2018-2019学年江苏省无锡市梁溪区九年级上期中数学试题及答案苏科版
- 格式:pdf
- 大小:165.65 KB
- 文档页数:4
○…………外………内…………○…绝密★启用前 苏科版2018--2019学年度第一学期 九年级期中考试数学试卷 望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!1.(本题3分)在下列方程中是一元二次方程的是 ( ) A .0222=+-y xy x B .1)3(2-=+x x x C .01=+x x D .322=-x x 2.(本题3分)在半径为6cm 的圆中,长为6cm 的弦所对的圆周角...的度数为( ) A . 30° B . 60° C . 30°或150° D . 60°或120° 3.(本题3分)有一人患流感,经过两轮传染后,共有121人患上了流感,那么每轮传染中平均一个人传染的人数为 A . 11人 B . 10人 C . 9人 D . 8人 4.(本题3分)(题文)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( ) A . 5 B . 7 C . 5或7 D . 10 5.(本题3分)如图,四边形ABCD 为圆内接四边形∠A=85°,∠B=105°,则∠C 的度数为( )……外…订…………○※※答※※题※※ …………A . 115° B . 75° C . 95° D . 无法求6.(本题3分)某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,则每次降价的百分率为( )A . 19%B . 20%C . 21%D . 22%7.(本题3分)一次数学测试后,随机抽取6名学生的成绩如下:79,89,89,94,84,87,关于这组数据不正确的是( )A .众数是89B .极差是15C .平均数是87D .中位数是878.(本题3分)如图,已知⊙O 的弦AB 、CD 相交于点E ,弧AC 的度数为60°,弧BD的度数为100°,则∠AEC 等于( )A . 60°B . 100°C . 80°D . 130°9.(本题3分)关于x 的一元二次方程x 2+(a 2﹣2a )x+a ﹣1=0的两个实数根互为相反数,则a 的值为( )A . 2B . 0C . 1D . 2或010.(本题3分)某厂1月印科技书籍40万册,第一季度共印140万册,问2月、3月平均每月增长率是多少?设平均增长率为 ,则列出下列方程正确的是( )A .B .C .D .二、填空题(计32分)11.(本题4分)如图,圆锥体的高h ,底面半径r=1cm ,则圆锥体的侧面积为_________cm 2.12.(本题4分)某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是__.13.(本题4分)如图,点A 、B 、D 在⊙O 上,∠A=25°,OD 的延长线交直线BC 于点………○………………○…:___________ …………○…………内…………装…………C ,若∠OCB=40°,则直线BC 与⊙O 的位置关系为___. 14.(本题4分)如图,在Rt △ABC 中,∠ACB=90°,AC=BC=2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为_____.15.(本题4分)方程x (x-2)=-(x-2)的根是_______________. 16.(本题4分)小明想用一个扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的侧面积是 2cm . 17.(本题4分)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表: 将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是 分. 18.(本题4分)如图,半圆O 是一个量角器,△AOB 为一纸片,点A 在半圆上,边AB 与半圆相交于点D ,边OB 与半圆相交于点C ,若点C 、D 、A 在量角器上对应读数分别为45°,70°,160°,则∠B 等于 度.…………………………※※题※※…………三、解答题(计58分)19.(本题8分)解下列方程(1)(2)(3)(配方法)20.(本题8分)如果方程 与方程 有一个公共根是3,求 a 、b 的值,并分别求出两个方程的另一个根.21.(本题8分)如图,某养猪户想用30米长的围栏设计一个矩形的养猪圈,其中猪圈一边靠墙MN ,另外三边用围栏围住,MN 的长度为15m ,为了让围成的猪圈(矩形ABCD )面积达到112m 2,请你帮忙计算一下猪圈的长与宽分别是多少?………装…………___________姓名:_________…………订…………○………22.(本题8分)(本小题满分9分)某百货大搂服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件. (1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元? (2)用配方法说明:要想盈利最多,每件童装应降价多少元? 