4.2相似三角形导学案
- 格式:doc
- 大小:86.50 KB
- 文档页数:2
浙教版数学九年级上册4.2《相似三角形》教学设计一. 教材分析《相似三角形》是浙教版数学九年级上册4.2节的内容,主要包括相似三角形的定义、性质和判定。
本节内容是学生学习了平面几何基础知识后,对三角形进行进一步研究的开始,是整个初中几何的重要内容之一。
通过本节的学习,学生将对三角形的相似性质有更深入的了解,为后续学习相似多边形、全等三角形等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对平面几何的基本概念和性质有一定的了解。
但是,对于相似三角形的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要在教学过程中关注学生的个体差异,引导他们积极参与课堂活动。
三. 教学目标1.知识与技能:使学生掌握相似三角形的定义、性质和判定,能运用相似三角形的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,体会数学在生活中的应用,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:相似三角形的定义、性质和判定。
2.难点:相似三角形的性质和应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.启发式教学法:引导学生主动提问、探讨,培养学生的几何思维能力。
3.小组合作学习:学生进行小组讨论和实践,培养学生的团队合作意识和自主学习能力。
六. 教学准备1.教学课件:制作课件,展示相似三角形的定义、性质和判定。
2.几何模型:准备一些几何模型,如相似三角形、全等三角形等,用于课堂演示和学生实践。
3.练习题:准备一些练习题,用于巩固学生对相似三角形的理解和应用。
七. 教学过程1.导入(5分钟)利用生活实例或几何模型,引导学生观察相似三角形的特征,激发学生的学习兴趣。
例如,展示两幅描绘同一景物的画作,让学生观察其中的相似三角形。
课题:相似三角形(2)【使用说明及学法指导】1.结合自身情况自学课本,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。
2.针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
【复习目标】1.会运用三角形相似的性质与判定进行有关的计算和推理。
2.能运用三角形相似的知识解决相关的实际问题。
3.能探索解决一些与三角形相似有关的综合性题型。
【复习重、难点】三角形相似的性质与判定进行有关的计算和推理。
【导学流程】】 一.【唤醒热身】】 (一)【知识梳理】】1、定义:比例、第四比例项、比例中项、比例线段;2、比例性质:(1)基本性质:______________________________ (2)合比定理:______________________________ (3)等比定理:______________________________3、相似三角形定义:________________________________.4、判定方法:______________________________________________________________________ 5、相似三角形性质:(1)对应角相等,对应边成比例; (2)对应线段之比等于 ;(对应线段包括哪几种主要线段?) (3)周长之比等于 ; (4)面积之比等于 . 6、相似三角形中的基本图形. (1)平行型:(A 型,X 型) (2)交错型:(3)旋转型: ( 4)母子三角形:(二)【回眸诊断】A BC DE A B C D E ABCD A B C DE D A B C训练1:判断1.两个等边三角形一定相似。
( )2.两个相似三角形的面积之比为1∶4,则它们的周长之比为1∶2。
( ) 3.两个等腰三角形一定相似。
( )4.若一个三角形的两个角分别是40°、70°,而另一个三角形的两个角分别是70°、70°,则这两个三角形不相似。
新苏科版九年级数学下册第六章《相似三角形复习》导学案一、知识要点:1、相似三角形的定义:对应角相等,对应边成比例的三角形叫做相似三角形;应注意:△ABC ∽△C B A '''与△C B A '''∽△ABC 的相似比互为倒数,当k=1时,两个三角形全等。
2、预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似,这是今后证明三角形相似的重要依据。
3、三角形相似的判定定理:定理1:两角对应相等,两三角形相似;定理2:两边对应成比例且夹角相等,两三角形相似; 定理3:三边对应成比例,两三角形相似。
推论1:斜边和直角边对应成比例,两直角三角形相似; 推论2:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 4、黄金分割、位似图形、中心投影和平行投影、实际应用。
