2018-2019学年最新青岛版八年级数学上学期期末考试模拟检测题及答案解析-精编试题
- 格式:doc
- 大小:306.50 KB
- 文档页数:13
绝密★启用前 青岛版八年级2018--2019学年度第一学期期末考试 数学试卷 你不要慌张,平心静气,做题时把字写得工整些,让老师和自己看得舒服些,祝你成功!一、单选题(计30分) 1.(本题3分)下列美丽的车标中,轴对称图形的个数是( ) A . 1 B . 2 C . 3 D . 4 2.(本题3分)在式子: 12, 1x -, 6x x -, 3a b -, 31x +中分式的个数是( ). A . 1 B . 2 C . 3 D . 4 3.(本题3分)在一次歌唱比赛中,10名评委给某一歌手打分如下表: 则这名歌手成绩的中位数和众数分别是( ) A . 9.3, 2 B . 9.5 ,4 C . 9.5,9.5 D . 9.4 ,9.5 4.(本题3分)如图,把一张对边平行的纸条如图折叠,重合部分是 ( ) A . 等边三角形 B . 等腰三角形 C . 直角三角形 D . 无法确定5.(本题3分)化简22x y y x --的结果是( ) A . -x-y B . y-x C . x-y D . x+y 6.(本题3分)如图,AB=AC ,AD=AE ,∠BAC=60°,∠C=25°,则∠BMD 的度数为A . 50°B . 65°C . 70°D . 857.(本题3分)一组数据的方差是2,将这组数据都扩大3倍,则所得一组新数据的方差是( )A . 2B . 6C . 9D . 188.(本题3分)如图,将一个三角形剪去一个角后,∠1+∠2=240°,则∠A 等于( )A . 45°B . 60°C . 75°D . 80°9.(本题3分)在△ABC 中,已知,则三角形是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 形状无法判定10.(本题3分)如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等的有关知识,说明画出的依据是( )A . SASB . ASAC . AASD . SSS二、填空题(计32分) 11.(本题4分)若一组数据1,2,x ,3,4的平均数是3,则这组数据的极差是________. 12.(本题4分)已知, ,则_______. 13.(本题4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____. 14.(本题4分)如图,中,于,要使,若根据“”判定,还需加条件________. 15.(本题4分)如图,在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交AC 于E ,交BC 的延长线于F ,若∠F=30°,DE=1,则BE 的长是_____. 16.(本题4分)当x=2014时,分式的值为 . 17.(本题4分)命题“两边上的高相等的三角形是等腰三角形”的条件是________,结论是________. 18.(本题4分)如图,在Rt △ABC 中,∠ACB=90°,点D 在AB 边上,将△CBD 沿CD折叠,使点B 恰好落在AC 边上的点E 处.若∠A=26°,则∠CDE= . 三、解答题(计58分) 19.(本题8分)如图,一艘轮船以每小时40海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向上,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向上.当轮船到达灯塔C 的正东方向D 处时,又航行了多少海里?20.(本题8分)如图,△ABC ≌△DEF,∠A=33°,∠E=57°,CE=5,(1)求线段BF 的长;(2)试判断DF 与BE 的位置关系,并说明理由.21.(本题8分)在小明、小红两名同学中选拔一人参加2018年张家界市“经典诗词朗诵”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:小明:79,85,82,85,84小红:88,79,90,81,72.回答下列问题:(1)求小明和小红测试的平均成绩;(2)求小明和小红五次测试成绩的方差.22.(本题8分)先化简,再求值:,在﹣1、0、1、2 四个数中选一个合适的代入求值.23.(本题8分)如图,∠AOB 内一点P,分别画出P 关于OA 、OB 的对称点P 1、P 2连P 1P 2交OA 于M,交OB 于N,若P 1P 2=5cm, 则△PMN 的周长为多少?24.(本题9分)如图,AD∥BC,∠A=90°,E 是AB 上的一点,且AD=BE ,∠DEC=90°(1)△CDE 是什么三角形?请说明理由(2)若AD=6,AB=14,请求出BC 的长.25.(本题9分)如图,△ABC 中,AB =AC ,AB 的垂直平分线交AB 于点N ,交AC 于点M .连 接MB ,若AB =8 cm ,△MBC 的周长是14 cm . (1)求BC 的长; (2)在直线MN 上是否存在点P ,使PB +CP 的值最小?若存在,直接写出PB +CP 的最小值;若不存在,说明理由.参考答案1.C【解析】试题分析:根据轴对称图形的概念求解.解:第1,2,3个图形是轴对称图形,共3个.故选C .考点:轴对称图形.2.C【解析】试题解析: 123a b -,的分母中均不含有字母,因此它们是整式,而不是分式。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中,无理数是()A.0.101001B.0C.5D.2 3 -【答案】C【分析】A、B、C、D分别根据无理数、有理数的定义来求解即可判定.【详解】A、B、D中0.101001,0,23-是有理数,C中5开方开不尽是无理数.故选:C.【点睛】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,5,0.8080080008…(每两个8之间依次多1个0)等形式.2.若分式2a+1有意义,则a的取值范围是()A.a=0 B.a="1" C.a≠﹣1 D.a≠0【答案】C【解析】分式分母不为0的条件,要使2a+1在实数范围内有意义,必须a+10a1≠⇒≠-.故选C3.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【答案】D【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.下列计算正确的是()A.3×23=2 B.2﹣1=1 C.2÷1=2 D.9÷4=32【答案】D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】解:A、原式=233⨯=2,所以A选项的计算错误;B、原式=2﹣1,所以B选项的计算错误;C、原式=21÷=2,所以C选项的计算错误;D、原式=3÷2=32,所以D选项的计算正确.故选:D.【点睛】本题考查二次根式的运算,掌握二次根式的性质和运算法则是解题关键.5.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】试题分析:利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解:点(﹣2,4)关于x轴的对称点为;(﹣2,﹣4),故(﹣2,﹣4)在第三象限.故选C.考点:关于x轴、y轴对称的点的坐标.6.已知是正比例函数,则m的值是()A.8 B.4 C.±3 D.3【答案】D【解析】直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)x m2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.7.在同一平面直角坐标系中,直线()2y k x k =-+和直线y kx =的位置可能是( )A .B .C .D .【答案】C【分析】根据一次函数的性质,对k 的取值分三种情况进行讨论,排除错误选项,即可得到结果.【详解】解:由题意知,分三种情况:当k >2时,y=(k-2)x+k 的图象经过第一、二、三象限;y=kx 的图象y 随x 的增大而增大,并且l 2比l 1倾斜程度大,故B 选项错误,C 选项正确;当0<k <2时,y=(k-2)x+k 的图象经过第一、二、四象限;y=kx 的图象y 随x 的增大而增大,A 、D 选项错误;当k <0时,y=(k-2)x+k 的图象经过第二、三、四象限,y=kx 的图象y 随x 的增大而减小,但l 1比l 2倾斜程度大.∴直线()2y k x k =-+和直线y kx =的位置可能是C.故选:C .【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b (k 为常数,k≠0),当k >0,b >0,y=kx+b 的图象在一、二、三象限;当k >0,b <0,y=kx+b 的图象在一、三、四象限;当k <0,b >0,y=kx+b 的图象在一、二、四象限;当k <0,b <0,y=kx+b 的图象在二、三、四象限.8.将0.000000517用科学记数法可表示为( )A .75.1710-⨯B .551710-⨯C .85.1710-⨯D .65.1710-⨯【答案】A【分析】由题意根据科学记数法的表示方法,进行分析表示即可.【详解】解:0.000000517=75.1710-⨯.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.若分式13x x --的值为0,则x 的值应为( ) A .1B .1-C .3D .3-【答案】A【解析】根据分式的值为零的条件可以求出x 的值.【详解】由分式的值为零的条件得x ﹣1=2,且x ﹣3≠2,解得:x =1.故选A .【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可. 10.如图,在△PAB 中,∠A=∠B ,D 、E 、F 分别是边PA 、PB 、AB 上的点,且AD=BF ,BE=AF .若∠DFE=34°,则∠P 的度数为( )A .112°B .120°C .146°D .150°【答案】A 【分析】根据等边对等角得到∠A=∠B ,证得△ADF ≌△BFE ,得∠ADF=∠BFE ,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB ,∴∠A=∠B ,在△ADF 和△BFE 中,AD BF A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BFE (SAS ),∴∠ADF=∠BFE ,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF ,∴∠A=∠DFE=34°,∴∠B =34°,∴∠P=180°-∠A-∠B=112°,故选:A .【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.二、填空题11.如果x+1x =3,则24233x x x ++的值等于_____ 【答案】122【分析】由x +1x =3得x 2+2+21x =9,即x 2+21x =1,整体代入原式=221331x x ++=221131x x ++(),计算可得结论.【详解】解:∵x +1x =3,∴(x +1x )2=9,即x 2+2+21x =9,则x 2+21x=1. ∵x ≠0,∴原式=221331x x++ =221131x x++() =1371⨯+ =122. 故答案为122. 【点睛】本题主要考查分式的值,解题的关键是熟练掌握整体代入思想的运用及利用分式的基本性质对分式变形.12.已知直线l 1:y=x+6与y 轴交于点B ,直线l 2:y=kx+6与x 轴交于点A ,且直线l 1与直线l 2相交所形成的角中,其中一个角的度数是75°,则线段AB 的长为______.【答案】12或【分析】令直线y=x+6与x 轴交于点C ,令y=x+6中x=0,则y=6,得到B (0,6);令y=kx+6中y=0,则x=-6,求得C (-6,0),求得∠BCO=45°,如图1所示,当α=∠BCO+∠BAO=75°,如图2所示,当α=∠CBO+∠ABO=75°,解直角三角形即可得到结论.【详解】令直线y=x+6与x 轴交于点C ,令y=x+6中x=0,则y=6,∴B (0,6);令y=kx+6中y=0,则x=-6,∴C (-6,0),∴∠BCO=45°,如图1所示,∵α=∠BCO+∠BAO=75°,∴∠BAO=30°,∴AB=2OB=12,如图2所示,∵α=∠CBO+∠ABO=75°,∴∠ABO=30°,∴AB=2333 故答案为:12或3【点睛】本题考查了两直线相交或平行的问题,一次函数图象上点的坐标特征以及特殊角的三角函数值,解题的关键是求出∠BAO=30°或∠ABO=30°.13.如图,在ABC ∆,80EDF ∠=,点D 是BC 上一点,EM 、FN 分别是线段BD 、CD 的垂直平分线,则A ∠=________.【答案】80︒【分析】根据EM 、FN 分别是线段BD 、CD 的垂直平分线,得到BE =DE ,DF =CF ,由等腰三角形的性质得到∠EDB =∠B ,∠FDC =∠C ,根据三角形的内角和得到∠B +∠C =180︒−∠A ,根据平角的定义即可得到结论.【详解】∵EM 、FN 分别是线段BD 、CD 的垂直平分线,∴BE =DE ,DF =CF ,∴∠EDB =∠B ,∠FDC =∠C ,∵80EDF ∠=︒,∴∠EDB +∠FDC =180︒−100EDF ∠=︒,∴∠B +∠C =100︒,∴∠A =180︒-100︒=80︒,故答案为:80︒.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.14.如图所示,AB=BC=CD=DE=EF=FG ,∠1=130°,则∠A=___度.【答案】10.【解析】试题解析:设∠A=x .∵AB=BC=CD=DE=EF=FG ,∴根据等腰三角形的性质和三角形的外角的性质,得∠CDB=∠CBD=2x ,∠DEC=∠DCE=3x ,∠DFE=∠EDF=4x ,∠FGE=∠FEG=5x ,则180°-5x=130°,解,得x=10°.则∠A=10°.15.分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 16.方程组15x x y =⎧⎨+=⎩的解是____. 【答案】14x y =⎧⎨=⎩【分析】利用代入消元法将x=1代入到x+y=5中,解出y 即可.【详解】解:15x x y =⎧⎨+=⎩, 将x=1代入到x+y=5中,解得:y=4,∴方程的解为:14x y =⎧⎨=⎩, 故答案为:14x y =⎧⎨=⎩. 【点睛】此题考查用代入消元法解二元一次方程组.17.命题“两直线平行,同位角相等”的逆命题是 .【答案】同位角相等,两直线平行【详解】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【点睛】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用三、解答题18.计算:(1)336?2b a b a - (2)()53442436x y x y -÷ 【答案】(1)229a b -;(2)23x y-. 【分析】(1)直接利用整式的乘除法法则计算即可;(2)据整式的除法运算顺序和法则计算可得.【详解】解:(1)原式=3a²b·(-3b)= -9a²b²;(2)24124236363x x x y y y-⋅=-=-. 【点睛】本题考查了整式的乘除法,解题的关键是掌握整式的乘除法运算顺序和法则.19.如图,点C 、D 都在线段AB 上,且AD BC =,AE BF =,CE DF =,CE 与DF 相交于点G .(1)求证:ACE BDF ∆∆≌;(2)若12CE =,5DG =,求EG 的长.【答案】(1)见解析;(2)7【分析】(1)根据“SSS ”证明△ACE ≌△BDF 即可;(2)根据全等三角形对应角相等得到∠ACE=∠BDF ,根据等角对等边得到DG=CG ,然后根据线段的和差即可得出结论.【详解】∵AD BC =,∴AD DC BC DC +=+,∴AC BD =.在ACE ∆与BDF ∆中,∵AC BD AE BF CE DF =⎧⎪=⎨⎪=⎩,∴ACE BDF ∆∆≌;(2)由(1)得:ACE BDF ∆∆≌,∴ACE BDF ∠=∠,∴5CG DG ==,∴EG CE CG =-125=-7=.【点睛】本题考查了全等三角形的判定与性质以及等腰三角形的判定.证明△ACE ≌△BDF 是解答本题的关键. 20.如图,已知在△ABC 中,AB =AC ,D 是BC 边上任意一点,E 在AC 边上,且AD =AE .(1)若∠BAD =40°,求∠EDC 的度数;(2)若∠EDC =15°,求∠BAD 的度数;(3)根据上述两小题的答案,试探索∠EDC 与∠BAD 的关系.【答案】(1)20°;(2)30°;(3)∠EDC=12∠BAD,见解析【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【详解】解:(1)∵AB=AC,∴∠B=∠C=12(180°﹣∠BAC)=90°﹣12∠BAC,∴∠ADC=∠B+∠BAD=90°﹣12∠BAC+40°=130°﹣12∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=12(180°﹣∠DAC)=110°﹣12∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣12∠BAC)﹣(110°﹣12∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)由(2)得∠EDC与∠BAD的数量关系是∠EDC=12∠BAD.【点睛】此题主要考查等腰三角形的性质证明,解题的关键是熟知等腰三角形的性质及三角形外角定理及内角和定理.21.某商场销售两种品牌的足球,购买2个A品牌和3个B品牌的足球共需280元;购买3个A品牌和1个B品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:A 品牌足球按原价的九折销售,B 品牌足球10个以上超出部分按原价的七折销售.