中国工程物理研究院研究生院-流体物理研究所-研究方向简介-901
- 格式:doc
- 大小:109.06 KB
- 文档页数:12
前言为进一步提高我校研究生的培养质量,对研究生攻读学位期间取得的科研成果进行量化规范,根据新印发的《中国科技大学硕士、博士学位授予实施细则》(校学位字[2007]3号)中的有关规定:硕士毕业和学位申请条件,由各学位分委员会根据学科特点和培养模式自行制定;博士生申请学位前发表学术论文的具体要求参照《研究生学术论文发表参考指南》。
研究生院对《中国科学技术大学研究生学术论文发表参考指南》(以下简称《指南》)进行了重新修订。
本《指南》分总则、分则和国内期刊参考目录三部分。
总则中的要求对我校所有学科专业的研究生(硕士生和博士生)发表学术论文或取得相当的科研成果均适用;分则是各学位分委员会对本学科领域的研究生发表学术论文等的具体量化细则;期刊参考目录是各学位分委员会认定的研究生发表学术论文的国内期刊列表,其中带“*”号的期刊为研究生申请博士学位发表论文的有效期刊。
总则一.研究生在国际学术期刊或国际学术会议上发表的论文,被SCI、EI检索源期刊收录的,等同于在本《指南》中带“*”号的期刊上发表的论文;二.研究生获得1项国家级科研成果奖(排名在前五名之内)或获得1项省、部级科研成果奖(排名在前三名之内),等同于在本《指南》中带“*”号的期刊上发表1篇论文;三.研究生有1本学术专著出版(排名在前三名之内,独撰部分在二万五千字以上),等同于在本《指南》中带“*”号的期刊上发表1篇论文;四.研究生取得1项发明专利成果(排名第一,导师署名不计在内,且专利申请已被正式公开或取得专利授权证书),等同于在本《指南》中带“*”号的期刊上发表1篇论文;五.硕士生在国际学术会议上发表的论文,已在“会议论文集”上公开出版的,予以认定;六.硕士生在教育部批准的设有研究生院的高校的学报上发表的论文,予以认定;七.对于管理人文学科,研究生的学术论文的主要部分被《人大复印报刊资料》、《新华文摘》、《全国高校文科学报文摘》、《中国社会科学文摘》四种权威转载刊物转载的,等同于在本《指南》中带“*”号的期刊上发表的论文;八.在非本《指南》中的国外或国内学术期刊上发表的论文,其学术水平的认定或取得的其他与学位论文内容相关成果的认定,由各学位分委员会进行。
流体力学蔡增基引言流体力学是研究流体运动的学科,是物理学的重要分支之一。
在流体力学中,蔡增基是中国著名的学者之一,他在这一领域做出了杰出的贡献。
本文将介绍流体力学的基本概念,并重点介绍蔡增基的研究成果和影响。
流体力学概述流体力学是研究流体运动和相互作用的科学。
它涉及到液体和气体的力学性质、流动规律和应用。
流体力学分为两个主要分支:流体静力学和流体动力学。
流体静力学研究静止流体中的力学性质,主要研究压力、密度等静态参数的分布和变化规律。
而流体动力学研究流体在运动状态下的力学性质,主要研究流速、流量、压力损失等动态参数的变化规律。
蔡增基个人简介蔡增基(1934年-2019年)是中国力学学会和中国工程院的院士,被称为“流体力学之父”。
他是中国流体力学研究的奠基人之一,对流体力学的研究和发展做出了重要贡献。
蔡增基在1960年代开始研究流体力学,并在70年代提出了一种新的流体力学理论——相对运动理论,在国际上产生了重大影响。
他的研究成果使得传统流体力学的理论得以扩展和完善,为进一步研究和应用流体力学提供了新的思路和方法。
蔡增基的研究成果1.相对运动理论蔡增基在70年代提出的相对运动理论是他最重要的研究成果之一。
相对运动理论引入了微分运动变量,将流体运动的描述从欧拉描述转变为拉格朗日描述。
这一理论充分考虑了流体粒子间的相互作用,对于高速流动和复杂流动问题的研究具有重要意义。
2.流动控制技术蔡增基还在流体力学的应用领域做出了突出贡献。
他提出并研究了多孔介质流动控制技术,该技术可用于控制流体的流动行为,对于提高流体传递效率、减小流体阻力等方面具有重要作用。
这一技术在航空航天、能源、化工等领域得到了广泛应用。
3.教育与推广工作蔡增基不仅在科研方面取得了杰出成就,还致力于流体力学的教育与推广工作。
他培养了一大批优秀的学生,并在学术交流和学术会议上积极推广流体力学的发展。
蔡增基的影响和荣誉蔡增基的研究成果对于国内外学术界产生了重要影响,他的相对运动理论为流体力学的发展提供了新的视角和方法。
流体力学研究方向流体力学是研究流体运动和相互作用的学科,其研究方向包括流体的力学性质、流体的流动规律以及流体与固体的相互作用等。
在工程和科学领域中,流体力学的研究方向涉及广泛,包括气体力学、液体力学、多相流动、湍流流动等。
在气体力学方向的研究中,研究者主要关注气体在不同条件下的流动行为。
气体力学研究的应用范围广泛,包括天气预测、飞行器设计、空气污染控制等。
研究者通过数值模拟、实验研究等手段,深入探究气体在不同环境中的流动规律,以及气体的压力、速度、密度等参数的变化情况。
液体力学是研究液体流动行为的学科,其研究方向主要包括流体静力学、流体动力学以及流体与固体的相互作用等。
液体力学的研究对于工程领域的应用有着重要意义,如水力发电、水资源管理、水力输送等。