二、典型例题: (一)、求线段长或线段比例1 雨后初晴,一学生在运动场上玩耍,从他前面2m 远一块小积水处,他看到了旗杆的倒影,如果旗杆底端到积水处的距离为40 m ,该生眼睛的高度是1.5 m ,那么旗杆的高度是______.例2 如图2所示,在△ABC 中,AD 是BC 边上的中线,F 是AD 上一点,CF 的延长线交AB 于点E ,若AF : FD =1:3,则AE :EB =___________;若AF :FD =1:n(n>0),则AE :EB =________.解析 过D 作DG ∥AB 交CE 于G .由于D 是BC 的中点,可知DG 是BCE 的中位线,解:(二)、求周长与面积或周长与面积比例3 如图,已知:△ABC 中,AB=5,BC=3,AC=4,PQ//AB ,P 点在AC 上(与点A 、C 不重合),Q 点在BC 上. (1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长;(2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长;例 4 如图3所示,在□ABCD 中,E 为DC 边的中点,AE 交BD 于D .若S △DOE =9 cm 2,则S △AOB 等于( )(A)18 cm 2 (B)27 cm 2 (C)36 cm 2 (D)45 cm 2(三)、证明比例线段例5 如图4所示,已知正方形ABCD 中,O 是AC 与BD 的交点, ∠DAC 的平分线AP 于点P ,∠BDC 的平分线DQ 交AC 于点Q ,求证:BD APCD BQ=. (四)、实际应用举例例6 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷,经过了解,教学楼、水塔的高分别是20 m 和30 m ,它们之间的距离为30 m ,小张身高为1.6 m ,小张要想看到水塔,他与教学楼之间的距离至少应有多少米?三、易混淆概念1、比例线段的相关概念在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项, d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
4.3相似三角形【学习目标】 1.使学生理解并掌握相似三角形的概念,理解相似比的概念.2.使学生掌握预备定理,并了解它的承上启下的作用.3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.【学习重点难点】重点:相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.难点:是相似比的概念及找对应边.ABC经某一′对应角之间有什么关系?对应边之间有什么关系?两个三角形,叫做相似三角形.2A B C D E C A D EB (2)C ADE B(2)45°85°n °3a 10A B CA概念:相似三角形对应边的比,叫做两个三角形的 。
(或相似系数)做一做如图, △ADE ∽ △ABC,点D 与点B 是对应点, 根据图形分别说出两个三角形的对应边和对应角?如果△ABC ∽△A'B'C'则△ABC 与△A'B'C'的相似比k 1△A'B'C'与△ABC 的相似比k 2=?归纳:三角形的前后次序不同,所得相似比不同。
交流讨论1、两个全等三角形一定相似吗?为什么?2.两个直角三角形一定相似吗?为什么?两个等腰直角三角形呢?3.两个等腰三角形一定相似吗?为什么?两个等边三角形呢?例1 已知:如图,D 、E 分别是AB 、AC 边的中点。
求证:△ADE ∽△ABC随堂练习1、在下面的两组图形中,各有两个相似三角形,试确定x ,y ,m ,n 的值.''C B BC =BC C B ''=3A B CD E A D C B 第1题C B O AD 第2题例2:如图,D 、E 分别是△ABC 的AB,AC 边上的点, △ABC ∽ △ADE.已知AD:DB=1:2,BC=9cm,求DE 的长练习:1.如图,D 是AB 上的一点。
△ABC ∽ △ACD ,且AD :AC =2:3,∠ADC= 65°, ∠B =43 °. (1)求∠ABC , ∠ACD 的度数;(2)写出△ABC 与 △ACD 的对应边成比例的比例式,求出相似比。
第4课相似三角形、问题引领1理解相似三角形的定义和全等三角形的定义; 2、能运用相似的定义进行相关的计算。
、交流启发1、 两个相似多边形的特征:对应边 ____________ ,对应角 ___________ •2、 相似多边形识别方法:如果 ______________________________ , ______________ ,那么这两个多边形相似. 、自主探索 1相似三角形①在下图两个三角形中,那么,根据相似多边形的识别方法可知, 厂△ ABC 与厶 AB C _________ ,记作ABC ________ △ ABC ,读作“ __________________________________AB H BC CA H那么这个比值k 就表示这两个相似三角形的②做一做 如右图,△ ABC 中,D 为边AB 上任一点,作DE // BC ,交边AC 于E ,用刻度尺和量角器量一量 判断△ ADE 与厶ABC 是否相似.想一想③如果△ ADE 与厶ABC 相似可以得到多少组对应比例的线1段成h 3并分别写出来?④上题中,如果取点D 为边AB 的中点,那么△ ADE 和厶ABC 的相似比为k = ___________ . (此时,线段DE 叫做△ ABC 的中位线。
