数学建模算法动态优化模型
- 格式:doc
- 大小:1.16 MB
- 文档页数:22
数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
数学建模中模型的名词解释数学建模作为一门学科,是将实际问题转化为数学问题,并运用数学理论和方法来解决问题的过程。
在数学建模中,模型是其中最为重要的概念之一。
模型在解决实际问题时起着关键的作用,可以帮助我们更好地理解现象和规律,并进行预测和优化。
一、模型的定义模型是对实际问题的抽象和简化,通过数学形式来描述。
它可以是数学方程、图表或者其他数学表达形式。
模型的建立需要根据实际问题的特点和需求,选择合适的数学方法和变量,并对其进行适当的假设和简化。
二、数学模型的分类数学模型可以分为动态模型和静态模型两种类型。
1.动态模型动态模型是描述事物随时间变化的模型。
在动态模型中,时间是一个重要的变量,用来描述事物的演化过程。
动态模型可以采用微分方程、差分方程等数学方法进行描述,常见的动态模型包括物理系统的运动学模型、生态系统的种群动力学模型等。
2.静态模型静态模型是描述事物特定状态的模型。
在静态模型中,时间不再是一个重要的变量,模型的关注点集中于某一特定时刻或特定状态下的问题。
静态模型可以采用代数方程、优化模型等进行描述,常见的静态模型包括线性规划模型、统计回归模型等。
三、模型的构建步骤建立数学模型的过程可以分为问题的理解、建立数学模型、求解模型和模型的验证四个步骤。
1.问题的理解问题的理解是建立数学模型的第一步,需要深入了解问题的背景和需求,明确问题的目标和限制条件,分析问题的关键因素和变量。
2.建立数学模型建立数学模型是将实际问题转化为数学问题的过程,需要根据问题的特点和要求选择合适的数学方法和变量,并针对问题进行适当的假设和简化。
建立数学模型时,需要考虑模型的可解性、可行性和合理性。
3.求解模型求解模型是通过数学方法和计算工具,对建立的数学模型进行求解和分析,得到问题的解答或者优化结果。
求解模型时,需要选择合适的求解算法和计算方法,进行模型的计算和推导。
4.模型的验证模型的验证是对模型求解结果的合理性和可靠性进行分析和评价的过程。
动态优化模型动态优化模型是一种利用动态规划理论对优化问题进行建模与求解的方法。
它能够在不同环境下进行模型的动态调整,以求得最优解。
本文将介绍动态优化模型的基本概念与原理,并讨论其在实际问题中的应用。
一、动态规划的基本原理动态规划是一种以递归的方式进行求解的优化方法。
它将大问题分解为一系列子问题,并从子问题的最优解递归地求解出整个问题的最优解。
动态规划的核心思想是"最优子结构"和"重叠子问题"。
1. 最优子结构动态规划中的每个子问题必须具备最优子结构的特点,即如果一个问题的最优解包含了它的子问题的最优解,则称其具有最优子结构。
通过求解子问题得到的最优解可以作为整个问题的最优解的一部分。
2. 重叠子问题动态规划中的子问题往往是重叠的,即包含相同的子问题。
为避免重复计算,可以使用备忘录或者动态规划表来记录已求解的子问题的结果,在需要时直接检索以节省计算时间。
二、动态优化模型的建立动态优化模型通常包括三个基本要素:状态、状态转移方程和边界条件。
1. 状态状态是指问题中的一个变量或一组变量,它能够完整地描述问题的某个特定场景。
状态的选择对模型的性能和求解效果有着重要的影响。
2. 状态转移方程状态转移方程描述了问题中的状态如何转移到下一个状态。
它是建立动态规划模型的核心,通过定义合适的状态转移方程,可以准确地描述问题的演变过程。
3. 边界条件边界条件指定了问题的起始状态和终止状态,以及在某些特定情况下的处理方式。
它是动态规划模型中必不可少的部分,可以确定问题的边界和约束条件。
三、动态优化模型的应用动态优化模型广泛应用于各个领域,如经济学、管理学、运筹学等。
下面以背包问题和路径规划问题为例,说明动态优化模型的具体应用。
1. 背包问题背包问题是一个常见的优化问题,其目标是在给定的背包容量下,选择一定数量的物品放入背包中,使得背包内的物品总价值最大化。
动态优化模型中,可以将背包问题转化为一个二维的状态转移方程,并通过动态规划的方法求解最优解。
数学建模中的优化模型优化模型在数学建模中起着重要的作用。
通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。
本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。
让我们来了解一下什么是优化模型。
优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。