设购买x 个A 品牌的足球需要1y 元,购买x 个B 品牌的足球需要2y 元,分别求出1y ,2y 关于x 的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.【答案】(1)A 品牌足球的单价为50元,B 品牌足球的单价为60元;(2)145y x =;260(010)42180(10)x x y x x ≤≤⎧=⎨+>⎩;(3)购买A 品牌的足球更划算,理由见解析【分析】(1)设A 品牌足球的单价为a 元,B 品牌足球的单价为b 元,根据题意列方程组,解方程组即可; (2)分别根据A 、B 品牌的促销方式表示出购买所需费用即可,对B 品牌分类讨论;(3)根据上述所求关系式,分别求出当购买足球的数量为15个时,购买两种品牌足球的价格,花费越少越划算.【详解】(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,232803210a b a b +=⎧⎨+=⎩, 解得:5060a b =⎧⎨=⎩.答:A 品牌足球的单价为50元,B 品牌足球的单价为60元.(2)A 品牌:1500.945y x x =⨯=;B 品牌:①当0≤x≤10时,260y x =;②当x>10时,26010(10)600.742180y x x =⨯+-⨯⨯=+.综上所述:145y x =;260(010)42180(10)x x y x x ≤≤⎧=⎨+>⎩. (3)购买A 品牌:45×15=675(元);购买B 品牌:15>10,42×15+180=810,675<810,所以购买A 品牌的足球更划算.【点睛】本题主要考查二元一次方程组和一次函数的实际应用,正确列出二元一次方程组和一次函数是解题关键. 22.已知:如图,在△ABC 中,AD ⊥BC ,垂足是D ,E 是线段AD 上的点,且AD =BD ,DE =DC . ⑴ 求证:∠BED =∠C ;⑵ 若AC =13,DC =5,求AE 的长.【答案】1【分析】(1)可以通过证明△ADC ≌△BDE 可得∠BED =∠C ;(2)先根据勾股定理求出AD ,由上一问△ADC ≌△BDE 可得ED=EC ,AD=BD ,即可求出AE .【详解】证明:(1)∵ AD ⊥BC, ∴ ∠BDE =∠ADC =90°,∵在△ADC 和△BDE 中,BD AD BDE ADC DE DC =⎧⎪∠∠⎨⎪=⎩=,∴△ADC ≌△BDE ,∴ ∠BED =∠C .(2)∵ ∠ADC =90°,AC =13,DC =5, ∴AD =12∵ △BDE ≌△ADC , DE =DC =5∴ AE =AD -DE =12-5=1.【点睛】题目中出现较多的角相等,边相等可以考虑用三角形全等的方法解决问题.23.解方程:1x x -+21x -=4 【答案】23x = 【分析】先去分母,方程的两边同乘(x ﹣1),再展开计算,化简求解出未知数,最后验算结果即可.【详解】方程的两边同乘(x ﹣1),得:x-2=4(x ﹣1),即:32x -=-解得:23x =, 检验:当23x =时,x ﹣1≠0, ∴原分式方程的解为23x =. 【点睛】本题主要考车了解方程的相关计算,注意不能把“解”子漏掉,最后得到的结果代入检验原式的分母是否为0,如果为零,则把该结果舍去. 24.实数a b 、在数轴上的位置如图所示,且a b >,化简2a a b -+【答案】b【分析】直接利用二次根式的性质以及结合数轴得出a 、b 的取值范围进而化简即可.【详解】解:由数轴及a b >可得:a <0<b ,a+b<0,∴ 2a a b +=||-|a+b|a=-a+(a+b )=b故答案为b .【点睛】本题考查二次根式的性质与化简,正确得出a 的取值范围是解题的关键.25.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (﹣8,4)、B (﹣7,7)、C (﹣2,2).(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)判断△ABC的形状,并说明理由.【答案】(1)见解析;(2)△ABC是直角三角形,理由见解析【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用勾股定理逆定理得出答案.【详解】解:(1)如图:△A1B1C1即为所求;(2)△ABC是直角三角形,理由:∵AB2=12+32=10,BC2=52+52=50,AC2=22+62=40,∴AB2+BC2=AC2,∴△ABC是直角三角形.【点睛】本题主要考查了作图—轴对称变换,关键是利用轴对称的性质确定组成图形的关键点关于x轴的对称点的位置.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知小明从A 地到B 地,速度为4千米/小时,,A B 两地相距3千米,若用x (小时)表示行走的时间,y (千米)表示余下的路程,则y 与x 之间的函数表达式是( )A .4y x =B .43y x =-C .4y x =-D .34y x =-【答案】D【分析】根据路程=速度×时间,结合“剩下的路程=全路程-已行走”容易知道y 与x 的函数关系式.【详解】∵剩下的路程=全路程-已行走,∴y=3-4x .故选:D .【点睛】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.2.如图,等腰三角形ABC 的底角为72°,腰AB 的垂直平分线交另一腰AC 于点E ,垂足为D ,连接BE,则下列结论错误的是( )A .∠EBC 为36°B .BC = AE C .图中有2个等腰三角形D .DE 平分∠AEB【答案】C 【解析】根据等腰三角形的性质和线段垂直平分线的性质一一判断即可.【详解】A .∵等腰△ABC 的底角为72°,∴∠A =180°﹣72°×2=36°.∵AB 的垂直平分线DE 交AC 于点E ,∴AE =BE ,∴∠ABE =∠A =36°,∴∠EBC =∠ABC ﹣∠ABE =36°.故A 正确;B .∵∠ABE =∠A =36°,∴∠BEC=72°.∵∠C=72°,∴∠BEC=∠C ,∴BE=BC .∵AE=BE ,∴BC=AE ,故B 正确;C .∵BC=BE=AE ,∴△BEC 、△ABE 是等腰三角形.∵△ABC 是等腰三角形,故一共有3个等腰三角形,故C 错误;D .∵AE =BE ,DE ⊥AB ,∴DE 平分∠AEB .故D 正确.故选C .【点睛】本题考查了线段垂直平分线的性质,以及等腰三角形的判定和性质,关键是掌握等边对等角. 3.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =;②若这5次成绩的中位数为8,则8x =;③若这5次成绩的众数为8,则8x =;④若这5次成绩的方差为8,则8x =A .1个B .2个C .3个D .4个 【答案】A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则8589788x =⨯----=,故正确;②若这5次成绩的中位数为8,则x 可以任意数,故错误;③若这5次成绩的众数为8,则x 只要不等于7或9即可,故错误;④若8x =时,方差为2221[3(88)(98)(78)]0.45⨯-+-+-=,故错误.所以正确的只有1个故选:A .【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.4.如图,已知AC 平分∠DAB ,CE ⊥AB 于E ,AB=AD+2BE ,则下列结论:①AB+AD=2AE ;②∠DAB+∠DCB=180°;③CD=CB ;④S △ACE ﹣2S △BCE =S △ADC ;其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【分析】①在AE 取点F ,使EF=BE .利用已知条件AB=AD+2BE ,可得AD=AF ,进而证出2AE=AB+AD ; ②在AB 上取点F ,使BE=EF ,连接CF .先由SAS 证明△ACD ≌△ACF ,得出∠ADC=∠AFC ;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B ;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;③根据全等三角形的对应边相等得出CD=CF ,根据线段垂直平分线的性质得出CF=CB ,从而CD=CB ; ④由于△CEF ≌△CEB ,△ACD ≌△ACF ,根据全等三角形的面积相等易证S △ACE -S △BCE =S △ADC .【详解】解:①在AE 取点F ,使EF=BE ,∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=12(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360-(∠ADC+∠B)=180°,故②正确;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正确;④易证△CEF≌△CEB,所以S△ACE-S△BCE=S△ACE-S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE-S△BCE=S△ADC,故④错误;即正确的有3个,故选C.【点睛】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.5.如图,在Rt ABC ∆中,90B =∠,分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC ,BC 分别相交于点D ,点E ,连结AE ,当5AB =,9BC =时,ABE ∆的周长是( )A .19B .14C .4D .13【答案】B 【分析】由作图可知,DE 是AC 的垂直平分线,可得AE=CE ,则ABE ∆的周长=AB+BC.【详解】解:由作图可知,DE 是AC 的垂直平分线,则 AE=CE ,∴ABE ∆的周长=AB+BE+AE=AB+BE+CE=AB+BC=5+9=14故选:B【点睛】本题考查了作图—垂直平分线的作法和垂直平分线的性质的应用.是中考常考题型.6.如图,四个一次函数y ax =,y bx =,1y cx =+,3y dx =-的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .b a d c >>>B .a b c d >>>C .a b d c >>>D .b a c d >>>【答案】B 【分析】根据一次函数和正比例函数的图象与性质可得.【详解】解:∵y ax =,y bx =经过第一、三象限,且y ax =更靠近y 轴,∴0a b >>,由∵ 1y cx =+,3y dx =-从左往右呈下降趋势,∴0,0c d <<,又∵3y dx =-更靠近y 轴,∴d c <,∴a b c d >>>故答案为:B .【点睛】本题考查了一次函数及正比例函数的图象与性质,解题的关键是熟记一次函数及正比例函数的图象与性质.7.方差:一组数据:2,x ,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是( ) A .10B .53C .2D .83 【答案】B【分析】先根据中位数是3,得到数据从小到大排列时x 与3相邻,再根据中位数的定义列方程求解即得x 的值,最后应用方差计算公式即得.【详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,x ,3,4,5或1,2, 3,x ,4,5∴()323x +÷=解得:3x =∴这组数据是1,2,3,3,4,5 ∴这组数据的平均数为1+2+334536x +++== ∵2222121()()...()n S x x x x x x n ⎡⎤=-+-++-⎣⎦ ∴222222215(13)(23)(33)(33)(43)(53)63S ⎡⎤=⨯-+-+-+-+-+-=⎣⎦ 故选:B .【点睛】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定x 的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.8.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )甲组12户家庭用水量统计表A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断 【答案】B【解析】根据中位数定义分别求解可得. 【详解】由统计表知甲组的中位数为552+ =5(吨), 乙组的4吨和6吨的有12×90360=3(户),7吨的有12×60360=2户, 则5吨的有12-(3+3+2)=4户,∴乙组的中位数为552+=5(吨), 则甲组和乙组的中位数相等,故选:B .【点睛】考查中位数和扇形统计图,根据扇形图中各项目的圆心角求得其数量是解题的关键.9.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,F 是CB 延长线上一点,AF ⊥CF ,垂足为F .下列结论:①∠ACF =45°;②四边形ABCD 的面积等于12AC 2;③CE =2AF ;④S △BCD =S △ABF +S △ADE ;其中正确的是( )A .①②B .②③C .①②③D .①②③④【答案】C 【分析】证明ABC ≌()ADE SAS ,得出45ACF E ∠=∠=︒,①正确;由ABC ACD ABCD S S S =+四边形,得出212ADE ACD ACE ABCD S S S S AC =+==四边形,②正确; 证出AF AG =,2CE AF =,③正确;由ABF ADE ABF ABC ACF S S S S S +=+=,不能确定ACF BCD S S =,④不正确;即可得出答案.【详解】解:∵∠CAE =90°,AE =AC ,∴∠E =∠ACE =45°,∵∠BAD =∠CAE =90°,∴∠BAC+∠CAD =∠EAD+∠CAD∴∠BAC =∠EAD ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE(SAS),∴∠ACF =∠E =45°,①正确;∵S 四边形ABCD =S △ABC +S △ACD ,∴S 四边形ABCD =S △ADE +S △ACD =S △ACE =12AC 2,②正确; ∵△ABC ≌△ADE ,∠ACB =∠AEC =45°,∵∠ACE =∠AEC =45°,∴∠ACB =∠ACE ,∴AC 平分∠ECF ,过点A 作AG ⊥CG ,垂足为点G ,如图所示:∵AC 平分∠ECF ,AF ⊥CB ,∴AF =AG ,又∵AC =AE ,∴∠CAG =∠EAG =45°,∴∠CAG =∠EAG =∠ACE =∠AEC =45°,∴CG =AG =GE ,∴CE =2AG ,∴CE =2AF ,③正确;∵S △ABF +S △ADE =S △ABF +S △ABC =S △ACF ,不能确定S △ACF =S △BCD ,④不正确;故选:C .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.10.下列选项中的汽车品牌标志图,不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A 、B 、D 是轴对称图形,故不符合题意;C 不是轴对称图形,符合题意.故选C .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.二、填空题11.等腰三角形ABC 的顶角为120°,腰长为20,则底边上的高AD 的长为_____.【答案】1【分析】画出图形,结合条件可求得该三角形的底角为30°,再结合直角三角形的性质可求得底边上的高.【详解】解:如图所示:∵∠BAC =120°,AB =AC , ∴()1B 180120302︒︒︒∠=-=, ∴Rt △ABD 中,11AD AB 201022==⨯=, 即底边上的高为1,故答案为:1.本题考查了含30度角的直角三角形的性质:30度角所对的直角边是斜边的一半.12.分解因式:223a 3b -=________.【答案】3(a+b )(a-b )【分析】先提公因式,再利用平方差公式进行二次分解即可.【详解】解:3a 2-3b 2=3(a 2-b 2)=3(a+b )(a-b ).故答案为:3(a+b )(a-b ).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.在Rt ABC ∆中,090C ∠=,点M 是AB 中点,025A ∠=,BCM ∠=______.【答案】065【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【详解】解:如图,∵点M 是AB 中点,∴AM=CM ,∴∠ACM=∠A=25°,∵∠ACB=90°,∴∠BCM=90°-25°=65°,故答案为:65°.【点睛】本题考查了等腰三角形和直角三角形的性质,熟练掌握等边对等角的性质定理是解题的关键. 14.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.【答案】m <1【解析】解:∵y 随x 增大而减小,∴k <0,∴2m-6<0,∴m <1.15.长、宽分别为a 、b 的长方形,它的周长为16,面积为10,则22a b ab +的值为____.【解析】∵长、宽分别为a 、b 的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.16.计算:327- =_____.【答案】3-【分析】根据立方根的意义求解即可.【详解】3327273-=-=- .17.关于x ,y 的二元一次方程组5mx y nx y b -=⎧⎨-=⎩的解是12x y =⎧⎨=⎩,如图,在平面直角坐标系xOy 中,直线1:5l y mx =-与直线2:l y nx b =- 相交于点P ,则点P 的坐标为__________.【答案】(1,2)【分析】方程组的解即是交点P 的坐标.【详解】∵1:5l y mx =-,2:l y nx b =-,∴方程组5mx y nx y b -=⎧⎨-=⎩的解12x y =⎧⎨=⎩即是函数图象的交点P 的横纵坐标, ∴点P 的坐标是(1,2),故答案为:(1,2).【点睛】此题考查两个一次函数的交点坐标与二元一次方程组的解的关系,正确理解两者间的关系并运用解题是关系.三、解答题18.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=5,BD=1.(1)求证:ΔBCD是直角三角形;(1)求△ABC的面积。