)2、当厶ABC 和厶ABC •的相似比为1时(即k = 1), 这两个三角形不仅形状相同,而且大小也相同,如果/A =Z A , =Z B ,/C =Z C ,CA厂CA这样的三角形我们就称为 ___________________ 记作ABC _________ △ A B C ,2、下列说法不正确的是( )A •如果两个三角形全等,那么这两个三角形相似。
B •如果两个三角形相似,且相似比为 1,那么这两个三角形全等。
C •如果两个三角形与第三个三角形相似,那么这两个三角形相似。
D •如果两个三角形相似,那么这两个三角形全等。
《相似三角形的周长与面积》导学案一、教学目标知识与技能1.理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2.能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法1.经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观1. 在获得知识的过程中培养学习的自信心,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、重点难点重点理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.三、学情分析相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。
学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
小结:1.本节学习的数学知识:(1)相似三角形(或多边形)长的比等于相似比.(2)相似三角形(或多边形)的面积比等于相似比的平方(3)相似三角形对应高的比、对应中线的比、对应角的平分线的比五、设计思路本节课开始让学生回顾旧内容,再根据提出的问题,让学生对相似三角形的周长、高、中线、角平分线、面积之间的关系进行猜测,然后从理论上,对学生的猜测逐一进行证明。
从两相似三角形周长和面积两方面进行探索,让学生在探索中得出结论,在探索中培养学生初步的发现能力和概括能力。
27.2.3 相似三角形的周长与面积一、自主探究问题一:相似三角形、相似多边形的周长之间的关系 1、已知:△ABC ∽△A'B'C',相似比为k ,求证:'''ABC A B C C k C =V V2、猜想:相似多边形的周长之间有什么关系?3、根据以上两个问题你会得到什么结论?问题二:相似三角形对应高、面积之间的关系1、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:''A D kA D=2、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:'''2ABC A B C S k S =V V .B 'C ''CB 'C ''3、已知:四边形ABCD 相似于四边形A'B'C'D',相似比为k ,它们的面积比是多少?4、根据以上讨论,归纳结论.问题三; 相似三角形对应中线、角的平分线之间的关系已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是中线,则''A D A D的值是多少?若AD ,''A D 分别是角平分线呢?由此你会得到什么结论?二、尝试应用1、(2010福建泉州市惠安县)两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A.9:1B. 3:4C.9:4D.3:16 2、(2010重庆市)已知△ABC 与△DEF 相似且对应中线的比为2:3,则△ABC 与△DEF 的周长比为_____________.3、如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,△ABC 的周长是24,面积是48,求△DEF 的周长和面积.D CB ADC 'D'CE FA 'B 'C 'D '三、补偿提高1、(2010重庆潼南县)△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.2、(2009年宜宾)若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为()A.8B. 6C.4D.23、(2009年安顺)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:A.0个B.1个C.2个D3个4、如图,有一块三角形铁片ABC,已知最长边BC=12cm,高AD=8cm要把它加工成一个矩形铁片,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,且矩形的长是宽的2倍,问加工成的铁片的面积是多少?。
