新人教版初中数学导学案: 一元一次不等式组(1)
- 格式:doc
- 大小:247.50 KB
- 文档页数:4
人教版初中数学教案(5篇)人教版初中数学教案大全篇一一元一次不等式组教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点正确分析实际问题中的不等关系,列出不等式组。
知识重点建立不等式组解实际问题的数学模型。
探究实际问题出示教科书第145页例2(略)问:(1)你是怎样理解“不能完成任务”的数量含义的?(2)你是怎样理解“提前完成任务”的数量含义的?(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?师生一起讨论解决例2.归纳小结1、教科书146页“归纳”(略).2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?在讨论或议论的基础上老师揭示:步法一致(设、列、解、答);本质有区别。
(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
人教版初中数学教案篇二掌握用因式分解法解一元二次方程。
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。
重点用因式分解法解一元二次方程。
难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。
一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。
二、探索新知(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:(1)x(2x+1)=0(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。
数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
(1)(2第九章不等式与不等式组9.1.1 不等式及其解集学习目标: 1、了解不等式及一元一次不等式的概念。
2.、理解不等式的解、不等式的解集的概念。
3、能在数轴上正确表示不等式的解集。
学习重点、难点:理解不等式的解集,会在数轴上表示解集.学习过程:一、学前准备:1.等式:用“=”连接的表示相等关系的式子叫做等式.2.一元一次方程:含有_____个未知数,并且未知数的次数是_____的方程叫做一元一次方程.3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解二、新课探究:(一)、不等式、一元一次不等式的概念1. 你能列出下列式子吗?(1)5小于7;(2)x与1的和是正数(3)m的2倍大于或等于-1;(4)x-3不等于2(5)a不大于1 ;(6)y的2倍与1的和不等于3(7)c与4的和的30﹪不大于-2不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。
一元一次不等式:含有且未知数的次数是的不等式,叫做一元一次不等式.巩固练习2:下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)3>2 (5) 2a+1≥0 (6)32x+2x(7)x<2x+1 (8)x=2x-5 (9)2x +4x<3x+1 (10)a+b≠c(11)x十3≥6 (12) 2m< n(二)、不等式的解、不等式的解集总结1:1、不等式的解:使不等式的的值叫做不等式的解.2、不等式的解有个。
由上题我们可以发现,当x>3时,不等式x+3 > 6总成立;而当x≤3时,不等式x+3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x+3 > 6的解,因此x>3表示了能使不等式x+3 > 6成立的x的取值范围,叫做不等式x+3 > 6的解的集合,简称解集总结2: 1.不等式的解集:一个含有未知数的不等式的组成这个不等式的解集。
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
课题:9.3一元一次不等式组(1)主备人:谭宪宗 2014级 班 组学习目标:1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。
学习重点:一元一次不等式组解集的理解 学习难点:一元一次不等式组的解集和解法。
探究案探究一:不等式组的有关概念现有两根木条a 和b ,a 长10 cm ,b 长3 cm.如果再找一根木条。
,用这三根木条钉成一个三角形木框,如果设木条长x cm ,那么对木条的长度有什么要求?类似于方程组 叫做一元一次不等式组。
判别下列不等式组中哪些是一元一次不等式组,并说明为什么?(1)⎩⎨⎧>-<03x 0x (2)⎩⎨⎧<->3y 3x (3)⎩⎨⎧<>4x 2x(4)⎩⎨⎧>-<-1y x 413x (5)⎪⎩⎪⎨⎧<->-09014x 2x (6) ⎪⎩⎪⎨⎧<->-<+03x 123x 532x 问题:怎样确定不等式组的解集呢?不等式组中所有不等式的解集的_____,叫做这个不等式组的解集。
求不等式组的_____的过程,叫做解不等式组。