2018-2019学年八年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣12.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.B.x5+x5=x10C.x8÷x2=x4D.(﹣a3)2=a64.在代数式,,,a+中,分式的个数是()A.2 B.3 C.4 D.55.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b26.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm7.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍8.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)9.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.10.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS11.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A.B.C.D.随所取盐水重量而变化12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°二、填空题(每小题4分,共24分)13.若分式的值为零,则x的值为.14.如果实数a,b满足a+b=6,ab=8,那么a2+b2=.15.一个多边形的内角和是720°,这个多边形的边数是.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为.17.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的即挂铅锤的线绳与房梁直),用到的数学原理是.18.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为.三、解答题(共68分)19.解分式方程:.20.因式分解:(1)3x3﹣12x(2)ax2﹣4ay+4ay221.先化简:,再从﹣1,0,2三个数中任选一个你喜欢的数代入求值.22.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.23.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.(1)求证:△ADB≌△AFC;(2)求BD的长度.24.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案与试题解析一.选择题(共12小题)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是,故选:A.3.下列计算正确的是()A.B.x5+x5=x10C.x8÷x2=x4D.(﹣a3)2=a6【分析】根据负整数指数幂、幂的乘方与积的乘方、零指数幂、同底数幂的除法、合并同类项等知识点进行解答.【解答】解:A、(﹣)0×3﹣1=1×=;故不对;B、x5+x5=2x5;故不对;C、x8÷x2=x6;故不对;D、(﹣a3)2=a6,正确;故选:D.4.在代数式,,,a+中,分式的个数是()A.2 B.3 C.4 D.5【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:在代数式,,,a+中,分式有和,共有2个.故选:A.5.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.6.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm【分析】题目给出等腰三角形有两条边长为8cm和4cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选:D.7.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍【分析】利用等腰三角形的性质和线段垂直平分线的性质分别对四个选项进行判断后即可确定正确的选项.【解答】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故A错误;B、三角形两边的垂直平分线的交点到三个顶点的距离相等,故B正确;C、等腰三角形的两个底角相等,故C正确;D、等腰三角形顶角的外角是底角的二倍,故D正确,故选:A.8.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.9.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时﹣实际用时=4.【解答】解:设原计划每天挖x米,则原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:C.10.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.11.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A.B.C.D.随所取盐水重量而变化【分析】设从甲乙两瓶中各取重量相等的盐水x,列式计算即可.【解答】解:设从甲乙两瓶中各取重量相等的盐水x,则混合制成新盐水的含盐量为:=,故选:A.12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.二.填空题(共6小题)13.若分式的值为零,则x的值为 2 .【分析】分式的值为零:分子2﹣|x|=0,且分母x+2≠0.【解答】解:根据题意,得2﹣|x|=0,且x+2≠0,解得,x=2.故答案是:2.14.如果实数a,b满足a+b=6,ab=8,那么a2+b2=20 .【分析】原式利用完全平方公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=6,ab=8,∴a2+b2=(a+b)2﹣2ab=36﹣16=20,故答案为:2015.一个多边形的内角和是720°,这个多边形的边数是 6 .【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为 3 .【分析】如图,作辅助线;首先运用角平分线的性质证明CD=DE;其次求出DE的长度,即可解决问题.【解答】解:如图,过点D作DE⊥AB于点E;∵∠C=90°,AD平分∠BAC,∴CD=DE;∵,且AB=10,∴DE=3,CD=DE=3.故答案为3.17.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的即挂铅锤的线绳与房梁直),用到的数学原理是等腰三角形的底边上的中线、底边上的高重合.【分析】根据△ABC是个等腰三角形可得AC=BC,再根据点O是AB的中点,即可得出OC⊥AB,然后即可得出结论.【解答】解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.18.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为 4 .【分析】根据直角三角形的性质得到BD=2BE=2,求出AB,根据等边三角形的判定定理和性质定理解答即可.【解答】解:∵DE⊥BC,∠B=∠C=60°,∴∠BDE=30°,∴BD=2BE=2,∵点D为AB边的中点,∴AB=2BD=4,∵∠B=∠C=60°,∴△ABC为等边三角形,∴AC=AB=4,故答案为:4.三.解答题(共7小题)19.解分式方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘(x﹣2),得1+2(x﹣2)=﹣1﹣x解得:x=,经检验x=是分式方程的解.20.因式分解:(1)3x3﹣12x(2)ax2﹣4ay+4ay2【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式即可.【解答】解:(1)原式=3x(x2﹣4)=3x(x+2)(x﹣2);(2)原式=a(x2﹣4y+4y2).21.先化简:,再从﹣1,0,2三个数中任选一个你喜欢的数代入求值.【分析】先算括号里面,再把除法转化为乘法,化简后代入求值.【解答】解:原式=()×=×=×=x﹣2.由于分母不能是0,除式不能为0,所以x≠﹣1,x≠2.当x=0时原式=0﹣2=﹣2.22.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是 6 ;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a= 3 ,b= 2 .【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)直接根据三角形的面积公式列式计算可得;(3)根据关于x轴的对称点的横坐标相等、纵坐标互为相反数解答可得.【解答】解:(1)如图所示,△A1B1C1即为所求;A1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.23.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.(1)求证:△ADB≌△AFC;(2)求BD的长度.【分析】(1)欲证明△ADB≌△AFC,只要证明∠ACF=∠2即可.(2)由(1)可知BD=CF,只要证明BC=BF,可得EC=EF=1,即可解决问题.【解答】证明:(1)如图,∵∠BAC=90°,∴∠2+∠F=90°,∠ACF+∠F=90°,∴∠ACF=∠2,在△ABF和△ACD中,,∴△ACF≌△ABD.(2)∵△ACF≌△ABD,∴BD=CF,∵BE⊥CF,∴∠BEC=∠BEF=90°,∵∠1+∠BCE=90°,∠2+∠F=90°,∴∠BCF=∠F,∴BC=BF,CE=EF=1,∴BD=CF=2.24.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?【分析】(1)先设商场第一次购进x套玩具,就可以表示出第二次购进玩具的套数,根据题目条件就可以列出方程,求出其解就可以.(2)设每套玩具的售价为y元,根据利润=售价﹣进价,建立不等式,求出其解就可以了.【解答】解:(1)设动漫公司第一批购进x套玩具,则第二批购进2x套玩具,由题意得:﹣=10,解这个方程,得x=200.经检验,x=200是所列方程的根.2x=2×200=400.答:动漫公司第一批购进200套玩具,第二批购进400套玩具;(2)设每套玩具的售价为y元,由题意得:600y﹣32000﹣68000≥20000,解这个不等式得y≥200,答:每套玩具的售价至少要200元.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【分析】问题背景中,根据小亮的设计可以得到所要的结论;探索延伸中,先判断结论是否成立,然后根据图形和题目中条件,作出合适的辅助线,进行说明即可;在实际应用中,根据题目中的条件进行合理的推导,只要能说明符合探索延伸的条件,即可解答本题.【解答】解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠DAF+∠BAE=∠BAD﹣∠EAF=∠BAD,∴∠GAF=∠EAF,又∵AG=AE,AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF,∵GF=DF+DG=DF+BE,∴EF=BE+FD;实际应用:如图3,连接EF,延长AE、BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°,∴图3符合探索延伸的条件,∴EF=AE+FB=1.5×(60+80)=210(海里),即此时两舰艇之间的距离210海里.。
青岛市2019年八年级上学期数学期末考试试题(模拟卷一)一、选择题1.人体中红细胞的直径约为0.0000077m .0.0000077用科学记数法表示是( ) A .0.77×10﹣5 B .0.77×10﹣6 C .7.7×10﹣5 D .7.7×10﹣62.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。
设甲每天加工服装x 件。
由题意可得方程( ) A .24201x x =+ B .20241x x =- C .20241x x =+ D .24201x x =- 3.分式方程61x -=5(1)x x x +-有增根,则增根为( ) A .0B .1C .1或0D .﹣54.下列各式中正确的有( )个:①-=-a b b a ; ②()()22-=-a b b a ;③()()22-=--a b b a ;④()()33-=--a b b a ;⑤()()()()+-=---+a b a b a b a b ;⑥()()22+=--a b a bA.1B.2C.3D.45.如图 ,能根据图形中的面积说明的乘法公式是( )A .(a + b)(a - b) = a 2 - b 2B .(a + b)2 = a 2 + 2ab + b 2C .(a - b)2= a 2- 2ab + b 2D . ( x + p )(x + q) = x 2+ ( p + q)x + pq6.计算2a 3b·(-3b 2c)÷(4ab 3),所得的结果是( )A.a 2bcB.a 2cC.acD.a 2c7.如图,在△ABC 中,∠B =∠C =60°,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E .如果AD =1,BC =6,那么CE 等于( )A .5B .4C .3D .28.如图,已知△ABC 的面积为16,BP 是∠ABC 的平分线,且AP ⊥BP 于点P ,则△BPC 的面积是( )A.10B.8C.6D.49.如图所示,在等边三角形ABC 中,AD ⊥BC ,E 为AD 上一点,∠CED =50°,则∠ABE 等于( )A .10°B .15°C .20°D .25°10.如图,在锐角三角形ABC 中,AB=4,△ABC 的面积为8,BD 平分∠ABC 。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点在第( )象限A .一B .二C .三D .四【答案】A【分析】利用关于y 轴对称的点的坐标特点求对称点,然后根据点的坐标在平面直角坐标系内的位置求解.【详解】解:点P (-3,5)关于y 轴的对称点的坐标为(3,5).在第一象限故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC【答案】D 【解析】根据平行四边形判定定理进行判断:A 、由“AB ∥DC ,AD ∥BC”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB =DC ,AD=BC”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO=CO ,BO=DO”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB ∥DC ,AD=BC”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .考点:平行四边形的判定.3.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是() A .()2,0-B .()0,2-C .()1,0D .()0,1【答案】B【分析】根据点在y 轴上,可知P 的横坐标为1,即可得m 的值,再确定点P 的坐标即可.【详解】解:∵()Pm 3,2m 4++在y 轴上,∴30m +=解得3m =-, ()242342m +=⨯-+=-∴点P 的坐标是(1,-2).故选B .【点睛】解决本题的关键是记住y 轴上点的特点:横坐标为1.4.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为( )A .0.7×10-8B .7×10-8C .7×10-9D .7×10-10【答案】C【分析】绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n ,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n 由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C .【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.5.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°【答案】A 【解析】试题分析:先根据等腰三角形的性质求得∠C 的度数,再根据三角形的内角和定理求解即可. ∵AB =AC ,∠A =36°∴∠C =72°∵BD 是AC 边上的高∴∠DBC =180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是( )A .平均数是2B .众数和中位数分别是-1和2.5C .