23.(本题8分)如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为点E ,AO=1. (1)求∠C 的大小; (2)求阴影部分的面积.………○…………线……※※题※※ ……○…24.(本题9分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?25.(本题9分)如图所示,已知扇形AOB 的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则: (1)求出围成的圆锥的侧面积为多少? (2)求出该圆锥的底面半径是多少?参考答案1.D.【解析】试题分析:A.方程含有两个未知数,故不是;B.方程的二次项系数为0,故不是;C.不是整式方程;D.符合一元二次方程的定义.故选D.考点:一元二次方程的定义.2.C【解析】试题解析:如图,弦AB所对的圆周角为∠C,∠D,连接OA、OB,因为AB=OA=OB=6,所以,∠AOB=60°,根据圆周角定理知,∠C=12∠AOB=30°,根据圆内接四边形的性质可知,∠D=180°-∠C=150°,所以,弦AB所对的圆周角的度数30°或150°.故选C.3.B【解析】设每轮传染中平均一个人传染了x人,根据题意得:()11121x x x+++=,解得110x=,212x=-(不合题意,舍去).故选B.4.B【解析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.本题解析:x ²-4x+3=0(x−3)(x−1)=0,x−3=0或x−1=0,所以x ₁=3,x ₂=1,当三角形的腰为3,底为1时,三角形的周长为3+3+1=7,当三角形的腰为1,底为3时不符合三角形三边的关系,舍去,所以三角形的周长为7.故答案为7.考点:解一元二次方程-因式分解法, 三角形三边关系, 等腰三角形的性质5.C【解析】试题分析:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠C=180°-∠A=180°-85°=95°.故选C.点睛:本题考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.6.B【解析】分析:设每次降价的百分率为x,第一次降价后价格变为100(1-x),第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.详解:设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元,根据题意,得100(1-x)2=64即(1-x)2=0.64解之,得x1=1.8,x2=0.2.因x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故选B.点睛:此题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍.7.D【解析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.解:A、众数是89,故此选项正确,不符合要求;B、极差是94﹣79=15,故此选项正确,不符合要求;C、平均数是87,故此选项正确,不符合要求;D、中位数是88,故此选项错误,符合要求;故选D.8.C【解析】试题解析:连接AD,∵AC的度数为60.,∴∠=,D30∵BD的度数为100,A∴∠=,50AEC A D∴∠=∠+∠=80.故选C.9.B【解析】设方程的两根为x1,x2,根据题意得x 1+x 2=0,所以a 2-2a=0,解得a=0或a=2,当a=2时,方程化为x 2+1=0,△=-4<0,故a=2舍去,所以a 的值为0.故选B .10.C【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设2,3月份平均每月的增长率是x ,那么可以用x 表示2,3月份的印刷科技书籍,然后根据题意可列出方程为.【详解】如果设2,3月份平均每月的增长率是x ,那么可以用x 表示2,3月份的印刷科技书籍分别是40(1+x )、40(1+x )2, 然后根据题意可列出方程为:40+40(1+x )+40(1+x )2=140.故选C .【点睛】此题主要考查了由实际问题抽象出一元二次方程,根据增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量得出是解题关键.11.2π()2cm =, 底面周长是2π.则圆锥体的侧面积是:()2122π2π.2cm ⨯⨯= 故答案是: 2π.点睛:根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.12.210.【解析】试题分析:根据中位数的定义先把这组数据从小到大排列,再找出最中间的数.把这组数据从小到大排列为:200,200,210,220,240,最中间的数是210,则这组数据的中位数是210;故答案为:210.考点:中位数.13.相切【解析】因为∠A=25°,所以∠O=50°,又因为∠OCB=40°,所以∠COB=90°,即直线BC与⊙O相切.14.