例:利用数轴来确定不等式组的解集(1)⎩⎨⎧->>13x x (2)⎩⎨⎧-<<1x 3x (3)⎩⎨⎧><-1x 3x (4)⎩⎨⎧-<>1x 3x归纳:求两个一元一次不等式组的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两个不等式的解集的区域都覆盖的部分.归纳小结:一元一次不等式组解集四种类型如下表:(1)⎩⎨⎧->>3,2x x 的解集是______; (2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.探究二:解一元一次不等式组 例 :解下列不等式组:①22841x x x x >+⎧⎨+>-⎩ 解: 解不等式①,得 .解不等式②, 得 . 把不等式○1和○2的解集在数轴上表示出来:所以这个不等式组的解集为:2x+3≥x+11 ② x x -<-+21352解:①① ②解一元一次不等式组的两个步骤:(1)求出这个不等式组中各个 ; (2)利用 求出这些不等式的解集的公共部分。
课题:9.3一元一次不等式(组)的应用(一)【学习目标】1. 知道列一元一次不等式(组)解应用题的一般步骤,会列一元一次不等式组解较简单的应用题.2.培养从数学的角度理解问题、解决问题的能力,发展应用意识. 【学习重点与难点】1.重点:列一元一次不等式组解较简单的应用题.2.难点:从数学的角度理解实际问题.【预习感知】:1. 格桑家办了一个小宾馆,开业那天来了48名旅客.如果每间住5人,房间不够;如果每间住6人,又住不满.问格桑家的小宾馆有几间客房? 解:设格桑家的小宾馆有x 间客房. 根据题意列不等式组,得______________ ,______________.⎧⎨⎩ 解不等式组,得_______________. x 是正整数,所以x =________. 答:格桑家的小宾馆有____间客房.2.王波今天70岁,比张明年龄的5倍还要大,不过到后年张明年龄的5倍就比王波的年龄大了.求张明今年的年龄.解:设张明今年的年龄为x 岁. 根据题意列不等式组,得______________ ,______________.⎧⎨⎩ 解不等式组,得_______________. x 是正整数,所以x =________. 答:张明今年的年龄为______岁.【共研释疑】(课内完成) 例题讲解:例1. 一次智力测验,有20道选择题.评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?师生互动例2. 七年级三班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:请你帮助班长分组,你知道该分几个组吗?(注意写出解题过程,不能仅有分组的结果哟!)例3.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?【评测拓展】1.1、某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数.2. 某车间生产机器零件,若每天比预定计划多做几件,8天所做零件的总数超过100件,如果每天比预定计划少做一件,那么8天可做零件的总数不到90件,问预定计划每天做多少件?3.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?4.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?5.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?14题课后作业 9.3一元一次不等式(组)的应用(一) 班级________ 姓名________1.如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( ) A .大于2千克 B .小于3千克C .大于2千克且.小于3千克D .大于2千克或.小于3千克 2.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人3.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)54.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.5.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了______道题.6.三个连续自然数的和不大于 15,这样的自然数组有 组。
铁冲中学七年级数学导学案制定人: 审核:课题 9.3.1一元一次不等式组(第一课时)学习目标 1、掌握一元一次不等式组的不同形式,理解不等式组的解集的涵义。
2、会利用数轴准确的确定一元一次不等式组的解集。