方差是16D 【答案】C【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断.【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求;众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求; ()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;=3S ,故D 选项不符合要求. 故选:C【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键. 7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )A .平均数B .中位数C .众数D .方差【答案】B【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B .考点:中位数.8.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分【答案】B 【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8, 故选B .【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法. 9.意大利文艺复兴时期的著名画家达•芬奇利用两张一样的纸片拼出不一样的“空洞”,从而巧妙的证明了勾股定理.小明用两张全等的的纸片①和②拼成如图1所示的图形,中间的六边形ABCDEF 由两个正方形和两个全等的直角三角形组成.已知六边形ABCDEF 的面积为28,:4:1ABGF CDEG S S =正方形正方形.小明将纸片②翻转后拼成如图2所示的图形,其中90B A F '''∠=︒,则四边形B C E F ''''的面积为( )A .16B .20C .22D .24【答案】B 【分析】根据图形及勾股定理的验证得到BC 2=BG 2+CG 2,故四边形B C E F ''''的面积等于四边形ABGF 的面积加上四边形CDEG 的面积,再根据六边形ABCDEF 的面积为28,:4:1ABGF CDEG S S =正方形正方形即可求解.【详解】∵:4:1ABGF CDEG S S =正方形正方形∴可设BG=2a ,CG=a ,∵六边形ABCDEF 的面积为28,∴4a 2+a 2+ 1222a a ⨯⨯⨯=28解得a=2(-2)舍去,根据图形及勾股定理的验证得到BC2=BG2+CG2,∴四边形B C E F''''的面积=四边形ABGF的面积加上四边形CDEG的面积=4a2+a2=5×4=20故选B.【点睛】此题主要考查勾股定理的几何验证,解题的关键是熟知勾股定理的运用.10.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.(a﹣b)2=a2﹣b2D.(﹣3a2b)2=9a4b2【答案】D【分析】根据同底数相乘(或相除),底数不变指数相加(或相减);幂的乘方:底数不变,指数相乘;完全平方公式,对各选项分析判断后利用排除法即可求解.【详解】解:A、原式=a8,故A错误.B、原式=a3,故B错误.C、原式=a2﹣2ab+b2,故C错误.D、原式=9a4b2,故D正确故选:D.【点睛】本题考查同底数幂的乘法,同底数幂的除法,完全平方公式,幂的乘方,解题的关键是熟练掌握运算法则和公式.二、填空题11.如果正方形ABCD的边长为4,E为BC边上一点,3BE=,M为线段AE上一点,射线BM交正方形的一边于点F,且BF AE=,那么BM的长为__________.【答案】52或125【分析】因为BM可以交AD,也可以交CD.分两种情况讨论:①BM交AD于F,则△ABE≌△BAF.推出AF=BE=3,所以FD=EC,连接FE,则四边形ABEF为矩形,所以M为该矩形的对角线交点,所以BM=AC的一半,利用勾股定理得到AE等于5,即可求解;②BM交CD于F,则BF垂直AE(通过角的相加而得)且△BME∽△ABE,则AB AEBM BE=,所以求得BM等于125.【详解】分两种情况讨论:①BM交AD于F,∵∠ABE=∠BAF=90°,AB=BA,AE=BF,∴△ABE≌△BAF(HL)∵BE=3,∴AF=3,∴FD=EC,连接FE,则四边形ABEF为矩形,∴BM=12 AE,∵AB=4,BE=3,∴AE=2234+=5,∴BM=52;②BM交CD于F,∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠BEM+∠EBM=90°,∴∠BME=90°,即BF垂直AE,∴△BME∽△ABE,∴AB AE BM BE=,∵AB=4,AE=5,BE=3,∴BM=125.综上,故答案为:52或125本题考查了正方形的性质和勾股定理,以及三角形的全等和相似,解题的关键是熟知相似三角形的判定与性质.12.如图,ABC 中,点D 在BC 上,点E F 、在AC 上,点G 在DE 的延长线上,且,DEC C DFG G ∠=∠∠=∠,若035EFG ∠=,则CDF ∠的度数是________.【答案】70°【分析】根据三角形内角和定理求出x+y=145°,在△FDC 中,根据三角形内角和定理求出即可.【详解】解:∵∠DCE=∠DEC ,∠DFG=∠DGF ,∴设∠DCE=∠DEC=x ,∠DFG=∠DGF=y ,则∠FEG=∠DEC=x ,∵在△GFE 中,∠EFG=35°,∴∠FEG+∠DGF=x+y=180°-35°=145°,即x+y=145°,在△FDC 中,∠CDF=180°-∠DCE-∠DFC=180°-x-(y-35°)=215°-(x+y )=70°,故答案为:70°.【点睛】本题考查了三角形内角和定理,解题的关键是学会利用参数解决问题,属于中考常考题型.13.化简2269x x +-得 . 【答案】23x -. 【解析】试题分析:原式=.考点:分式的化简.14.计算(10xy 2﹣15x 2y )÷5xy 的结果是_____.【答案】2y ﹣3x【分析】多项式除以单项式,多项式的每一项除以该单项式,然后运用同底数幂相除,底数不变,指数相减可得.【详解】解:(10xy2﹣15x2y)÷5xy =2y﹣3x.故答案为:2y﹣3x.【点睛】掌握整式的除法为本题的关键.15.已知等腰三角形的两边长,x y满足方程组28210x yx y+=⎧⎨+=⎩,则此等腰三角形的周长为_____.【答案】10【分析】首先解二元一次方程组求出x和y的值,然后分类讨论即可求出等腰三角形的周长.【详解】解:x,y满足方程组28 210 x yx y+=⎧⎨+=⎩解得:42 xy=⎧⎨=⎩,当2是腰是无法构成三角形,当4是腰是,三角形三边是4,4,2,此时三角形的周长是4+4+2=10,故答案是:10【点睛】本题主要考查了等腰三角形的性质、解二元一次方程组以及三角形三边关系,解题的关键是求出x和y的值,此题难度不大.16.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=14BC1.其中正确结论是_____(填序号).【答案】①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF可得S△ADF=S△BDE∴S四边形AEDF=S△ACD=12×AD×CD=12×12BC×12BC=18BC1,故④不正确.故答案为①②.点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.17.如图,直线l上有三个正方形,,a b c,若,a c的面积分别为5和11,则b的面积为__________.【答案】16【解析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.三、解答题18.在平面直角坐标系中,B(2,23),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.【答案】(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)3【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC (SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=3【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,AB AOBAD OAC AD AC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,),∴OM=2,BM=,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,),∴OM=2,BM=,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=12AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON=22AO AN-=2242-=23,∴OM+MN=23;即OM+NM的最小值为23.【点睛】本题是三角形综合题目,考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的性质以及最小值问题;本题综合性强,熟练掌握等边三角形的性质,证明三角形全等是解题的关键. 19.如图,在1010⨯网格中,每个小正方形的边长都为1.(1)建立如图所示的平面直角坐标系,若点()3,4A ,则点C 的坐标_______________;(2)将AOC ∆向左平移5个单位,向上平移2个单位,则点C 的坐标变为_____________;(3)若将AOC ∆的三个顶点的横纵坐标都乘以12-,请画出111AO C ∆; (4)图中格点AOC ∆的面积是_________________;(5)在x 轴上找一点P ,使得PA PC +最小,请画出点P 的位置,并直接写出PA PC +的最小值是______________.【答案】(1)()4,2;(2)()1,4-;(3)见解析;(4)5;(537【分析】(1)根据第一象限点的坐标特征写出C 点坐标;(2)利用点平移的坐标变换规律求解;(3)将△AOC 的三个顶点的横纵坐标都乘以- 12得到A 1、C 1的坐标,然后描点即可; (4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC 的面积;(5)作C 点关于x 轴的对称点C′,然后计算AC′即可.【详解】解:(1)如图,点C 的坐标()4,2;(2)将AOC ∆向左平移5个单位,向上平移2个单位,则点C 的坐标变为()1,4-;(3)如图,11AOC ∆为所作;(4)图中格点AOC ∆的面积111442142435222=⨯-⨯⨯-⨯⨯-⨯⨯=; (5)如图,作C 关于x 轴的对待点C ’,连接C ’A 交x 轴于点P ,点P 即为所求作的点,PA PC +的最小值221637PA PC AC ''=+==+=.故答案为(1)()4,2;(2)()1,4-;(4)5;(5)37.【点睛】本题考查了作图-平移变换及轴对称变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了最短路径问题.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)△A 1B 1C 1的面积是______.【答案】 (1)见解析;(2)4.【分析】(1)可先由关于y 轴对称的点的坐标的特征求出点A 1,B 1,C 1的坐标,再描点,连线即可;(2)如图所示,作矩形EA 1FM ,求矩形的面积与△A 1EC 1,△C 1MB 1,△B 1FA 1三个三角形的面积差即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,作矩形EA1FM,则S△A1B1C1=S矩形EA1FM﹣S△A1EC1﹣S△C1MB1﹣S△B1FA1=3×4﹣12×3×2﹣12×1×2﹣12×2×4=4,故答案为:4.【点睛】此题考查的是作关于y轴对称的图形和求格点中图形的面积,掌握关于y轴对称的图形的画法和用矩形框住三角形,然后用矩形的面积减去三个直角三角形的面积是解决此题的关键.21.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).【答案】n2﹣2mn﹣1.【分析】根据平方差公式,多项式乘多项式,单项式乘多项式的运算法则进行展开运算即可.【详解】解:原式=(m+n)2﹣1﹣m2﹣1mn,=m2+2mn+n2﹣1﹣m2﹣1mn,=n2﹣2mn﹣1.【点睛】本题考查了整式的混合运算,解题关键是掌握平方差公式,多项式乘多项式,单项式乘多项式的运算法则.22.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.【答案】70°【解析】分析:在CH上截取DH=BH,通过作辅助线,得到△ABH≌△ADH,进而得到CD=AD,则可求解∠B的大小.详解:在CH上截取DH=BH,连接AD,如图∵BH=DH ,AH ⊥BC ,∴△ABH ≌△ADH ,∴AD=AB∵AB+BH=HC ,HD+CD=CH∴AD=CD∴∠C=∠DAC ,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.23.如图,,CD BE 是ABC ∆的两条高线,且它们相交于,F H 是BC 边的中点,连结DH ,DH 与BE 相交于点G ,已知CD BD =.(1)求证BF=AC .(2)若BE 平分ABC ∠.①求证:DF=DG.②若AC=8,求BG 的长.【答案】 (1)证明见解析;(2)①证明见解析;②BG=42【分析】(1)易证BCD ∆是等腰直角三角形,然后得到DBF DCA ∠=∠,然后利用ASA 证明Rt △DFB ≌Rt △DAC ,即可得到结论;(2)①由BCD ∆是等腰直角三角形,得到∠DCB=∠HDB=∠CDH=45°,由BE 是角平分线,则∠ABE=22.5°,然后得到∠DFB=∠DGF ,即可得到DF=DG ;③连接CG ,则BG=CG ,然后得到△CEG 是等腰直角三角形,然后有△AEB ≌△CEB ,则有CE=AE ,即可求出BG 的长度.【详解】解:(1)证明:CD AB ⊥,BD=CD ,BCD ∴∆是等腰直角三角形.90DBF BFD ∠=︒-∠,90DCA EFC ∠=︒-∠,且BFD EFC ∠=∠,DBF DCA ∴∠=∠.在Rt DFB ∆和Rt DAC ∆中,ACD FBD CD DBADC CDB ∠=∠⎧⎪=⎨⎪∠=∠⎩, Rt △DFB ≌Rt △DAC(ASA),BF AC ∴=.(2)①∵△BCD 是等腰直角三角形H 点是CB 的中点∴DH=HB=CH所以∠DCB=∠HDB=∠CDH=45°∵BE 平分∠ABC∴∠ABE=22.5°∴∠DFB=67.5°∴∠DGF=∠DBF+∠HDB= 67.5°∴∠DFB=∠DGF∴DF=DG②连接CG∵DH 是中垂线∴BG=CG∴∠GCH=∠GBH=22.5°∵Rt △DFB ≌Rt △DAC∴∠ACD=∠ABE=22.5°∵∠DCB=45°∴∠DCG=22.5°∴∠CEB=90°∴△CEG 是等腰直角三角形在△AEB 和△CEB 中ABE CBE EB EBCEB AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEB ≌△CEB∴CE=AE∵AC=8∴CE=AE=EG=4∴CG=GB=42.【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,角平分线的性质,以及垂直平分线的性质,解题的关键是正确找到证明全等三角形的条件,然后利用所学性质求出线段的长度. 24.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”. (1)如图1,△ABC 中,AB=AC ,∠A 为36°,求证:△ABC 是锐角三角形;(2)若△ABC 是倍角三角形,A B C >>∠∠∠,∠B=30°,AC=42,求△ABC 面积;(3)如图2,△ABC 的外角平分线AD 与CB 的延长线相交于点D ,延长CA 到点E ,使得AE=AB ,若AB+AC=BD ,请你找出图中的倍角三角形,并进行证明.【答案】(1)证明见解析;(2)838;(3)△ADC 是倍角三角形,证明见解析.【分析】(1)根据题意证明△ABC 是等腰三角形,得出三个内角的度数,得证△ABC 是锐角三角形 (2)分两种情况讨论,①当∠B=2∠C ②当∠A=2∠B 或∠A=2∠C 时,求出△ABC 面积(3)证明△ABD ≌△AED ,从而证明CE=DE ,∠C=∠BDE=2∠ADC ,△ADC 是倍角三角形【详解】(1)∵AB=AC ,∴∠B=∠C∵∠A+∠B+∠C=180°,∠A=36°即△ABC 是锐角三角形(2)∵∠A>∠B>∠C ,∠B=30°①当∠B=2∠C,得∠C=15°过C 作CH ⊥直线AB ,垂足为H ,可得∠CAH=15°∴AH=CH=22AC=1. ∴BH=43∴AB=BH-AH=3∴S=18382AB CH ⋅= ②当∠A=2∠B 或∠A=2∠C 时,与∠A>∠B>∠C 矛盾,故不存在。