【解析】【分析】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=2,∴AB=2,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=,故答案为:.【点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分=S扇形ABD是解题的关键. 15.x1=2,x2=-1【解析】解:移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.16.15【解析】试题分析:圆锥的侧面积=LR=×5×6π=15π考点: 1.圆锥的计算;2.扇形面积的计算17.77.4.【解析】试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×+80×+92×=77.4分.考点:加权平均数.18.20【解析】试题分析:连结OD,如图则∠DOC=70°﹣45°=25°,∠AOD=160°﹣70°=90°,∵OD=OA,∴∠ADO=45°,∵∠ADO=∠B+∠DOB,∴∠B=45°﹣25°=20°.故答案为:20.考点:圆周角定理.19.(1)=6,=-1;(2)=3,=;(3)【解析】试题分析:(1)、第一个利用十字相乘法;(2)、第二个利用提取公因式法;(3)、第三个利用配方法进行求解.试题解析:(1)、(x-6)(x+1)=0 解得:=6,=-1(2)、2(x-3)-3x(x-3)=0 (x-3)(2-3x)=0 解得:=3,=(3)、-2x=5-2x+1=6=6 解得:考点:一元二次方程的解法20.a=b=1;该方程的另一个根为-2;该方程的另一个根为-5.【解析】试题分析:把x=3代入题中两个方程中,得到关于a、b的二元一次方程组,用适当的方法解答,求出a 、b 的值,再解方程即可求得.试题解析:将 代入两个方程得 ,解得: ,∴;将 代入方程 得 ,∴, ∴ , ∴该方程的另一个根为-2;将代入方程 得 ,∴, ∴ , ∴该方程的另一个根为-5.21.猪圈的长是14m ,宽是8m【解析】试题分析:设猪圈靠墙的一边长为x 米,依题意列出方程求解即可.试题解析:设猪圈靠墙的一边长为x 米,依题意得: ()302112.x x -=即: 215560.x x -+=解得: 127,8x x ==.当7x =时, 302x - 30721615.=-⨯=>不合题意,舍去.当8x =时, 302x -符合题意.答:猪圈的长是14m ,宽是8m.22.(1)20;(2)15.【解析】试题分析:(1)设每件童装应降价元,根据每天销售这种童装盈利1200元= 一件的利润×销售量列出方程,然后解方程即可;(2)设盈利为元,求出y 与x 的函数关系式,然后配方化为顶点式,求出顶点坐标即可解决问题.试题解析:(1)设每件童装应降价元,根据题意得:整理得:解得:根据题意得到扩大销售量,增加盈利,减少库存,故舍去. ∴每件童装应降价20元.(2)设盈利为元,根据题意得:则当=15元时,达到最大,所以每件童装应降价15元.考点:1.一元二次方程的应用2.二次函数的应用.23.解:(1)∵CD 是圆O 的直径,CD ⊥AB ,∴AD BD 。
2019学年江苏省无锡市九年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知是关于的一元二次方程的一个解,则的值为(). A. B. C. D.2. 下列图形中,不是中心对称图形的是().3. 关于的方程是一元二次方程,则的值为().A. B. C. D.无解4. 三角形的外心是().A.各内角的平分线的交点B.各边中线的交点C.各边垂线的交点D.各边垂直平分线的交点5. 如图,已知是⊙直径,,则等于().A. B. C. D.6. 如图,⊙的半径为5,弦的长为8,是弦上的动点,则线段长的最小值为().A.2 B.3 C.4 D.57. 如图,在中,若,,,、分别是、的中点,则以为直径的圆与的位置关系为().A.相交 B.相切 C.相离 D.无法确定8. 定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知方程是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是().A. B. C. D.9. 如图,在平面直角坐标系中,直线经过点、,⊙的半径为2(为坐标原点),点是直线上的一动点,过点作⊙的一条切线,为切点,则切线长的最小值为().A. B. C. D.10. 如图,在直角坐标系中放置一个边长为的正方形,将正方形沿轴的正方向无滑动的在轴上滚动,当点第三次回到轴上时,点运动的路线与轴围成的图形的面积和为().A. B. C. D.二、填空题11. 若,则.12. 将一元二次方程化成一般形式为.13. 在比例尺为的地图上,测得、两地间的图上距离为厘米,则其实际距离为米.14. 关于的方程有两个不相等的实数根,则的取值范围是.15. 如图,、是⊙的切线,切点分别为、,若,则_____°.16. 如图,在中,点是边的中点,且//,则___________.17. 若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是______.18. 