学科养成:△ ABC 中,/ ACB= 90°, CDLAB 于 D,找出图中所有的相似三角形。
【教学过程】时间过程目标 教师活动及方法 学生活动及方法命题立意及思路 点拨形成性评价板书【目标1】知识回顾:1 •相似三角形的概念。
类比全等三角 【例1】已知:△ ABC A ' B ' C ',且相5/形的判定方法 似比为k ,AD 、A ' D '分别是△ ABC 、 △理2 •如何判定两个三角形相似? 探索其它判定 A ' B ' C '对应边BC 、 B ' C ' 上的高,求证:1、性质1: 相解相似三角 形对应高的3、相似图形的性质有哪些?方法S ABC| 2-------- =k似三角形对应咼的比、对应中线提出问题:【探究】△ ABC 和厶A ' B ' C '是两个相似三角形,比等于相似比15/的比、对应角 1、问题:两个三相似比为k ,其中AD 、A ' D '分别为BC 、B ' C 'A2、性质2: 相平分线的比等于相似比角形相似,除了对边上的高,那么 AD 、A ' D '之间有什么关系?培养学生自/ %似三角形对应角分的这个性质, 应边成比例、对应4主探索问题,积线的比等于相似比并会应用这极参与,归纳概H 一些性质解决角相等之外,还有/括能力图 24.3.93、性质3:相问题.相其他的结论吗?似三角形对应中线同桌讨论,大胆图 24.3.9巩固新知的比等于相似比【目标2】 猜想【讨论】得 AD _AB1 •如果两个三角形相似,相似比为 3 : 5,那么对应4、性质4: 相知识点一:A D A B角的角平分线的比等于多少?经历探索相所以-AD-t =AB 知识系统化、准 2•相似三角形对应边的比为0. 4,那么相似比为似三角形的周长比似三角形的AD r A B确化,对应角的角平分线的比为,周长的比有关性质的知识迁移【结论】相似三角形对应咼的比等于为,面积的比为.等于相似比过程,掌握相2433相似三角形的性质--(导学案)【课程目标】15 似三角形性质的应用方法.【目标3】以探究的思想,培养学生积极进取的学习态度,发展学生的认知,使学生体会数学知识的应用价值.合作、交流、动手实践(画图说明)知识点二:三边对应成比例的两个三角形相似知识点三:判定两个三角形相似例题讲解【猜想】相似三角形对应中线、对应角分线、周长的比等于什么呢?【结论】相似三角形对应中线的比等于相似三角形对应角分线的比等于三角形相似性3 .如图,在正方形网格上有A1 B1C1和A2 B2C2 ,这两个三角形相似吗?如果相似,请给出证明,并求出-■: A1B1C1 和-■:A2 B2C2 的面积5、性质5:相似三角形的面积比等于相似比的平方例题相似三角形周长的比等于问题:图24. 3. 10中(1)、(2)、( 3)分别是边长为1、2、3的等边三角形,它们都相似.图24.3.10质方法的应用检验(2)与(1)(2)与(1)(3)与(1)(3)与(1)的相似比=的面积比=的相似比=的面积比=【猜想】相似三角形的面积比等于相似比的平方?【结论】相似三角形的面积比等于小结:1、性质1:相似三角形对应高的比等于相似比2、性质2:相似三角形对应角分线的比等于相似比3、性质3 :相似三角形对应中线的比等于相似比4、性质4 :相似三角形的周长比等于相似比5、性质5 :相似三角形的面积比等于相似比的平方本课的学习你体会到了哪些重要的数学思想?VL^识框^ 一厂相似三角形的性质性质方法的应用c作业:P59――练习1、2.比.AB 14、已知△ ABC A ' B ' C', 一,一,• = ,AB 边上AB 2的中线CD=4厘米,△ ABC的周长为20厘米,△ A'B 'C '的面积是64平方厘米,求:(1) A ' B '边上的中线C'D'的长(2)^ A ' B ' C'的周长(3)^ ABC的面积教学反思:。
《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的对应高、对应中线、对应角平分线的比等于相似比。
3、了解相似三角形周长的比等于相似比,面积的比等于相似比的平方。
二、学习重难点1、重点(1)相似三角形的性质的理解和应用。
(2)相似三角形对应高、对应中线、对应角平分线的比与相似比的关系。
2、难点相似三角形面积的比与相似比的关系的推导和应用。
三、知识回顾1、什么是相似三角形?如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
2、相似三角形的判定方法有哪些?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
四、新课导入我们已经知道了什么是相似三角形以及如何判定两个三角形相似,那么相似三角形具有哪些性质呢?这就是我们今天要学习的内容。
五、相似三角形的性质1、相似三角形的对应角相等,对应边成比例。