2018-2019学年第一学期期末质量检测八年级数学 (局联考 )一、选择题1.4 的平方根是 ( )A.-2B.C.±2D.22 在实数,,,,,0 中, 无理数的个数为()A.1 个B.2 个C.3 个D.4 个3.下列结论中 , 错误的有 ( )①在 Rt△ABC中, 已知两边长分别为 3 和 4, 则第三边的长为 5;②△ ABC的三边长分别为 AB,BC,AC,若+=, 则∠ A=90°;③在△ ABC中 , 若∠ A: ∠B: ∠C=1:5:6, 则△ ABC是直角三角形;④若三角形的三边长之比为3:4:5, 则该三角形是直角三角形;A.0 个B.1 个C.2个D.3个4. 估计介于 ()A.0.4与 0.5之间B.0.5与 0.6之间C.0.6与 0.7之间D.0.7与 0.8之间5 将直角坐标系中的点(-1,-3)向上平移 4 个单位 , 再向右平移 2 个单位后的点的坐标为()A.(3,-1)B.(-5,-1)C.(-3,1)D.(1,1)m的6. 关于x、y 的方程组的解为,其中y 的值被盖住了不过仍能求出m则值是 ()A. B. C. D.7.下表是某校合唱团成员的年龄分布情况 :年龄 / 岁13141516频数 5 15 x10-x()对于不同的 x, 下列关于年龄的统计量不会发生改变的是A. 平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数8.一辆慢车和一辆快车沿相同路线从 A 地到B 地,所行驶的路程与时间的函数图象如图所示,下列说法正确的有( )个①快车追上慢车需 6 小时②慢车比快车早出发 2 小时③快车速度为 46km/h④慢车速度为 46kmh⑤AB 两地相距 828km⑥ 快车14 小时到达 B 地A.2B.3C.4D.5二、填空题9.若=6 是二元一次方程,则a+b=_____10.在平面直角坐标系中,已知一次函数y=2x+1 的图象经过(, )、(, )两点 ,若<,则.(填“>”“或<“”-”)11.一圆柱形油罐如图所示,要从 A 点环绕油罐建梯子,正好到 A 点的正上方 B 点,已知油罐底面周长为 12m,高 AB 为 5m,问所建的梯子最短需多少米?:第十一题图第十二题图12.如图 , 正比例函数 y=2x 的图象与一次函数 y=-3x+k 的图象相交于点 P(1,m), 则两条直线与 x 轴围成的三角形的面积为 _______.13.如图 ,已知 DE∥ BC,2 ∠ D=3 ∠ DBC, ∠ 1=∠ 2.则∠ DEB=______ 度14.在平面直角坐标系中 , 对于点 P(x,y), 若点 Q的坐标为 (ax+y,x+ay), 其中 a 为常数 , 则称点 Q是点 P 的“a级关联点” , 例如 , 点 P(1,4) 的 3 级关联点”为 Q(3×1+4,1+3×4) 即 Q(7,13), 若点 B 的“2级关联点”是 B'(3,3), 则点 B 的坐标为 ______; 已知点 M(m-1,2m)的“ -3 级关联点” M’位于 y 轴上 , 则 M’的坐标为 _____三、作图题 ( 本大题满分 4 分 .)15、如图 , 在平面直角坐标系中 , 点 O为坐标原点 , 已知△ ABC三个顶点坐标分别为 A(-4.1),B(-3,3),C(-1,2).(1) 画出△ ABC关于 x 轴对称的△, 其中点 A,B,C 的对称点分别是点(2) 画出点 C关于 y 轴的对称点, 连接,,C求△的面积四. 计算题16.计算(1)-4 +(2)17.解方程组(1)(2)18. 小明同学在解方程的程中, 把 b 看成了6,他其余的解程没有出, 解得此方程的解,又已知直y=kx+b 点 (3,1),求 b 的正确 .19.某校 260 名学生参加植活 , 要求每人植 4~7 棵, 活束后随机抽了若干名学生每人的植量 , 并分四种型 , A :4 棵; B:5 棵; C:6 棵; D:7 棵, 将各的人数制成扇形 ( 如 1) 和条形 ( 如 2)回答下列 :(1)在次中 D型有多少名学生 ?(2)写出被学生每人植量的众数、中位数;(3)求被学生每人植量的平均数 , 并估 260 名学生共植多少棵?20.大相关部原台湾地区的 15 种水果施口零关税措施 ,大了台湾水果在大的售某商售了台湾水果梨 ,根据以往售 ,每天的售价与售量之有如下关系每千克售价售价 ( 元/ 千克 ) 38 37 36 35 ⋯20每天量 ( 千克 ) 50 52 54 56 ⋯86当每千克售价从38 元千克下了 x 元, 售量 y 千克;(1)写出 y 与 x 的函数关系式;(2)如果梨的价是 20 元/ 千克 , 某天的售价定 30 元千克 , 天的售利是多少 ?21. 如 , 已知 AB∥CD,∠NCM=90°, ∠NCB=25,延 DC到 E,若 CM平分∠ BCE,求∠B的大小22.A、B 两地相距 90km,甲、乙两人从两地出相向而行 , 甲先出 . 中 , 表示两人离 A 地的距离 S(km)与 t(h) 的关系 , 合像回答下列(1)表示甲离 A 地的距离与关系的像是 ___( 填或 ) 乙的速度是 ___km/h(2)求出的函数关系式 , 并注明自量 t 的取范(3)甲出后多少两人恰好相距 15km?23.如 ,直 y=kx+b(k ≠与0)坐分交于 A、B 两点 ,OA=8,OB=6. 点 P 从 O 点出 ,沿路 O→A→B以每秒 2 个位度的速度运 ,到达 B 点运停止 .(1) A 点的坐 _____,B两点的坐 ______;(2)当点 P 在 OA 上,且 BP平分∠ OBA 时,则此时点 P 的坐标为 ______;(3)设点 P 的运动时间为 t 秒(0 ≤ t ≤△4),BPA的面积为 S,求 S 与 t 之间的函数关系式 :并直接写出当 S=8时点 P 的坐标 .24.(12 分 )【问题背景】(1)如图 1 的图形我们把它称为“8字形”,请说理证明∠ A+∠ B=∠C+∠D【简单应用】(2)如图 2,AP、CP分别平分∠ BAD、∠ BCD,若∠ ABC=20°, ∠ADC=26°求∠P的度数 ( 可直接使用问题 (1) 中的结论 )【问题探究】(3) 如图 3, 直线 AP平分∠ BAD的外角∠ FAD,CP平分∠ BCD的外角∠BCE, 若∠ ABC=36°, ∠ADC=16°, 猜想∠P 的度数为 ______【拓展延伸】(4)在图 4 中, 若设∠ C=x,∠B=y,∠CAP= ∠CAB,∠CDP= ∠CDB,试问∠P 与∠ C、∠B之间的数量关系为 __________________(用 x、y 表示∠ P)(5)在图 5 中,AP 平分∠ BAD,CP平分∠ BCD的外角∠ BCE,猜想∠P与∠ B、D 的关系 , 直接写出结论 _________________________.参考答案1- 5: CBCCD6- 8: ADB9、- 210、<11、 1212、513、36 314、( 1,1);(0,- 16)。
上学期期末教学质量检测试题八年级数学注意事项:1. 本试卷共120分.考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,只将答题卡收回.2.答题注意事项见答题卡,答在本试卷上不得分.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)2.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个B.2个C.3个D.4个3.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣14.下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3 C.x·x4=x5 D.(x2)3=x5 5.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9 6.下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2 D.x2+2x﹣1=(x﹣1)27.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;第10题图④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组8. .一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或179.化简结果正确的是()A .abB .﹣abC .a 2﹣b 2D .b 2﹣a 210.如图,在△ABC 中,AB=AC ,且D 为BC 上一点,CD=AD ,AB=BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45° 第10题图11.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ=PQ ,PR=PS ,则这四个结论中正确的有( )①PA 平分∠BAC ; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△CSP .A .4个B .3个C .2个D .1个 第11题图12.对于非零的两个实数a 、b ,规定ab b a 11-=⊕,若1)12(2=-⊕x ,则x 的值为( ) A .65 B .45 C .23 D .61- 二.填空题:你能填得又对又快吗?(把答案填在答题卡上,每小题3分,共21分)13.计算:(﹣3a 2b 3)2的结果是 .14.计算:)1(111+++a a a = . 15.若关于x 的分式方程13131=-+-x m 无解,则m 的值是 . 16.边长为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为 .17.如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A=60°,∠ABD=24°,则∠ACF= .18.如图,AC ⊥BC ,AD ⊥DB ,要使△ABC ≌△BAD ,还需添加条件 .(只需写出符合条件一种情况)21·世纪*教育网第17题图 第18题图19.观察给定的分式;2345625101726,x x x x x ,,,,,猜想并探索规律,第n 个分式是 .三.解答题:一定要细心,你能行!(共63分)20.计算(每小题5分,共10分):⑴)3()2)(6(+--+a a a a ; (2) xx x x x x +-÷++-221121.21.因式分解(每小题5分,共10分):(1)2x y y -;(2)a 3b −2a 2b 2+ab 3.22.解方程与化简(每小题5分,共10分)(1)解方程:21122-+=-x x x ; (2)当x =-2,求分式:()()x x x x x x x 22393222---⋅-+-的值.23. (本题满分10分) 某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?24. (本题满分11分) 如图,AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .(1)求证:AD=AE ;(2)连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.第24题图25. (本题满分12分) 如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A沿AB方向,点Q从顶点B沿BC方向同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.第25题图温馨提示:请仔细认真检查,千万不要因为自己的粗心大意造成失误而后悔哟!八年级数学试题参考答案说明:解答题或证明题只给出一种解法或证法,学生若有其他方法请酌情给分.一、选择题(本题有12个小题,每小题3分,满分36分)1~5 ACACD 6-10 BCABB 11-12 BA二、填空题(每小题3分,共24分)请将答案直接写在题中横线上.13. 9a 4b 6 14.a1 15.3 16.70 17.48° 18.AC=BD 或BC=AD 或∠DAB=∠CBA 或∠CAB=∠DBA .(只需写出符合条件一种情况)19. 121++n x n . 三.解答题(本大题共6小题,共63分.解答应写出必要的文字说明、计算过程或推演步骤) 20. 计算:(本题共2小题,满分10分)解:(1)(a+6)(a ﹣2)﹣a (a+3)=a 2+4a ﹣12﹣a 2﹣3a ………………………………………3分=a ﹣12;………………………………………5分 (2) x x x x x x x x x x x -+⨯+-=+-÷++-1)1()1(11121222 ……………………………………4分=1+x x .………………………………………5分 21.解:(1):2x y y -=()21y x -………………………………2分 =()()11y x x +-………………………………5分(2)a 3b −2a 2b 2+ab 3=ab(a 2−2ab+b 2) ………………………………2分= ab(a-b)2………………………………5分22. (1) 解: =1+,2x=x ﹣2+1,………………………………………2分x=﹣1,………………………………………3分经检验x=﹣1是原方程的解,………………………………………4分则原方程的解是x=﹣1.………………………………………5分(2)解:原式=(2)(3)(3)(3)x x x x -++-·32(2)x x x x---………………………………………1分 =12x x-………………………………………3分 =-1x .………………………………………4分 当x =-2时,原式=21.………………………………………5分 (注:直接代入求值也可以)23. (本题满分10分)解:(1)设乙进货价x 元,则甲进货价为(x+10)元,………………………………………1分解得x=15,则x+10=25,………………………………………3分经检验x=15是原方程的根,………………………………………4分答:甲进货价为25元,乙进货价15元.………………………………………5分(2)设进甲种文具m 件,则乙种文具(100-a )件,………………………………………6分由题意得:[]2515(100)20802515(100)(120%)2460a a a a +-<⎧⎪⎨+-+>⎪⎩ 解得55<a <58,………………………………………8分所以整数a=56,57,则100-a=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.………………………………………10分24. (本题满分11分)解:(1)证明:在△ACD 与△ABE 中, ∵,∴△ACD≌△ABE,………………………………………4分∴AD=AE.………………………………………5分(2)答:直线OA垂直平分BC.………………………………6分理由如下:连接BC,连接AO并延长交BC于F,………7分在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,…………………………………10分又∵AB=AC,∴OA⊥BC且平分BC.………………………………………11分25. (本题满分12分)解:(1)∠CMQ=60°不变.………………………………………1分∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.………………………………………4分(2)设时间为t ,则AP=BQ=t ,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ ,得4﹣t=2t ,t=34;………………………………………6分 ②当∠BPQ=90°时, ∵∠B=60°,∴BQ=2BP ,得t=2(4﹣t ),t=38;∴当第34秒或第38秒时,△PBQ 为直角三角形.………………………………………8分 (3)∠CMQ=120°不变.………………………………………9分 ∵在等边三角形中,BC=AC ,∠B=∠CAP=60° ∴∠PBC=∠ACQ=120°,又由条件得BP=CQ , ∴△PBC ≌△QCA (SAS ) ∴∠BPC=∠MQC 又∵∠PCB=∠MCQ ,∴∠CMQ=∠PBC=180°﹣60°=120° ………………………………………12分。