如图,等腰直角三角形顶点在轴上,,,反比例函数的图象分别与,交于点、.连结,当∽时,点的坐标为.三、解答题19. 解下列方程(每小题4分,共16分).(1);(2) (配方法) ;(3);(4) (公式法) .四、选择题20. (本题满分6分)设、是方程的两个实数根,不解方程,求下列代数式的值.(1);(2)五、解答题21. (本题满分7分)已知关于的方程.(1)试说明:无论取什么实数值,方程总有实数根;(2)若等腰的一边长为1,另两边长、恰好是这个方程的两个实数根,求的周长.六、填空题22. (本题满分6分)如图,在由边长为1的小正方形组成的网格图中有,建立平面直角坐标系后,点的坐标是.(1)以为位似中心,作∽,相似比为,且保证在第三象限;(2)点的坐标为(,);(3)若线段上有一点,它的坐标为,那么它的对应点的坐标为(,).七、解答题23. (本题满分7分)果农李明种植的草莓计划以每千克元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,价格连续两次下调后,以每千克元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:在原下调后价格的基础上,再次以相同的百分率降价;方案二:不打折,每吨优惠现金元.试问小刘选择哪种方案更优惠,请说明理由.24. (本题满分7分)如图,点、分别为、边上两点,且,,,.(1)试说明:∽;(2)若,求的长.25. (本题满分7分)已知:如图,内接于⊙,点在的延长线上,.(1)求证:是⊙的切线;(2)若,,求的长.八、填空题26. (本题满分8分)如图所示,,,,点是以为直径的半圆上一动点,交直线于点,设.(1)当时,求弧的长;(2)当时,求线段的长;(3)若要使点在线段的延长线上,则的取值范围是________ _.(直接写出答案)九、解答题27. (本题满分10分)将绕点按逆时针方向旋转度,并使各边长变为原来的倍,得,如图①,我们将这种变换记为.(1)如图①,对作变换得,则;直线与直线所夹的锐角为度;(2)如图②,中,,,对作变换得,使点、、在同一直线上,且四边形为矩形,求和的值;(3)如图③,中,,,,对作变换得,使点、、在同一直线上,且四边形为平行四边形,求和的值.28. (本题满分10分)如图,在中,,,.点、都是斜边上的动点,点从向运动(不与点重合),点从向运动,.点、分别是点、以、为对称中心的对称点,于,交于点.当点到达顶点时,、同时停止运动.设的长为,的面积为.(1)求证:∽;(2)求关于的函数解析式;(3)当为何值时,为等腰三角形?参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
2017-2018学年江苏省无锡市梁溪区九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程是一元二次方程的是()A.3x+1=5 B.x﹣2y=3 C.x2﹣3﹣=0 D.1﹣x﹣x2=02.关于x的一元二次方程x2+mx﹣2=0的一个根为x=1,则m的值为()A.1 B.2 C.﹣1 D.﹣23.等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A.8 B.10 C.8或10 D.不能确定4.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0 C.4x2+4x+1=0 D.x2﹣2x﹣1=05.若关于x的一元二次方程x2﹣2x+n=0无实数根,则n的取值范围是()A.n<1 B.n>1 C.n<2 D.n>26.在圆内接四边形ABCD中,若∠B=2∠D,则∠B等于()A.45° B.60°C.90°D.120°7.下列四个命题:(1)三点确定一个圆;(2)平分弦的直径必定垂直于这条弦;(3)相等的圆心角所对的弧相等;(4)长度相等的两条弧是等弧.其中错误的个数是()A.1个B.2个C.3个D.4个8.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm9.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60° B.30°C.40°D.50°10.如图,正方形ABCD的边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连接AP,过点B作BH垂直于直线AP于点H,在点P运动过程中,点H所走过的路径长是()A.2 B.C.πD.2π二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)一元二次方程x2﹣x=0的根是.12.(2分)已知x=a是方程x2+x﹣1=0的一个根,则a(a+1)的值为.13.(2分)如果关于x的一元二次方程x2+x﹣m=0有两个不相等的实数根,那么m的取值范围是.14.(2分)一个直角三角形的两直角边长之差为2cm,斜边为4cm,则它的面积为cm2.15.(2分)若圆锥的底面直径为4cm,母线长为5cm,则其侧面积为cm2(结果保留π).16.