这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。
在优化模型中,目标函数是我们希望最大化或最小化的指标。
它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。
约束条件是对变量的限制,可以是等式约束或不等式约束。
变量则是我们需要优化的决策变量,可以是连续变量或离散变量。
常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。
线性规划是指目标函数和约束条件都是线性的优化模型。
它可以通过线性规划算法来求解,如单纯形法和内点法。
非线性规划是指目标函数和约束条件中包含非线性项的优化模型。
它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。
整数规划是指变量取值只能是整数的优化模型。
它的求解方法包括分支定界法和割平面法等。
动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。
优化模型在实际问题中有着广泛的应用。
例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。
在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。
在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。
优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。
通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。
优化模型在数学建模中是非常重要的。
它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模动态优化模型数学建模是一种通过建立数学模型来解决实际问题的方法。
动态优化模型则是指在一定的时间尺度内,通过调整决策变量,使系统在约束条件下达到最优效果的数学模型。
本文将介绍数学建模中动态优化模型的基本原理、方法和应用。
动态优化模型是一种考虑时间因素的优化模型。
在解决实际问题时,往往需要考虑到系统随时间变化的特性,因此单纯的静态优化模型可能无法满足需求。
动态优化模型对系统的演化过程进行建模,通过引入时间因素,能够更准确地描述系统的行为,并找到最优的策略。
动态优化模型的核心是建立一个数学模型来描述系统的演化过程。
在建模过程中,需要确定决策变量、目标函数、约束条件和系统的动态特性。
决策变量是指在不同时间点上的决策变量值,目标函数是指目标的数量指标,约束条件是系统必须满足的条件,系统的动态特性是指系统状态随时间的变化规律。
动态优化模型的建模方法有很多种,常见的方法包括状态空间建模、差分方程建模和优化控制建模等。
其中,状态空间建模是一种通过描述系统状态和系统状态之间的关系来建立模型的方法;差分方程建模是一种通过描述离散时间点上系统的状态之间的关系来建立模型的方法;优化控制建模则是一种将优化方法和控制方法相结合的建模方法。
动态优化模型在实际问题中有广泛的应用。
例如,在生产调度问题中,我们需要根据不同时间的产销情况来安排生产任务,以使得产能得到充分利用并满足市场需求;在交通控制问题中,我们需要根据交通流量的变化来调整信号灯的配时方案,以最大程度地减少交通拥堵;在能源管理问题中,我们需要根据电网的负荷变化来调整发电机组的出力,以实现能源的有效利用。
在建立动态优化模型时,需要考虑到模型的复杂性和求解的难度。
一方面,动态优化模型往往比静态优化模型复杂,需要考虑到系统的动态特性和约束条件的演化;另一方面,求解动态优化模型需要考虑到系统的运行时间和求解算法的效率。
因此,在建立动态优化模型时,需要合理选择模型和算法,以保证模型的可行性和求解的可行性。
数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
第十八章 动态优化模型动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。
当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。
求解泛函极值问题的方法主要有变分法和最优控制理论方法。
§1 变分法简介变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。
下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。