体会数形结合的思想 学习重点 1.理解不等式组的有关概念;2.会解一元一次不等式组,并在数轴上确定其解集 学习难点在数轴上找公共部分,确定不等式组的解集课堂流程 学法指导 教师点拨情境导入 目标点睛小熊重90千克,米老鼠重40千克,小熊的体重比米老鼠与小猪体重的和还重,却比三只小猪的重量小,小猪的体重可能是多小?合作探究 激情展示一区(一)一元一次不等式组的定义:巩固练习:下列各式哪些是一元一次不等式组,哪些不是,为什么?二区不等式组的解集你们会解这两个不等式吗?并把解集在同一坐标轴上表示出来 (1)X+40<90 (2)3X >90 三区1.不等式组的解集在数轴上表示如图,其解集是什么?四区2.求下列不等式组的解集(在同一数轴上表示出两个不等式的解集,并写出不等式组的解集): 五区例1解下列不等式组(求下列不等式组的非负整数解)2x-1>x-2 x+8>4x-1 六区1、解下列不等式组:不等式组数轴表示 解集 ⎩⎨⎧>>>).(,b a b x a x ⎩⎨⎧><<).(,b a b x a x⎩⎨⎧>><).(,b a b x a x⎩⎨⎧><>).(,b a b x a x我的收获⎩⎨⎧>>.7,3)1(x x ⎩⎨⎧->>.3,2)2(x x ⎩⎨⎧->->.5,2)3(x x ⎩⎨⎧->>.4,0)4(x x ⎩⎨⎧<<.7,3)5(x x ⎩⎨⎧-<-<.5,2)6(x x ⎩⎨⎧<-<.4,1)7(x x ⎩⎨⎧-<<.4,0)8(x x ⎩⎨⎧<>.7,3)9(x x ⎩⎨⎧->-<.5,2)10(x x ⎩⎨⎧<->.4,1)11(x x ⎩⎨⎧-><.4,0)12(x x ⎩⎨⎧><.7,3)13(x x ⎩⎨⎧-<->.5,2)14(x x ⎩⎨⎧>-<.4,1)15(x x ⎩⎨⎧-<>.4,0)16(x x 第一组 第二组 第三组 第四组⎩⎨⎧-<++>-148112x x x x (1) ⎩⎨⎧X>3X<6 4(x +5) >100 4(y -5)<68 (4)3x-5 >5x+1⎪⎩⎪⎨⎧-≥+≤->-.5.2,21,45)5(x x x x -1 2–2 –1 0 1 2–2 –1 0 1 2 –2 –1 0 1 2xx x x -<-++≥+213521132⎩⎨⎧+--+1121481x x x x ><)(⎩⎨⎧+-+1314352><)(x x ⎩⎨⎧++131257433><)(x x ⎪⎩⎪⎨⎧-<-++≥+)2(21352)1(1132)4(x x x x。
9.3.1一元一次不等式组(1)姓名________________ 组别_________________ 评价__________________学习目标:1、理解一元一次不等式组,一元一次不等式组的解集,解不等式组等概念;2、会解一元一次不等式组,并会用数轴确定解集.3、感受学习一元一次不等式组的必要性,逐步熟悉数形结合的思想方法,感受类比与化归的思想。
一、复习巩固1、___________________________________________________称为一元一次不等式。
2、_______________________________________________叫做一元一次不等式的解集。
3、______________________________________________叫做解一元一次不等式。
4、解一元一次不等式的一般步骤有(1)______________(2)_________________(3)_________________(4)_________________(5)_________________5、解不等式并在数轴上表示出它们的解集:(1)2-3x>5 (2) 2y+6<3二、自主先学请同学们带着下列问题去自学课本127-128页的内容。
1、什么是一元一次不等式组?2、什么叫做一元一次不等式组的解集?三、自学总结概念:1、一元一次不等式组:含有___________个未知数,且未知数的次数是_________的两个不等式,组成一元一次不等式组.2、一元一次不等式组的解集:一元一次不等式组中的两个不等式的________部分,叫做这个一元一次不等式组的解集.3.利用数轴直接求出不等式的解集(对应总结口诀):(1)x4x2⎧<⎨<-⎩的解集是_______; (2)x4x2⎧>⎨>⎩的解集是_______;(3)x3x1⎧<⎨>-⎩的解集是______;(4)x2x1⎧<-⎨>-⎩的解集是_______.四、总结分享1、总结一下你自学过程中的收获,你觉得有哪些内容是本节课需要掌握的。
《一元一次不等式组》导学案一、学习目标1、理解一元一次不等式组的概念。
2、掌握一元一次不等式组的解集的确定方法。
3、会解一元一次不等式组,并能用数轴表示其解集。
二、学习重点1、一元一次不等式组的解集的确定。
2、解一元一次不等式组。
三、学习难点在数轴上确定一元一次不等式组的解集。
四、知识链接1、一元一次不等式的概念及解法。
2、数轴的概念及数轴上表示数的方法。
五、学习过程(一)引入同学们,我们之前已经学习了一元一次不等式,知道了如何求解一元一次不等式。
那么,如果有多个一元一次不等式组合在一起,又该如何处理呢?这就是我们今天要学习的一元一次不等式组。
(二)一元一次不等式组的概念1、观察下列不等式组:(1)\(\begin{cases}x > 3 \\ x < 5\end{cases}\)(2)\(\begin{cases}2x 1 > 0 \\ 3x + 2 < 8\end{cases}\)2、思考:这些不等式组有什么共同特点?3、总结:几个含有同一个未知数的一元一次不等式合起来,就组成一个一元一次不等式组。