青岛版八年级上册期末试卷一、选择题(共12小题,每小题3分)1.(3分)如图是四届世界数学家大会的会标,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2B.2.5C.3D.3.53.(3分)下列分式中是最简分式的是()A.B.C.D.4.(3分)如图,要量湖两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,这时可得△ABC≌△EDC,用于判定全等的是()A.SSS B.SAS C.ASA D.AAS5.(3分)如果=,则=()A.B.C.D.6.(3分)如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙7.(3分)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的众数和中位数分别是()A.15,15B.15,14C.16,14D.16,158.(3分)下列命题中假命题是()A.三角形的外角中至少有两个是钝角B.直角三角形的两锐角互余C.全等三角形的对应边相等D.当m=1时,分式的值为零9.(3分)下列运算正确的是()A.B.C.D.10.(3分)如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5B.5C.4D.不能确定11.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°12.(3分)已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(本题共5个小题,每小题3分,共15分)13.(3分)分式,的最简公分母是.14.(3分)某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为分.15.(3分)若==,则的值为.16.(3分)若分式方程有增根,则m=.17.(3分)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动秒时,△DEB 与△BCA全等.三、解答题(本大题共8小题,共69分)18.(12分)计算(1)•(2)•(3)﹣(4)x﹣y+.19.(10分)解分式方程:(1)=1﹣.(2)﹣=.20.(5分)先化简,再求值:(﹣)÷,其中x=3.21.(8分)(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到Rt△ABC的两边AC、BC的距离相等,并且点O到A、B两点的距离也相等.(不写作法,但需保留作图痕迹)(2)在(1)中,作OM⊥AC于M,ON⊥BC于N,连结AO、BO.求证:△OMA≌△ONB.22.(8分)甲、乙两个工程队参与某小区7200平方米(外墙保温)工程招标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务,求甲队在投标书上注明的每天完成的工程量.23.(6分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线,求证:DF∥AB证明:∵BE是∠ABC的角平分线∴∠1=∠2又∵∠E=∠1∴∠E=∠2∴AE∥BC∴∠A+∠ABC=180°又∵∠3+∠ABC=180°∴∠A=∠3∴DF∥AB.24.(8分)甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲677868乙596859分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?25.(12分)(1)请写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,判断这一逆命题是真命题还是假命题,如果是真命题给出证明,如果是假命题,说明理由.(2)若一个三角形经过它的某一定点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.①画出等边△DEF的一个生成三角形,并标出生成三角形的各个角的度数;(不用尺规作图,画出简图即可)②若等腰△ABC有一个内角等于36°,那么请你画出简图说明△ABC是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数)答案一、选择题(共12小题,每小题3分)1.(3分)如图是四届世界数学家大会的会标,其中是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2B.2.5C.3D.3.5【考点】KA:全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选:C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.(3分)下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、分子分母含有公因式(x﹣1),故A错误;B、含有公因式2,故B错误;C、分子,分母中不含有公因式,故C正确;D、含有互为相反数的因式,故D错误;故选:C.【点评】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.4.(3分)如图,要量湖两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,这时可得△ABC≌△EDC,用于判定全等的是()A.SSS B.SAS C.ASA D.AAS【考点】KE:全等三角形的应用.【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB =∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:C.【点评】此题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(3分)如果=,则=()A.B.C.D.【考点】S1:比例的性质.【分析】根据比例式的性质求解即可求得答案.【解答】解:∵a:b=2:3,∴(a+b):b=.故选:B.【点评】本题考查了比例的基本性质,关键是根据比例的性质求解.6.(3分)如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.(3分)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的众数和中位数分别是()A.15,15B.15,14C.16,14D.16,15【考点】W4:中位数;W5:众数.【分析】把这组数据按照从小到大的顺序排列,第4、5个数的平均数是中位数,在这组数据中出现次数最多的是15,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列为:13,14,15,15,15,16,16,17,第4、5个两个数的平均数是(15+15)÷2=15,所以中位数是15,在这组数据中出现次数最多的是15,即众数是15,故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.(3分)下列命题中假命题是()A.三角形的外角中至少有两个是钝角B.直角三角形的两锐角互余C.全等三角形的对应边相等D.当m=1时,分式的值为零【考点】O1:命题与定理.【分析】根据三角形的外角、直角三角形的性质、全等三角形的性质、分式的值为0逐个判断即可.【解答】解:A、三角形的内角最少有两个锐角,即最少也有两个外角是钝角,是真命题,故本选项不符合题意;B、直角三角形的两个锐角互余,是真命题,故本选项不符合题意;C、全等三角形的对应边相等,是真命题,故本选项不符合题意;D、当m=1时,分母为0,只有当m=﹣1时,分式的值为0,是假命题,故本选项符合题意;故选:D.【点评】本题考查了三角形的外角、直角三角形的性质、全等三角形的性质、分式的值为0、命题和定理等知识点,能灵活运用知识点进行判断是解此题的关键.9.(3分)下列运算正确的是()A.B.C.D.【考点】65:分式的基本性质.【分析】根据分式的基本性质逐项进行判断,选择正确答案.【解答】解:A、,故A错误;B、C分式中没有公因式,不能约分,故B、C错误;D、=,故D正确.故选:D.【点评】对分式的化简,正确理解分式的基本性质是关键,约分时首先要把分子、分母中的式子分解因式.10.(3分)如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5B.5C.4D.不能确定【考点】KK:等边三角形的性质;PA:轴对称﹣最短路线问题.【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB 得CE=AD=5,即BF+EF=5.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵,∴△ADB≌△CEB(AAS),∴CE=AD=5,即BF+EF=5,故选:B.【点评】本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.11.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【考点】JA:平行线的性质.【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.12.(3分)已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【考点】KD:全等三角形的判定与性质.【专题】1:常规题型.【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即③正确,根据③可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+F A+BG﹣CG=BF+BG=2BF.…④正确.故选:D.【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.二、填空题(本题共5个小题,每小题3分,共15分)13.(3分)分式,的最简公分母是6x3(x﹣y).【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.14.(3分)某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为92分.【考点】W2:加权平均数.【分析】根据体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,甲同学的体育成绩是:96×50%+85×20%+90×30%=92(分).则甲同学的体育成绩是92分.故答案为:92.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.15.(3分)若==,则的值为﹣.【考点】S1:比例的性质.【分析】可以设===k,则x=3k,y=4k,z=5k,把这三个式子代入所要求的式子,进行化简就可以求出式子的值.【解答】解:设===k(k≠0),则x=3k,y=4k,z=5k,则===﹣.故答案为﹣.【点评】本题考查了比例的性质.解题的关键是先设===k,可得x=3k,y=4k,z =5k,从而降低计算难度.16.(3分)若分式方程有增根,则m=2.【考点】B5:分式方程的增根.【专题】11:计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x﹣3),得m=2+(x﹣3),∵方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=2.故答案为2.【点评】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.(3分)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动2,6,8秒时,△DEB与△BCA全等.【考点】KB:全等三角形的判定.【分析】此题要分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AC=BE进行计算即可.【解答】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:2,6,8.【点评】本题考查三角形全等的判定方法,关键是熟记判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本大题共8小题,共69分)18.(12分)计算(1)•(2)•(3)﹣(4)x﹣y+.【考点】6C:分式的混合运算.【分析】(1)对分式进行约分,然后求解即可;(2)先将分式进行化简,然后结合分式混合运算的运算法则进行求解;(3)将各分式的分子进行合并求解即可;(4)先将x﹣y变形为,然后结合分式混合运算的运算法则进行求解.【解答】解:(1)•=.(2)•=×=﹣.(3)﹣===x﹣y.(4)x﹣y+=+==.【点评】本题考查了分式的混合运算,解答本题的关键在于熟练掌握分式混合运算的运算法则.19.(10分)解分式方程:(1)=1﹣.(2)﹣=.【考点】B3:解分式方程.【专题】11:计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1=x﹣4+x﹣3,解得:x=4,经检验x=4是增根,原分式方程无根;(2)去分母得:2﹣2x﹣3﹣3x=9,解得:x=﹣2,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.(5分)先化简,再求值:(﹣)÷,其中x=3.【考点】66:约分;6A:分式的乘除法;6B:分式的加减法;6D:分式的化简求值.【专题】11:计算题.【分析】先根据分式的加减法则算括号里面的,同时把除法变成乘法,再进行约分,最后把x=3代入求出即可.【解答】解:原式=[﹣]÷,=×,=×,=,当x=3时,原式==1.【点评】本题综合考查了分式的加减法则、乘除法则,约分等知识点的应用,关键是考查学生的运算能力,培养学生的解决问题的能力,题目比较典型,是一道很好的题目.21.(8分)(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到Rt△ABC的两边AC、BC的距离相等,并且点O到A、B两点的距离也相等.(不写作法,但需保留作图痕迹)(2)在(1)中,作OM⊥AC于M,ON⊥BC于N,连结AO、BO.求证:△OMA≌△ONB.【考点】KB:全等三角形的判定;KF:角平分线的性质;KG:线段垂直平分线的性质;N3:作图—复杂作图.【专题】12:应用题.【分析】(1)作∠ACB的平分线和线段AB的垂直平分线,它们的交点即为点O;(2)根据角平分线的性质得到OM=ON,根据线段垂直平分线的性质得到OA=OB,则根据“HL”可证明△OMA≌△ONB.【解答】解:(1)如图1,(2)如图2,∵OC平分∠ACB,OM⊥AC,ON⊥CN,∴OM=ON,∵点O在线段AB的垂直平分线上,∴OA=OB,在Rt△△OMA和△ONB中,,∴△OMA≌△ONB.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.22.(8分)甲、乙两个工程队参与某小区7200平方米(外墙保温)工程招标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务,求甲队在投标书上注明的每天完成的工程量.【考点】B7:分式方程的应用.【分析】设甲队每天完成x米2,乙队每天完成1.5x米2.则依据“乙队单独干比甲队单独干能提前15天完成任务”列出方程.【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.23.(6分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线,求证:DF∥AB证明:∵BE是∠ABC的角平分线∴∠1=∠2(角的平分线的定义)又∵∠E=∠1∴∠E=∠2等量代换∴AE∥BC内错角相等,两直线平行∴∠A+∠ABC=180°两直线平行,同旁内角互补又∵∠3+∠ABC=180°∴∠A=∠3同角的补角相等∴DF∥AB同位角相等,两直线平行.【考点】JB:平行线的判定与性质.【分析】根据角平分线的定义以及平行线的判定定理和性质定理即可解答.【解答】解:证明:∵BE是∠ABC的角平分线∴∠1=∠2(角的平分线的定义),又∵∠E=∠1∴∠E=∠2 (等量代换)∴AE∥BC(内错角相等,两直线平行),∴∠A+∠ABC=180°(两直线平行,同旁内角互补),又∵∠3+∠ABC=180°∴∠A=∠3 (同角的补角相等),∴DF∥AB(同位角相等,两直线平行).故答案是:角的平分线的定义;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点评】本题考查了平行线的性质定理和判定定理,正确理解定理是关键.24.(8分)甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲677868乙596859分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?【考点】W1:算术平均数;W7:方差.【分析】先根据平均数的定义分别计算出甲和乙的平均数,甲=乙=7;再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出它们的方差,然后根据方差的意义即可确定答案.【解答】解:∵甲=(6+7+7+8+6+8)=7,乙=(5+9+6+8+5+9)=7;∴S2甲=[(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]=,S2乙=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定.【点评】本题考查了方差的定义和意义:数据x1,x2,…x n,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.25.(12分)(1)请写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,判断这一逆命题是真命题还是假命题,如果是真命题给出证明,如果是假命题,说明理由.(2)若一个三角形经过它的某一定点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.①画出等边△DEF的一个生成三角形,并标出生成三角形的各个角的度数;(不用尺规作图,画出简图即可)②若等腰△ABC有一个内角等于36°,那么请你画出简图说明△ABC是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数)【考点】K7:三角形内角和定理;K8:三角形的外角性质;KH:等腰三角形的性质;KY:三角形综合题.【专题】15:综合题.【分析】(1)先写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,再根据等腰三角形的性质得出∠A=∠ACD,∠BCD=∠B,根据三角形的内角和定理得出∠BCD+∠B+∠A+∠ACD=180°,代入即可求出∠BCD+∠ACD=90°,即∠ACB=90°,即可推出答案;(2)①延长△DEF的边EF至G,使得FG=DF,连接DG,△DEG即为所求;②若等腰三角形的顶角是36°,可画底角的角平分线,可得答案;若等腰三角形的顶角是108°,把顶角分成36°和72°两部分,可得答案.【解答】解:(1)逆命题是:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.已知,如图,△ABC中,D是AB边的中点,且CD=AB.求证:△ABC是直角三角形.证明:∵D是AB边的中点,且CD=AB,∴AD=BD=CD,∵AD=CD,∴∠ACD=∠A,∵BD=CD,∴∠BCD=∠B,又∵∠ACD+∠BCD+∠A+∠B=180°,∴2(∠ACD+∠BCD)=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形.(2)①如图所示,△DEG即为所求,其中∠E=60°,∠G=30°,∠EDG=90°;②如图所示,等腰△ABC是生成三角形.【点评】本题属于三角形综合题,主要考查了等腰三角形的判定与性质以及三角形的内角和定理的运用.解题时注意:等角对等边是判定等腰三角形的方法;三角形内角和是180°.。