(2分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,∠P=40°,则∠ABC的度数为.17.(2分)如图,PA、PB是⊙O的切线,切点分别为A、B,AC是⊙O的直径,若∠P=60°,则∠ACB=°.18.(2分)如图,两个半径相等的直角扇形的圆心C、E分别在对方的圆弧上,其中点C是的中点,半径AE、CF交于点G,半径BE、CD交于点H.若直角扇形的半径为2cm,则图中阴影部分的面积等于cm2.三、解答题(本大题共7小题,共54分)19.(12分)用适当的方法解下列方程:(1)(x﹣1)2﹣144=0(2)x2﹣4x﹣32=0(3)5x(x﹣3)=2(3﹣x)(4)(x﹣3)2=2x+5.20.(6分)某工厂10月份的产值是25万元,计划12月份的产值达到36万元,那么这家工厂11月、12月这两个月产值的月平均的增长率的百分率是多少?21.(8分)某原料加工厂加工销售某种原料,已知该原料进价为15万元/吨,经过加工之后以25万元/吨销售,平均每周售出8吨,为了尽快减少库存,该厂决定降价销售,经过测算后发现:售价每降低0.5万元/吨,平均每周多售出1吨,若该厂计划平均每周的销售利润是90万元,求每吨原料的售价.22.(6分)如图,A是⊙O上一点.(1)作⊙O的内接等边△ABC(尺规作图,保留作图痕迹);(2)若⊙O的半径为3,求△ABC的边长.23.(8分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.24.(8分)古希腊数学家阿基米德提出并证明了“折弦定理”.如图1,AB和BC是⊙O 的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是优弧ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.(1)请按照下面的证明思路,写出该证明的剩余部分;(2)如图(3),已知等边△ABC内接于⊙O,AB=2,D为⊙O上一点,∠ABD=45°,AE⊥BD,垂足为E,请你运用“折弦定理”求△BDC的周长.25.(6分)如图,菱形ABCD的顶点A、B在x轴上,已知A(﹣2,0),D(0,2).(1)求C点的坐标;(2)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?(直接写出t的值,不用写出求解过程.)2017-2018学年江苏省无锡市梁溪区九年级(上)期中数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.D;2.A;3.B;4.C;5.B;6.D;7.D;8.B;9.D;10.C;二、填空题(本大题共8小题,每小题2分,共16分)11.x1=0,x2=1;12.1;13.m>﹣;14.3;15.10π;16.25°;17.60°;18.2π﹣4;三、解答题(本大题共7小题,共54分)24.25.。
苏科版2019初三年级数学上册期中试题(含答案解析)苏科版2019初三年级数学上册期中试题(含答案解析)一、选择题(每题3分,共8题,计24分)1、已知△ABC∽△A1B1C1,且∠A=50°,∠B=95°,则∠C1等于(▲ )A.50° B.95° C.35° D.25°2、如图,△ABC内接于⊙O,∠A =60°,则∠BOC等于(▲ )A.30°B. 120°C. 110°D. 100°3、已知⊙O的半径为5㎝,P到圆心O的距离为6㎝,则点P在⊙O(▲ )A. 外部B. 内部C. 圆上D. 不能确定4、△ABC与△A′B′C′相似,且△ABC与△A′B′C′的相似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是(▲ )A.3 B.6 C.9 D.125、如图,在?ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于(▲ )A.3:2 B. 3:1 C. 1:1 D. 1:26 、已知是方程x2-2x-1=0的两个根,则的值为(▲ )A. B.2 C. D.-27、若非零实数a、b、c满足9a-3b+c=0,则关于x的一元二次方程一有一个根为(▲ )A.3 B.-3 C.0 D.无法确定8、如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(▲ )A.(,3)、(﹣,4) B.(,3)、(﹣,4)C.(,)、(﹣,4) D.