例如,在△ABC 和△A'B'C'中,如果△ABC∽△A'B'C',那么∠A=∠A',∠B =∠B',∠C =∠C',且 AB/A'B' = BC/B'C' = AC/A'C' 。
2、相似三角形对应高的比等于相似比如图,△ABC∽△A'B'C',AD 和 A'D'分别是它们的高。
因为∠ADB =∠A'D'B' = 90°,∠B =∠B',所以△ABD∽△A'B'D',则 AD/A'D' = AB/A'B',即相似三角形对应高的比等于相似比。
3、相似三角形对应中线的比等于相似比同样,在△ABC 和△A'B'C'中,AE 和 A'E'分别是中线。
九年级数学导学案课题 4.2 平行线分线段成比例主备:班级:姓名 :导学目标1.掌握和综合运用三角形相似的判定条件和性质.2.在分组合作活动及全班交流的过程中,进一步积累教学活动经验,增强数学学习的自信心。
导学重点综合运用相似三角形判定、性质解决实际问题导学过程(出示课件)一、“先学后教”——利用相似三角形测高的过程与原理方法1:利用阳光下的影子来测量旗杆的高度: (拨:把太阳的光线看成是平行)操作方法:每组选一名学生在直立于旗杆影子的顶端处,其他人分两部分,一部分测出该同学的影长,另一部分测量此时旗杆的影长.根据测量数据,计算旗杆的高度并完成下表.原理图情景图原理图测量数据测量依据测量结果方法2:利用标杆测量旗杆的高度操作方法:每组选一名学生为观测者,在他和旗杆之间的地面上直立一根高度适当的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在同一直线上时,分别测出他的脚与旗杆底部的距离,以及他的脚和标杆底部的距离,然后测出标杆的高。
根据测量数据,计算旗杆的高度并完成下表。
原理图情景图原理图测量数据测量依据测量结果方法3:利用镜子的反射(点拨:入射角=反射角)操作方法:每组选一名学生作为观测者.在感测者与旗杆之间的地面上平放一面镜子,在镜子上做一个标记,观测者看着镜子来回移动,直至看到旗杆的顶端在镜子中的像与镜子上的标记重合。
测出此时他的脚与镜子的距离、旗杆底端与镜子的距离,根据测量数据,计算旗杆的高度并完成下表。
原理图情景图原理图测量数据测量依据测量结果二、当堂检测:高4m的旗杆在水平地面上的影长6m,此时测得附近一个建筑物的影长24m,求该建筑物的高度?。
4.2相似三角形
[学习目标]
1. 了解相似三角形的概念,会表示两个三角形相似.
2. 能运用相似三角形的概念判断两个三角形相似.
3. 理解“相似三角形的对应角相等,对应边成比例”的性质.
[学习重点和难点]
学习重点:相似三角形的概念
学习难点:在具体的图形中找出相似三角形的对应边,写出比例式,需要具有一定分辨能力. [课前自学,课中交流]
一、合作学习,探索新知
1、将图1中△ABC 的边长缩小到原来的2
1,并画在图1中,记为△C B A ''(点'A ,'B ,'C 分别对应点A ,B ,C ). 问题讨论一:△C B A ''与△ABC 对应角之间有什么数量关系? 问题讨论二:△C B A ''与△ABC 对应边之间有什么数量关系?
1)相似三角形的定义: 若△C
B A ''与△AB
C 相似,则记△C B A '' △
ABC,读作: △C B A '' △ABC 3)几何语言表述图
1中△C B A ''与△ABC 相似: ∵∠A= ,∠B= , ∠C= C A BC =='' ∴△C B A '' △3、(1)相似三角形的性质(2图1中△C B A ''与△ 二、应用新知
例1如图2,D ,E 分别是AB ,AC 边的中点,求证:△ADE ∽△ABC.
找一找:已知:如图2,图3,图4,根据3个图形,分别写出他们的对应角和对应边的比例式.
(1)△ABC ∽△ADE ,其中DE ∥BC
(2)△ABC ∽△ADE ,其中∠ADE =∠C
(3)△ABC ∽△ADE ,其中DE ∥BC
B C A B 图3A B B
例2 如图2,△ABC ∽△ADE.已知AD:DB=1:2, BC=9㎝,求DE 的长.
变式:如图5,△ABC ∽△ADE ,AD=2㎝,AB=6㎝,AC=4㎝,求AE 的长
[当堂训练] A 巩固练习:
1.下列说法正确的是:
①两个等腰三角形一定相似②两个直角三角形一定相似③两个等边三角形一定相似.④两个等腰直角三角形一定相似⑤两个全等三角形一定相似
2.如图,D 是
AB 上一点
, △
ABC ∽△ACD,且AD:AC=2:3, AD=4,∠ADC=65°, ∠B=43°
(1)求∠ACB, ∠ACD 的度数;
(2)写出△ABC 与△ACD 的对应边成比例的比例式,求出相似比..
3.下面两组图形中,每组的两个三角形相似,试分别确定a,x 的值.
(1)
B 中考链接:
4.(2019广东梅州市)已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )
A .2
B .3
C .6
D .54
C 拓展提高:
5.已知△ABC 与△DEF 相似, △ABC 的三边为2,3,4, △DEF 的最大边为8,(1)求其余两边.
(2)若改为△DEF 的一边为8呢?求其余两边.
[教学反思] [个性化设计] B A D C B B 3657070B。