八年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.△ABC中,AB=AC,AD⊥CB于点D,则下列两角关系中正确的是()A.∠BAC=∠B B.∠BAC=2∠CAD C.∠BAC=∠ACD D.∠BAC=∠CAD2.下列四个命题中,是真命题的有()①锐角都小于直角;②相等的角是对顶角;③内错角相等;④直角都相等.A.1个B.2个C. 3个D. 4个3.7位同学2015届中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A. 6 B.8 C.9 D.104.点A关于x轴对称的点的坐标为(m,﹣3),关于y轴对称的点的坐标(2,n),那么点A的坐标是()A.(m,﹣n)B.(﹣m,n)C.(﹣3,2)D.(﹣2,3)5.计算++等于()A. B. C. D.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 B.7 C.8 D.97.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C. 3个D. 4个8.某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A.B.C.D.二、填空题(共8小题,每小题3分,满分30分)9.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.10.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为.11.如图,已知AD是△ABC的角平分线,若AC=8cm,AB=6cm,则△ADC与△ADB的面积之比为.12.若方程的解为x=3,则a的值为.13.已知(a≠b),则式子的值为.14.甲、乙两名战士在向条件下各射靶6次,每次命中的环数分别是:甲:6、7、10、6、9、5;乙:8、9、9、8、7、9,则甲、乙两名战士的射靶成绩较为稳定的是.15.先将式子(1+)2÷化简,然后请你选一个喜欢的x的值代入求出原式的值.16.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.三、解答题(共8小题,满分66分)17.解分式方程:(1)(2).18.如图,已知:在△ABC中,D为BC边上一点,AB=AC=CD,BD=AD,求△ABC各角的度数.19.如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.20.设一组数据x1,x2,…,x n的平均数为m,求下列各组数据的平均数:(1)x1+3,x2+3,…,x n+3;(2)2x1,2x2,…,2x n.21.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题,例如,原问题是“等腰三角形的顶角为30°,求该等腰三角形的底角”,求出底角等于75°后,它的一个“逆向”问题可以是“若等腰三角形的一个底角为75°,求该等腰三角形的顶角”等等.(1)设A=,B=,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.22.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.23.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):编号类型一二三四五六七八九十甲种电子钟 1 ﹣3 ﹣4 4 2 ﹣2 2 ﹣1 ﹣1 2乙种电子钟 4 ﹣3 ﹣1 2 ﹣2 1 ﹣2 2 ﹣2 1(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?24.某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?数学试卷一、选择题(共8小题,每小题3分,满分24分)1.△ABC中,AB=AC,AD⊥CB于点D,则下列两角关系中正确的是()A.∠BAC=∠B B.∠BAC=2∠CAD C.∠BAC=∠ACD D.∠BAC=∠CAD考点:等腰三角形的性质.分析:根据等腰三角形顶角的平分线也是底边的高直接得到答案即可.解答:解:∵△ABC中,AB=AC,AD⊥CB于点D,∴∠BAD=∠CAD=∠BAC,∴∠BAC=2∠CAD,故选B.点评:本题考查了等腰三角形的性质,解题的关键是根据题意作出图形,难度不大.2.下列四个命题中,是真命题的有()①锐角都小于直角;②相等的角是对顶角;③内错角相等;④直角都相等.A.1个B.2个C.3个D. 4个考点:命题与定理.分析:根据对顶角、内错角、直角的定义和性质,对选项一一分析,排除错误答案.解答:解:①锐角都小于直角,正确;②相等的角是对顶角,错误;③内错角相等,错误;④直角都相等,正确.故选B.点评:考查了命题与定理的知识,解答此题的关键是对考点知识熟练掌握和运用.3.7位同学2015届中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A.6 B.8 C.9 D.10考点:中位数.分析:把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.解答:解:把这组数据从小到大排序后为6,7,8,8,9,9,10,其中第四个数据为8,所以这组数据的中位数为8.故选B.点评:本题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.点A关于x轴对称的点的坐标为(m,﹣3),关于y轴对称的点的坐标(2,n),那么点A的坐标是()A.(m,﹣n)B.(﹣m,n)C.(﹣3,2)D.(﹣2,3)考点:关于x轴、y轴对称的点的坐标.分析:分别利用关于x轴对称以及关于y轴对称点的性质表示出A点坐标,即可得出m,n的值,进而得出答案.解答:解:∵点A关于x轴对称的点的坐标为(m,﹣3),∴A(m,3),∵A点关于y轴对称的点的坐标为(2,n),∴A(﹣2,n),∴m=﹣2,n=3,∴A(﹣2,3).故选:D.点评:此题主要考查了关于x轴、y轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.计算++等于()A.B. C. D.考点:分式的加减法.专题:计算题.分析:先通分,再把分子相加减即可.解答:解:原式=++=.故选C.点评:本题考查的是分式的加减法,熟知异分母分式的加减就转化为同分母分式的加减法是解答此题的关键.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9考点:等腰三角形的判定.专题:分类讨论.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.解答:解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.点评:本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D. 4个考点:轴对称的性质;全等三角形的性质;等边三角形的性质.分析:(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.解答:解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选D.点评:本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.8.某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:列方程解应用题的关键步骤在于找相等关系,因为提前4天完成任务,所以此题等量关系为:原来所用时间﹣现在所用时间=4.解答:解:设原计划每天挖x米,原来所用时间为,开工后每天比原计划多挖2米,现在所用时间为,可列出方程:﹣=4.故选C.点评:这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,但是需要考虑怎样设未知数才能比较容易地列出方程进行解答.正确地设立未知数、熟练地运用数量之间的各种关系找出等量关系是解题的关键.二、填空题(共8小题,每小题3分,满分30分)9.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.考点:直角三角形全等的判定.分析:先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.解答:解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.点评:本题考查了对全等三角形的判定定理的应用,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.10.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为94.考点:算术平均数.分析:先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答:解:由题意知,最高分和最低分为97,89,则余下的分数的平均数=(92×2+95×2+96)÷5=94.故答案为:94.点评:本题考查了算术平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式.11.如图,已知AD是△ABC的角平分线,若AC=8cm,AB=6cm,则△ADC与△ADB的面积之比为4:3.考点:角平分线的性质.专题:计算题.分析:作DE⊥AB与E,DF⊥AC于F,如图,根据角平分线的性质得DE=DF,再根据三角形面积公式得到S△ADC:S△ADB=(DF•AC):(DE•AB)=AC:AB,然后把AC=8cm,AB=6cm代入计算即可.解答:解:作DE⊥AB与E,DF⊥AC于F,如图,∵AD是△ABC的角平分线,∴DE=DF,∴S△ADC:S△ADB=(DF•AC):(DE•AB)=AC:AB=8:6=4:3.故答案为4:3.点评:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.12.若方程的解为x=3,则a的值为﹣1.考点:分式方程的解.分析:根据题意将x=3直接代入方程求出即可.解答:解:∵方程的解为x=3,∴=,解得:a=﹣1.故答案为:﹣1.点评:此题主要考查了分式方程的解,正确理解方程解的定义是解题关键.13.已知(a≠b),则式子的值为5.考点:分式的化简求值.分析:先根据(a≠b)得出a+b=5ab,再根据分式混合运算的法则把原式进行化简,把a+b 的值代入进行计算即可.解答:解:∵(a≠b),∴=5,即a+b=5ab.原式==,当a+b=5ab时,原式==5.故答案为:5.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.14.甲、乙两名战士在向条件下各射靶6次,每次命中的环数分别是:甲:6、7、10、6、9、5;乙:8、9、9、8、7、9,则甲、乙两名战士的射靶成绩较为稳定的是乙.考点:方差.分析:根据平均数的计算公式求出甲、乙的平均数,再根据方差公式求出甲、乙的方差,然后根据方差越小,成绩越稳定即可判断.解答:解:∵甲的平均数是:(6+7+10+6+9+5)÷6=7,乙的平均数是:(8+9+9+8+7+9)÷6=8,∴甲的方差是:[(6﹣7)2+(7﹣7)2+(10﹣7)2+(6﹣7)2+(9﹣7)2+(5﹣7)2]=,乙的方差是:[(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2]=,∴S2甲>S2乙,∴波动较小的是乙,成绩较为稳定的是乙;故答案为:乙.点评:此题主要考查了平均数,方差,用到的知识点是平均数、方差的计算公式,关键是根据题意和公式列出算式.15.先将式子(1+)2÷化简,然后请你选一个喜欢的x的值代入求出原式的值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=•=,当x=2时,原式==3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.16.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.考点:全等三角形的判定与性质.专题:证明题.分析:首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再有条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.解答:证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中,∴△BAC≌△ECD(SAS),∴CB=ED.点评:此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.三、解答题(共8小题,满分66分)17.解分式方程:(1)(2).考点:解分式方程.专题:计算题.分析:(1)分式方程的左右两边同时乘以2x(x﹣3)去分母后,移项合并,即可得到结果;(2)分式方程的左右两边同时乘以(x+2)(x﹣2)去分母,去括号,移项合并,即可得到结果;解答:解:(1)去分母得:4x=x﹣3移项合并得:3x=﹣3解得:x=﹣1;检验:把x=﹣1代入2x(x﹣3)≠0,∴原分式方程的解为:x=﹣1;(2)去分母得:x(x+2)+6(x﹣2)=(x+2)(x﹣2)去括号得:x2+2x+6x﹣12=x2﹣4移项合并得:8x=8解得:x=1;检验:把x=1代入(x+2)(x﹣2)≠0,∴原分式方程的解为:x=1;点评:此题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.如图,已知:在△ABC中,D为BC边上一点,AB=AC=CD,BD=AD,求△ABC各角的度数.考点:等腰三角形的性质.分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得各个内角的度数.解答:解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°,∠B=∠C=36°.点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.19.如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.考点:线段垂直平分线的性质.分析:(1)已知∠A=50°,易求∠ABC的度数.又因为DE垂直平分AB根据线段垂直平分线的性质易求出∠DB C的度数.(2)同样利用线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等可解.解答:解:(1)∵∠A=50°,∴∠ABC=∠C=65°,又∵DE垂直平分AB,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°.(2)∵DE是AB的垂直平分线,∴AD=BD,AE=BE,∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=18cm.∵△ABC的周长=30cm,∴AB=30﹣18=12cm,∴BE=AE=6cm.点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.20.设一组数据x1,x2,…,x n的平均数为m,求下列各组数据的平均数:(1)x1+3,x2+3,…,x n+3;(2)2x1,2x2,…,2x n.考点:算术平均数.分析:首先根据求平均数的公式:=,得出x1+x2+…+x n,再利用此公式求出(1)x1+3,x2+3,…,x n+3以及(2)2x1,2x2,…,2x n的平均数.解答:解:设一组数据x1,x2,…,x n的平均数是m,即=,则x1+x2+…+x n=mn.(1)∵x1+x2+…+x n=mn,∴x1+3+x2+3+…+x n+3=mn+3n,∴x1+3,x2+3,…,x n+3的平均数是=m+3;(2)∵x1+x2+…+x n=mn,∴2x1+2x2+…+2x n=2mn,∴2x1,2x2,…,2x n的平均数是=2m.点评:本题考查的是样本平均数的求法及运用,熟记平均数公式是解题的关键.21.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题,例如,原问题是“等腰三角形的顶角为30°,求该等腰三角形的底角”,求出底角等于75°后,它的一个“逆向”问题可以是“若等腰三角形的一个底角为75°,求该等腰三角形的顶角”等等.(1)设A=,B=,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.考点:分式的混合运算;等腰三角形的性质.专题:阅读型.分析:(1)利用分式的混合运算的顺序求解即可,(2)利用逆向提问的方法提出问题并解答.解答:解:(1)A•B=()•=•﹣•=3(x+2)﹣(x﹣2)=2x+8,(2)已知A•B=2x+8,A=,求B.B=(2x+8)÷()=.点评:本题主要考查了分式的混合运算及等腰三角形的性质,解题的关键是明确“逆向”问题的定义.22.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.考点:全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:延长CE、BA交于F点,然后证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.解答:证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠BEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CE=CF,∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=FC,∴BD=2CE.点评:此题主要考查了全等三角形的判定与性质,以及等腰三角形的性质,关键是证明△ADB≌△AFC 和CE=CF.23.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):编号类型一二三四五六七八九十甲种电子钟 1 ﹣3 ﹣4 4 2 ﹣2 2 ﹣1 ﹣1 2乙种电子钟 4 ﹣3 ﹣1 2 ﹣2 1 ﹣2 2 ﹣2 1(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?考点:方差;算术平均数.专题:图表型.分析:根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.解答:解:(1)甲种电子钟走时误差的平均数是:(1﹣3﹣4+4+2﹣2+2﹣1﹣1+2)=0,乙种电子钟走时误差的平均数是:(4﹣3﹣1+2﹣2+1﹣2+2﹣2+1)=0.(2)S2甲=[(1﹣0)2+(﹣3﹣0)2+…+(2﹣0)2]=×60=6(s2),S2乙=[(4﹣0)2+(﹣3﹣0)2+…+(1﹣0)2]=×48=4.8(s2),∴甲乙两种电子钟走时误差的方差分别是6s2和4.8s2;(3)我会买乙种电子钟,因为两种类型的电子钟价格相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.同时考查平均数公式:.24.某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?考点:分式方程的应用.分析:(1)设第一批套尺购进时单价是x元/套,则设第二批套尺购进时单价是x元/套,根据题意可得等量关系:第二批套尺数量﹣第一批套尺数量=100套,根据等量关系列出方程即可;(2)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.解答:解:(1)设第一批套尺购进时单价是x元/套.由题意得:,即,解得:x=2.经检验:x=2是所列方程的解.答:第一批套尺购进时单价是2元/套;(2)(元).答:商店可以盈利1900元.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意要检验.。
