取0.2%A s =ρmin ×bh=0.2%×300×400=240mm 2(3)验算是否直接按构造配筋由公式(6-36)01600038000000.4280.70.7 1.10.7730036513500000t t V T f bh W +=+=<=⨯=⨯ 直接按构造配筋。
第8章受扭构件承载力的计算§8.1 概述实际工程中哪些构件属于受扭构件?工程结构中,结构或构件处于受扭的情况很多,但处于纯扭矩作用的情况很少,大多数都是处于弯矩、剪力、扭矩共同作用下的复合受扭情况,比如吊车梁、框架边梁、雨棚梁等,如图8-1所示。
图8-1 受扭构件实例受扭的两种情况:平衡扭转和协调扭转。
静定的受扭构件,由荷载产生的扭矩是由构件的静力平衡条件确定的,与受扭构件的扭转刚度无关,此时称为平衡扭转。
如图8-1(a )所示的吊车梁,在竖向轮压和吊车横向刹车力的共同作用下,对吊车梁截面产生扭矩T 的情形即为平衡扭转问题。
对于超静定结构体系,构件上产生的扭矩除了静力平衡条件以外,还必须由相邻构件的变形协调条件才能确定,此时称为协调扭转。
如图8-1(b )所示的框架楼面梁体系,框架的边梁和楼面梁的刚度比对边梁的扭转影响显著,当边梁刚度较大时,对楼面梁的约束就大,则楼面梁的支座弯矩就大,此支座弯矩作用在边梁上即是其承受的扭矩,该扭矩由楼面梁支承点处的转角与该处框架边梁扭转角的变形协调条件所决定,所以这种受扭情况为协调扭转。
§8.2 纯扭构件的试验研究8.2.1 破坏形态钢筋混凝土纯扭构件的最终破坏形态为:三面螺旋形受拉裂缝和一面(截面长边)的斜压破坏面,如图8-3所示。
试验研究表明,钢筋混凝土构件截面的极限扭矩比相应的素混凝土构件增大很多,但开裂扭矩增大不多。
图8-2 未开裂混凝土构件受扭图8-3 开裂混凝土构件的受力状态 8.2.2 纵筋和箍筋配置对纯扭构件破坏性态的影响受扭构件的四种破坏形态受扭构件的破坏形态与受扭纵筋和受扭箍筋配筋率的大小有关,大致可分为适筋破坏、部分超筋破坏、完全超筋破坏和少筋破坏四类。
对于正常配筋条件下的钢筋混凝土构件,在扭矩作用下,纵筋和箍筋先到达屈服强度,然后混凝土被压碎而破坏。
这种破坏与受弯构件适筋梁类似,属延性破坏。
此类受扭构件称为适筋受扭构件。
受扭构件承载力计算一、(纯扭) 某矩形截面纯扭构件,承受扭矩设计值为m KN T .18=,截面尺寸mm 500250⨯,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。
混凝土净保护层厚度为c=30mm 。
环境类别为二类,试计算截面的配筋数量。
(注:2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =)解题思路:本题属矩形截面纯扭构件的计算,先验算截面尺寸,再验算是否需要按计算配置受扭筋;若不需按计算配置抗扭钢筋,则按构造要求配筋;若需要按计算配置抗扭钢筋,可先假定ς值,然后按矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式即可求得,按步骤进行计算。
【解】2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =,混凝土保护层为mm 301、验算截面尺寸是否满足要求362210021.13)2505003(6250)3(6mm b h b W t ⨯=-⨯⨯=-= 975.29.110.125.025.0728.110021.138.010188.066=⨯⨯==⨯⨯⨯=c c t f W T β 故截面尺寸满足要求2、验算是否按计算配置抗扭钢筋m KN T m KNN W f t t .18.58.1110021.1327.17.07.06==⨯⨯⨯=故需按计算配置受扭钢筋3、抗扭箍筋的计算mm b cor 190230250=⨯-=,mm h cor 440230500=⨯-=(1)假定1.1=ζ(2)由t t W f T 35.0≤+s f A A yv st cor 12.1ζ得387.04401903001.12.110021.1327.135.010182.135.0661=⨯⨯⨯⨯⨯⨯-⨯=-=cor yv t t st A f W f T s A ς(3)箍筋直径及间距的确定选用8Φ箍筋(213.50mm A sv =),双肢箍,2=n则mm A s st 130387.03.50387.01=== 取mm s 120=<mm s 200max = (满足构造要求)即所配箍筋为120@8Φ(4)验算抗扭箍的配筋率%12.030027.128.028.0%34.01202503.5022min ,1===≥=⨯⨯==yv t sv st sv f f bs A ρρ 满足要求4、抗扭纵筋的计算(1)按cor st yv stl y st yv corstly A f s A f s A f A f μμζ11/==得 214841203.503604401903001.1mm s A f u f A st y cor yv stl =⋅⨯⨯⨯=⋅=ς (2)验算抗扭纵筋配筋率%30.036027.185.085.0%387.0500250484min ,=⨯==≥=⨯==y t tl stl tl f f bh A ρρ 满足要求(3)选筋:选用(2678mm A s =)弯、剪、扭构件计算三、 某雨篷梁,承受弯矩、剪力、扭矩设计值为m KN M .25=, KN V 40=,m KN T .6=,截面尺寸mm 240240⨯,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。