(三)一元一次不等式组的解集1、对于不等式组\(\begin{cases}x > 3 \\ x < 5\end{cases}\)(1)分别解每个不等式:\(x > 3\),\(x < 5\)(2)思考:同时满足这两个不等式的\(x\)的取值范围是什么?(3)结论:同时满足两个不等式的\(x\)的取值范围,叫做这个不等式组的解集。
2、对于不等式组\(\begin{cases}2x 1 > 0 \\ 3x + 2 <8\end{cases}\)(1)解不等式\(2x 1 > 0\),得:\(x >\frac{1}{2}\)(2)解不等式\(3x + 2 < 8\),得:\(x < 2\)(3)那么这个不等式组的解集就是\(\frac{1}{2} < x < 2\)(四)在数轴上表示不等式组的解集1、例如,不等式组\(\begin{cases}x > 3 \\ x < 5\end{cases}\)的解集为\(3 < x < 5\)在数轴上表示为:先画数轴,标出 3 和 5 这两个点。
2.6.2 一元一次不等式组 导学案班级:_____________姓名:_____________一、学习目标1.会解由两个一元一次不等式组成的不等式组并能用数轴求得解集;2.总结解一元一次不等式组的步骤及情形。
3/通过总结解一元一次不等式组的步骤,培养类比推理能力和不完全归纳能力。
温故知新1、解一元一次不等式组的步骤:先分别求出 的解集,再利用数轴求出这些不等式的解集的 ,即为这个不等式组的解集。
2.解下列不等式组,并把它们的解集分别表示在数轴上:(1)-5<2x+1<6 (2)-2<1-15x <353、确定一元一次不等式组的解集的口诀:同大取大,同小取小,大小小大中间................找,大大小小无解了。
..........三、自主探究:阅读课本p56-57探究(一)例1:现有两根木条a 和b ,a 长7cm ,b 长3cm ,如果要再找一根木条x ,用这三根木条钉成一个三角形木框,在什么条件下,长度为3cm ,7cm ,xcm 的三条线段可以围成三角形?(你能列不等式组解决此问题吗?)解:.例2:解不等式组⎩⎨⎧-≤->+x284x 02x 3并求出不等式组的最小整数解。
例3:解不等式组:⎪⎩⎪⎨⎧-≥+-<-.321334)1(372x x x x ;并求出不等式组的负整数解。
例4、若不等式组:()231,132x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程2x -4=ax 的根,求a 的值。
四、随堂练习 :1、如果关于x 的不等式组⎩⎨⎧-<+>232a x a x 无解,则常数a 的取值范围2.三个数3,1-a,1-2a 在数轴上从左到右依次排列,你能确定a 的取值范围吗?3.小明,小华,小刚三人在一起讨论一个一元一次不等式组. 小明:它的所有解为非负数。
小华:其中有一个不等式的解集为x ≤8.小刚:其中有一个不等式在求解的过程中需改变不等号的方向。
课题:9.3 一元一次不等式组(1)
【学习目标】1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,会解一元一次不等式组,并会用数轴确定解集;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。
【学习重点】一元一次不等式组的有关概念及解法
【学习难点】一元一次不等式组解集的理解
一【自主学习】
(一)、预习自我检测(预习课本
1.现有两根木条a和b,a长10 cm,b长3 cm.如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,
那么根据三角形的三边关系,则x必须同时满
足 和 . 类似于方程组,得出一元一次不等式组的
定义。
定义:由 组成的不等式组,叫做一元一次不等
式组。
2、判断下列不等式是不是一元一次不等式组:
(1)
3.做一做:
不等式x>4x-9的解集是 ,不等式 的解集是 并把每
个解集表示在数轴上:
4 猜猜看,不等式组 的解集是 。
一般地,几个一元一次不等式的解集的 叫做由它们所组成的一元一次
不等式组的 。
求 的过程叫做解不等式组。
二【合作探究】
1.试一试:你能找到下面几个不等式组的解集吗?
⎩⎨⎧>+<-233612)3(x y ⎩⎨⎧≤≥40)2(x x ⎩⎨⎧≥-=+1
2313)4(x x ⎩⎨⎧-<++>-1
48112x x x x 12+≤x x ⎩⎨⎧+≤->1294x x x x
根据练习总结:不等式组解集的四种情况:
(1) (2)
(3) ;(4)
上面的表示可以用口诀来概括:大大取大,小小取小,大小小大中间找,大
大小小不用找。
2. 典型例题:解下列不等式组 (1) (2)
你能说说解一元一次不等式组的一般步骤吗?
(1) ;(2) (3)
二、【达标测试】:
1.将下列数轴上的x 的范围用不等式表示出来
2、解下列不等式组,并在数轴上表示解集。
⎩⎨⎧-<++>-148112x x x x ⎪⎩⎪⎨⎧-<-++≥+x x x x 213
521132
⑴()4321213x x x x
-<-⎧⎪⎨++>⎪⎩ ⑵()
433213
1
1522x x x x
-<+⎧⎪⎨->-⎪⎩
四、【我的感悟】:这节课我的最大收获是: 我不能解决的问题是: ____________________________________ ____________________________________
【课后反思】
:。