1.1 变分法的基本概念 1.1.1 泛函设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。
S 称为J 的容许函数集。
通俗地说,泛函就是“函数的函数”。
例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。
由微积分知识不难写出dx x y x y x y J x x )('1)(2))((212⎰+=π (1)容许函数集可表示为})( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2)最简单的一类泛函表为⎰=21),,())((t t dt x x t F t x J & (3)被积函数F 包含自变量t ,未知函数x 及导数x &。
(1)式是最简泛函。
1.1.2 泛函的极值泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的S t x ∈)(,都有))(())((0t x J t x J ≥。
所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离定义为|})()(||,)()({|max ))(),((00021t x t x t x t x t x t x d t t t &&--=≤≤泛函的极大值可以类似地定义。
)(0t x 称为泛函的极值函数或极值曲线。
1.1.3 泛函的变分如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。
作为泛函的自变量,函数)(t x 在)(0t x 的增量记为)()()(0t x t x t x -=δ也称函数的变分。
由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=∆δ 如果J ∆可以表为))(),(())(),((00t x t x r t x t x L J δδ+=∆其中L 为x δ的线性项,而r 是x δ的高阶项,则L 称为泛函在)(0t x 的变分,记作))((0t x J δ。
用变动的)(t x 代替)(0t x ,就有))((t x J δ。
泛函变分的一个重要形式是它可以表为对参数α的导数:0))()(())((=+∂∂=ααδαδt x t x J t x J (4)这是因为当变分存在时,增量)),(()),(())(())((x t x r x t x L t x J x t x J J αδαδαδ+=-+=∆ 根据L 和r 的性质有)),(()),((x t x L x t x L δααδ=0)),((lim )),((lim 00==→→x xx t x r x t x r δαδαδααδαα 所以ααδαδααα)()(lim )(00x J x x J x x J -+=+∂∂→=)(),(),(),(lim 0x J x x L x x r x x L δδααδαδα==+=→1.1.4 极值与变分利用变分的表达式(4)可以得到泛函极值与变分的关系: 若))((t x J 在)(0t x 达到极值(极大或极小),则0))((0=t x J δ (5)这是因为对任意给定的x δ,)(0x x J αδ+是变量α的函数,该函数在0=α处达到极值。
根据函数极值的必要条件知0)(00=+∂∂=ααδαx x J 于是由(4)式直接得到(5)式。
1.1.5. 变分法的基本引理引理 ],[)(21x x C x ∈ϕ,],[)(211x x C x ∈∀η,0)()(21==x x ηη,有⎰≡210)()(x x dx x x ηϕ,则],[ ,0)( 21x x x x ∈≡ϕ。
1.2 无约束条件的泛函极值 求泛函⎰=ft t dt t x t x t F J 0))(),(,(& (6)的极值,一般是用泛函极值的必要条件去寻找一条曲线)(t x ,使给定的二阶连续可微函数F 沿该曲线的积分达到极值。
常称这条曲线为极值曲线(或轨线),记为)(*t x 。
1.2.1 端点固定的情况设容许曲线)(t x 满足边界条件00)(x t x =,f f x t x =)( (7)且二次可微。
首先计算(6)式的变分:0))()((=+∂∂=ααδαδt x t x J J ⎰=++∂∂=f t t dt t x t x t x t x t F 00))()(),()(,(ααδαδα&&⎰+=ft t x x dt x x x t F x x x t F 0]),,(),,([&&&&δδ (8) 对上式右端第二项做分布积分,并利用0)()(0==f t x t x δδ,有⎰⎰-=fft t x t t x xdt x x t F dtddt x x x t F 0),,(),,(δδ&&&&&, 再代回到(8)式,并利用泛函取极值的必要条件,有⎰=-=ft t x x xdt F dtd F J 00][δδ& 因为x δ的任意性,及0)()(0==f t x t x δδ,所以由基本引理得到著名的欧拉方程0=-x x F dtd F & (9) 它是这类最简泛函取极值的必要条件。