研究者通过实验研究、数值模拟等方法,揭示液体在不同条件下的流动规律,深入了解液体的动态行为。
多相流动是研究多种物质相互作用的流体力学研究方向,涉及两种或两种以上物质的流动行为。
多相流动的研究对于化工、能源、环境等领域具有重要意义。
研究者通过实验、数值模拟等手段,研究多相流动的物理特性、相互作用机制等,以提高流体系统的效率和安全性。
湍流流动是流体力学中的一个重要研究方向,主要研究流体在高速流动条件下的不稳定和混乱现象。
湍流流动的研究对于飞行器设计、能源转化等领域具有重要意义。
研究者通过实验、数值模拟等方法,揭示湍流流动的特性和机制,以提高流体系统的可控性和效率。
除了以上几个主要的研究方向外,流体力学还涉及其他一些重要的研究方向,如边界层理论、流体力学数值模拟等。
边界层理论研究的是流体靠近固体边界时的流动行为,对于流体与固体的相互作用研究具有重要意义。
流体力学数值模拟是运用计算机模拟流体流动的数值方法,以解决流体力学问题。
流体力学研究方向包括气体力学、液体力学、多相流动、湍流流动等。
研究者通过实验、数值模拟等方法,深入探究流体的力学性质和流动规律,为工程和科学领域的应用提供理论和实践基础。
炸药化学爆炸环境中模拟钚气溶胶源项实验研究刘文杰;马庆鹏;田立智;王鹏来【摘要】采用高密封爆炸容器为实验平台,以银、钨、锡、铈、钒5种金属为钚的替代材料,开展爆轰加载条件下金属材料气溶胶源项实验,对炸药化学爆炸事故条件下钚气溶胶源项开展实验模拟研究.利用8级冲击式气溶胶采样器对金属气溶胶进行间隔采样,采用电感耦合等离子体质谱分析方法对空气动力学直径10 μm以下的5种金属气溶胶源项分布进行分析,并与美国钚气溶胶外场扩散实验结果进行对比.研究结果表明:金属银在实验室条件下可实现对钚气溶胶源项的模拟,其归一化积累质量分布与钚材料具有较高的一致性,其他4种材料均与钚差距较大.进一步对银气溶胶进行时间间隔采样,并通过能谱分析及扫描电镜等表征手段研究了银气溶胶源项随时间的演化特性.结果表明:爆轰后初次采样时,1.1 ~2.1 μm粒径范围的银气溶胶含量最高;二次采样时,银气溶胶发生了显著的凝并和沉降.【期刊名称】《兵工学报》【年(卷),期】2016(037)003【总页数】8页(P447-454)【关键词】兵器科学与技术;钚气溶胶;银;源项;归一化积累质量分布;粒径分布【作者】刘文杰;马庆鹏;田立智;王鹏来【作者单位】中国工程物理研究院流体物理研究所,四川绵阳621900;中国工程物理研究院流体物理研究所,四川绵阳621900;中国工程物理研究院流体物理研究所,四川绵阳621900;中国工程物理研究院流体物理研究所,四川绵阳621900【正文语种】中文【中图分类】O648.18钚是一种化学性质极为活泼的高毒性放射性核素,在其众多的同位素中,239Pu 是各类核装置最常用的裂变材料。
当核装置遭遇意外化学爆炸或燃烧等事故时,装置中未达到临界条件的钚材料(特指239Pu,下同)将在高温高压环境中液化并发生剧烈氧化反应,反应产生的钚氧化物将以气溶胶形式悬浮在空气中并向外界扩散[1-2]。
由于钚气溶胶粒径极小(亚微米、微米量级)极易被人体吸入,因此与常态钚相比可对人体产生更大的危害[3-4]。
physics of fluids自引率-概述说明以及解释1.引言1.1 概述概述流体物理学是一个研究流体行为和性质的学科领域。
流体是指一种能够流动的物质,包括液体和气体。
流体物理学通过研究流体的力学性质、热力学性质和运动行为,深入了解流体的本质和特征。
流体物理学的研究对于许多领域都具有重要意义。
它在工程学、地球科学、生物学、医学以及天文学等各个领域都有广泛的应用。
例如,工程师们需要了解流体在管道中的流动行为,以设计更高效的输送系统。
气象学家则利用流体物理学的知识来研究大气层的运动规律,以预测天气变化。
生物学家也需要了解血液、淋巴和空气等流体在生物体内的流动特性,以帮助研究生理学和病理学等领域。
流体力学作为流体物理学的重要基础,探讨了流体的运动和作用力之间的关系。
它研究了各种力对流体的影响,包括重力、压力、黏性力和浮力等。
通过研究流体的运动规律,我们可以预测液体或气体在不同条件下的行为,进而优化流体相关的系统和过程。
本篇文章将从多个角度深入探讨流体物理学的基本原理、性质和特征。
通过对流体物理学的全面了解,我们可以更好地理解和应用流体力学的基本概念和原理。
同时,文章还将总结流体物理学的重要性,并探讨其未来的发展方向。
通过本篇文章的阅读,读者将对流体物理学有一个全面而深入的了解,从而为各个领域的应用提供基础和参考。
无论是对于学术研究者、工程师还是其他领域的从业者来说,流体物理学都是一个不可或缺的知识领域。
1.2文章结构文章结构部分的内容可以按照如下方式进行编写:文章结构:本文分为引言、正文和结论三个部分,每个部分有不同的重点和目的。
在引言中,我们将概述本文的目的和结构,并介绍流体物理学的背景。
在正文部分,我们将探讨流体物理学的基本原理、流体的性质和特征以及流体力学的应用。
最后,在结论中,我们将总结流体物理学的重要性,强调其在各个应用领域中的作用,并探讨未来流体物理学的发展方向。
引言部分旨在引导读者了解本文的目的和结构,并为后续内容做好铺垫。