青岛版八年级上数学期末测试题(时间:120分钟,分值120分)一、 选择题(每小题3分,共12小题) 1、数据2,1,0,3,4,的平均数是( ) A .0 B .1 C .2 D .32、如图所示的标志中,是轴对称图形的有( )A .1个B .2个C .3个D .4个3、一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别是( )A .9与8B .8与9C .8与8.5D .8.5与9 4、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或335.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABCCBA中,边长为无理数的边数是( ) A .0 B .1 C .2 D .36、若代数式253+x 的值是负数,则x 的取值是( ) A .x=4 B .x<52- C .x ≠52- D .x>52-7、下列能用平方差公式分解因式的是( )A .—a 2 —b 2B .—a 2+b 2C .a 2+b 2D .a 2—b 8、化简121112+-÷⎪⎭⎫ ⎝⎛-+a a aa 的结果是( ) A .a+1 B .11-a C . a a 1- D .a —1 9、分式方程14122=---x x x 的解是( )A .23- B.25- D.2310、不等式组 )A .1<x<23B.x<2C.x>1D.31<x<2311、在一块平地上,张大爷家屋前9米远处有一棵大树。
在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米。
出门在外的张大爷担心自己的房被倒下的大树砸倒。
大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的答案( )A .一定不会 B.可能会 C.一定会 D.以上答案都不对12.已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( ) A .8 B.10 C.12 D.16 二、填空题(每小题3分,共24分) 13、已知分式11-+x x 的值为0,那么x 的值为 。
期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2. 如果=k 成立,那么k 的值为( )A .1B .-2C .-2或1D .以上都不对3. 如图,在△ABC 中,AB=AC ,∠BAC=108°,若AD 、AE 三等分∠BAC , 则图中等腰三角形有( )A.3个B.4个C.5个D.6个 4. 某工地调来人挖土和运土,已知人挖出的土人恰好能全部运走,怎样调配劳动力使挖出的土能及时运走且不窝工,解决此问题可设派人挖土,其他人运土,列方程:①,②3x ,③7213x x -=, ④372xx=-. 上述所列方程正确的有( )A.1个B.2个C.3个D.4个 5.下列命题不正确...是 ( ) A.两直线平行,同位角相等 B.两点之间直线最短 C.对顶角相等 D.垂线段最短6.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,957. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,点D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的点B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°8. 如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.有下列结论:①∠C=2∠A;②BD平分∠ABC;③.其中正确的选项是()A.①③B.②③C. ①②③D.①②9. 如图,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°10. 如图,已知BD,CD分别是∠ABC和∠ACE的角平分线,若∠A=45°,则∠D的度数是()A.20B.22.5C.25D.30二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠A=90°,点D 在AC 边上,DE∥BC,若∠1=155°,则∠B 的度数为 . 12.若分式2102aa a -=+-,则 . 13. 如图,在△中,,是∠的平分线,,∠,则∠.14. 一组数据:1,2,4,3,2,4,2,5,6,1,它们的平均数为 ,众数为 ,中位数为 .15.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB ∥CD ,∠BAE=40°,∠1=70°,小 明马上运用已学的数学知识得出了∠ECD 的度数,聪明的你一定知 道∠ECD= .16.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:班级 参加人数 平均字数 中位数 方差 甲 55 135 149 191 乙55135151110有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是 (填序号).17. 如图,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,则∠A= .18.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF=CE, AC ∥DF,请添加一个条件,使△ABC ≌△DEF,这个添加的条件可以是 .(只需写一个,不添加辅助线)三、解答题(共66分)19.(6分)如图,在△中,垂直平分线段,,△的周长为,求△的周长.20.(9分)已知两个分式244A x =-,1122B x x=++-,其中,下面三个结论: (1);(2)互为倒数;(3)互为相反数.请问哪个正确?为什么?21.(9分)甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年) 甲厂:4,5,5,5,5,7,9,12,13,15; 乙厂:6,6,8,8,8,9,10,12,14,15; 丙厂:4,4,4,6,7,9,13,15,16,16.请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数.(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的 特征数. (3)如果你是顾客,会选购哪家工厂的产品?为什么?22.(7分)如图,已知EF//AD ,1∠=2∠.证明∠DGA+∠BAC=180°.EACDB第19题图G321FE DCBA第22题图23.(8分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(1)九(1)班班长说:“我们班捐款总数为1 200元,我们班人数比你们班多8人.”(2)九(2)班班长说:“我们班捐款总数也为1 200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.24.(9分)王大伯几年前承办了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定.25.(9分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC. (1)求证:△ABE≌△DCE;(2)若∠AEB=50°,求∠EBC的度数.26.(9分)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E, CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连接CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.期末检测题参考答案1.A 解析:A 不是轴对称图形,故本选项正确; B 是轴对称图形,故本选项错误; C 是轴对称图形,故本选项错误; D 是轴对称图形,故本选项错误. 故选A .2. C 解析:当≠0时,根据比例的性质,得k==1;当时,即,则k==-2,故选C .3. D 解析:∵ AB=AC,∠BAC=108°, ∴ ∠B=∠C=36°,△ABC是等腰三角形, ∵ ∠BAC=108°,AD 、AE 三等分∠BAC, ∴ ∠BAD=∠DAE=∠EAC=36°, ∴ ∠DAC=∠BAE=72°, ∴ ∠AEB=∠ADC=72°,∴ BD=AD=AE=CE,AB=BE=AC=CD ,∴ △ABE、△ADC、△ABD、△ADE、△AEC都是等腰三角形, ∴ 一共有6个等腰三角形. 故选D .4. C 解析:设派人挖土,则人运土,依题意可列方程3x,方程变形后可得到③④.5.B 解析:B 应为两点之间线段最短.6.A 解析:在这一组数据中96是出现次数最多的,故众数是96.将这组数据从小到大的顺序排列为90,91,94,95,96,96,处于中间位置的两个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选A.7. D 解析:在Rt△ACB中,因为∠ACB=90°,∠A=25°,所以∠B=65°.又因为是∠B折叠所得,所以∠=∠B=65°.而∠=∠A+∠,所以∠=∠-∠A=65°-25°=40°.8. D 解析:本题综合考查了等腰三角形的性质、线段的垂直平分线与角的平分线的性质等知识.∵ ∠A=36°,AB=AC,∴ ∠C=∠ABC= 72°.∵ OD是AB的垂直平分线,∴ AD=BD,∴ ∠A=∠ABD=36°,∴ ∠ABC=2∠ABD,∴ BD平分∠ABC,∴ ①和②都正确. 由BD平分∠ABC,∠ABC=72°,∴ ∠CBD=36°.在△BCD中,∠BDC=180°-∠CBD-∠C=180°-36°-72°=72°,∴ ∠BDC=∠C,即BD=BC.在Rt△BOD中,OB<BD,则OB<BC.作DE⊥BC,则OD=DE.又,故>,∴ ③错误.故选D.9. A 解析:在△ABC中,因为AB=AC,所以∠ABC=∠C.因为∠A=36°,所以∠C=.又因为BD⊥AC,所以∠DBC+∠C=90°,所以∠DBC=90°-∠C=90°-72°=18°.10.B 解析:由于BD平分∠ABC,CD平分∠ACE,所以∠ABD=∠DBC,∠ACD=∠DCE.又由三角形外角的性质可知∠ACD+∠DCE=∠A+∠ABD+∠DBC,∠DCE=∠BDC+∠D,可得∠A=2∠D,故∠D=22.5°.11. 65° 解析:∵ ∠1=155°,∴ ∠EDC=180°-∠1=25°.∵ DE∥BC,∴ ∠C=∠EDC=25°.在△ABC中,∵ ∠A=90°,∴ ∠B+∠C=90°,∴ ∠B=90°-∠C=90°-25°=65°.12. 1 解析:由题意,得所以当时,不符合题意,舍去;当时,所以所以13. 解析:因为,∠,所以∠.因为是∠的平分线,所以∠因为,所以∠所以∠14. 3,2,2.5 解析:平均数为;众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;将这组数据按从小到大的顺序排列:1,1,2,2,2,3,4,4,5,6,处于中间位置的两个数是2,3,那么由中位数的定义可知,这组数据的中位数是.15.30°解析:本题源于生活实际问题,可借助平行线的性质定理和三角形内角和定理,获得两种解题思路:一种思路是连接AC,由AB∥CD,得∠BAC+∠ACD=180°,从而∠ECD=180°-40°-(180°-70°)=30°;另一种思路是过点E作EF∥AB,交AC于点F,由平行线的性质定理,得∠BAE=∠AEF,∠ECD=∠FEC,从而∠ECD=∠1-∠BAE=70°-40°=30°.16.①②③解析:由于乙班学生的中位数为151,说明有一半以上的学生都达到每分钟150个以上,而甲班学生的中位数为149,说明不到一半的学生达到150个以上,由此可知乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.17.21° 解析:∵ AB=BC=CD=ED,∴ ∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED.而∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM.设∠A=x,则可得x+3x=84°,则x=21°,即∠A=21°.18.答案不唯一,如:∠A=∠D,AB∥DE,∠B=∠E,AC=DF解析:本题考查了三角形全等的判定方法.∵ BF=CE,∴ BF+FC=FC+CE,即BC=EF.又∵ AC∥DF,∴ ∠ACB=∠DFE.在△ABC和△DEF中已有一边一角对应相等,若用“ASA”,则可添加条件∠B=∠E(或AB∥DE);若用“AAS”,则可添加条件∠A=∠D;若用“SAS”,则可添加条件AC=DF.19. 解:因为垂直平分线段,所以,.因为,所以,所以.因为△的周长为,所以,所以,故△的周长为.20. 解:(3)正确,理由如下:因为()()()()22112222x x B x x x x --+=-=+-+-244x =--, 所以2244044A B x x +=-=--,所以互为相反数. 21. 解:(1)甲厂:平均数为,众数为5年,中位数为6年;乙厂:平均数为, 众数为8年,中位数为8.5年;丙厂:平均数为, 众数为4年,中位数为8年.(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数. (3)顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此应选乙厂的产品.22.证明 ∵ EF//AD,∴ ∠2=∠3 .∵ 1∠=2∠,∴ ∠1=∠3.∴ DG//AB.∴ ∠DGA+∠BA C=180°. 23.分析:首先设九(1)班的人均捐款数为x 元,则九(2)班的人均捐款数为(1+20%)x 元,然后根据九(1)班人数比九(2)班多8人,即可得方程,解此方程即可求得答案.解:设九(1)班的人均捐款数为x 元,则九(2)班的人均捐款数为(1+20%)x 元,则=8,解得x=25,经检验,x=25是原方程的解.九(2)班的人均捐款数为(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.24. 解:(1)甲山上4棵杨梅的产量分别为50千克、36千克、40千克、34千克,所以甲山杨梅产量的样本平均数为50364034404x+++==(千克);乙山上4棵杨梅的产量分别为36千克、40千克、48千克、36千克,所以乙山杨梅产量的样本平均数为36404836404x+++==(千克).甲、乙两山杨梅的产量总和为2×100×98%×40=7 840(千克).(2);.所以.答:乙山上的杨梅产量较稳定.25.(1)证明:在△ABE和△DCE中,∵ ∠A=∠D,∠AEB=∠DEC,AB=DC,∴ △ABE≌△DCE(AAS).(2)解:∵ △ABE≌△DCE,∴ BE=EC,∴ ∠EBC=∠ECB.∵ ∠EBC+∠ECB=∠AEB=50°,∴ ∠EBC=25°.26. 分析:本题考查了三角形的中位线、全等三角形、直角三角形的性质以及三角形的外角和定理.(1)要证明DE=EF,先证△ADE≌△CFE.(2)CD是Rt△ABC斜边上的中线, ∴ CD=AD,∴ ∠1=∠A.而∠1+∠3=90°,∠A+∠B=90°,可得∠B=∠3.由CF∥AB可得∠2=∠A,要证∠B=∠A+∠DGC,只需证明∠3=∠2+∠DGC.证明:(1)∵ 点D为边AB的中点,DE∥BC,∴ AE=EC.∵ CF∥AB,∴ ∠A=∠2.在△ADE和△CFE中,∠A=∠2,AE=CE,∠AED=∠CEF,∴ △ADE≌△CFE(ASA),∴ DE=EF.(2)在Rt△ACB中,∵ ∠ACB=90°,点D为边AB的中点,∴ CD=AD,∴ ∠1=∠A.∵ DG⊥DC,∴ ∠1+∠3=90°.又∵ ∠A+∠B=90°,∴ ∠B=∠3.∵ CF∥AB,∴ ∠2=∠A.∵ ∠3=∠2+∠DGC,∴ ∠B=∠A+∠DGC.。