(9)式又可记作0=---x F x F F F xx x x x t x &&&&&&& (10) 通常这是)(t x 的二阶微分方程,其通解的两个任意常数由(7)式中的两个端点条件确定。
1.2.2 最简泛函的几种特殊情形(i) F 不依赖于x &,即),(x t F F = 这时0≡x F &,欧拉方程为0),(=x t F x ,这个方程以隐函数形式给出)(t x ,但它一般不满足边界条件,因此,变分问题无解。
(ii) F 不依赖x ,即),(xt F F &= 欧拉方程为0),(=xt F dtdx && 将上式积分一次,便得首次积分1),(c xt F x =&&,由此可求出),(1c t x ϕ=&,积分后得到可能的极值曲线族()dt c t x ⎰=1,ϕ(iii)F 只依赖于x &,即)(x F F &=这时0,0,0===x x x t x F F F &&,欧拉方程为0=xx F x &&&& 由此可设0=x &&或0=xx F &&,如果0=x &&,则得到含有两个参数的直线族21c t c x +=。
另外若0=x x F &&有一个或几个实根时,则除了上面的直线族外,又得到含有一个参数c 的直线族c kt x +=,它包含于上面含有两个参数的直线族 21c t c x += 中,于是,在)(x F F &=情况下,极值曲线必然是直线族。
(iv )F 只依赖于x 和x &,即),(x x F F &=这时有0=x t F &,故欧拉方程为0=--xx x x x F x F x F &&&&&& 此方程具有首次积分为1c F x F x =-&&事实上,注意到F 不依赖于t ,于是有0)()(=-=--+=-x x x x x x x F dtdF x F dt d x F x x F x F F x F dt d &&&&&&&&&&&&&。
例1 (最速降线问题)最速降线问题是历史上变分法开始发展的第一个问题。
它是约翰·贝努里(J. Bernoulli )于1696年提出的。
问题的提法是这样的:设A 和B 是铅直平面上不在同一铅直线上的两点,在所有连结A 和B 的平面曲线中,求一曲线,当质点仅受重力作用,且初速为零,沿此曲线从A 滑行至B 时,使所需时间最短。
解 将A 点取为坐标原点,x 轴水平向右,y 轴垂直向下,B 点为),(22y x B 。
根据能量守恒定律,质点在曲线)(x y 上任一点处的速度dtds满足(s 为弧长) mgy dt ds m =⎪⎭⎫⎝⎛221 将dx x y ds )('12+=代入上式得dx gyy dt 2'12+=于是质点滑行时间应表为)(x y 的泛函dx gyy x y J x ⎰+=222'1))(( 端点条件为22)(,0)0(y x y y ==最速降线满足欧拉方程,因为yy y y F 2'1)',(+=不含自变量x ,所以方程(10)可写作0''''''=--y F y F F y y yy y等价于0)'('=-y F y F dxd作一次积分得12)'1(c y y =+令 ,2'θctgy =则方程化为)cos 1(22sin '112121θθ-==+=c c y c y 又因θθθθθθd c ctg d c y dy dx )cos 1(222cos 2sin '11-===积分之,得21)sin (2c c x +-=θθ 由边界条件0)0(=y ,可知02=c ,故得⎪⎪⎩⎪⎪⎨⎧-=-=).cos 1(2)sin (211θθθc y c x 这是摆线(圆滚线)的参数方程,其中常数1c 可利用另一边界条件22(y x y =)来确定。
例2最小旋转面问题dx x y x y x y J x x )('1)(2))((212⎰+=π})( ,)(],,[|{2211211y x y y x y x x C y y S ==∈=解因 '12y y F +=不包含x ,故有首次积分122''1'''1'c y y yy y y F y F y =+-+=-化简得 21'1y c y +=令sht y =',代入上式, cht c t sh c y 1211=+=由于 dt c shtshtdt c y dy dx 11'===积分之,得 21c t c x +=消去t ,就得到121c c x ch c y -= 。