(,)、(﹣,4)二、填空题(每题3分,共10题,计30分)9、一元二次方程x2-4 =0的解是▲ .10、在比例尺为1∶5 000 000的地图上,量得甲、乙两地的距离是 15cm,则两地的实际距离是▲ km.11、如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B 的度数是▲ .12、若将方程x2+6x=7化为(x+m)2=16,则m= ▲.13、若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2019﹣a﹣b的值是▲ .14、关于x的方程有两个实数根,那么m的取值范围是▲ .15、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为▲ .16、如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O 的直径BE上,∠ADC=70°,连接AE,则∠AEB的度数为▲ .17、已知,如图弧BC比弧AD的度数多20°,弦AB与CD交于点E,∠CEB=60°,则∠CAB=▲ °.18、如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是▲ cm三、解答题(共10题,计96分)19、(本题每小题4分,满分8分)(1)(2x+3)2-25=0 (2)20、(本题满分8分)已知x1、x2是方程2x2+14x-16=0的两实数根,求的值.21、(本题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.22、(本题满分8分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23、(本题满分8分)如图27-100所示,在△ABC中,AB=BC=12 cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC.(1)求∠EDB的度数;(2)求DE的长.24、(本题满分10分)阅读下面的例题:解方程x -|x|-2=0 的过程如下:(1)、当x≥0时,原方程化为x -x-2=0 ,解得: =2 ,x = -1 (不合题意,舍去)。
2018-2019学年苏科版九年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.方程x2=4的解是()A.x1=4,x2=﹣4B.x1=x2=2C.x1=2,x2=﹣2D.x1=1,x2=4 2.抛物线y=﹣(x+2)2+3的顶点坐标是()A.(﹣2,3)B.(﹣2,﹣3)C.(2,3)D.(2,﹣3)3.若=,则等于()A.B.C.D.4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米5.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2﹣3B.y=(x+2)2+3C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3 7.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=1828.如图,线段AB两端点的坐标分别为A(4,4)、B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(2,1)B.(2,2)C.(1,2)D.(3,1)二、填空题(每小题3分,共18分)9.若x=2是关于x的一元二次方程x2﹣2mx+m=0的一个解,则m的值为.10.若一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值为.11.如图,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则∠ABC的正弦值是.12.如图,直线l1∥l2,AC=10,DE=3,EF=2,则AB的长是.13.如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,则OC=.14.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.三、解答题(本大题10小题,共78分)15.(6分)计算:+tan45°﹣sin60°.16.(6分)解方程:x2+x﹣1=0.17.(6分)某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.18.(7分)如图,在△ABC中,D在AB上,DE∥BC交AC于点E,EF∥AB交BC于F,求证:△ADE∽△EFC.19.(7分)如图,在平面直角坐标系中,点A(﹣2,﹣3)、B(2,﹣1).请以点O为位似中心,在x轴的上方将△OAB放大为原来的2倍,得到△OA′B′.(1)在平面直角坐标系中画出△OA′B′.(2)直接写出△OA′B′的面积为.20.(7分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm.使用时发现:光线最佳时灯罩BC与水平线所成的角为25°,求光线最佳时灯罩顶端C到桌面的高度CD的长.【参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47】.21.(8分)在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,﹣2)、(2,﹣3).(1)求这条抛物线所对应的函数表达式.(2)点P是抛物线上一点,其横、纵坐标互为相反数,求点P的坐标.22.(9分)问题探究如图1,在△ABC中,D、E分别为BC、AB边的中点,∠DAC=40°,∠DAB=70°,AD=4cm,求AC的长.方法拓展如图2,在△ABC中,D为BC边上的一点,=,∠DAC=120°,∠DAB=30°,AD=6cm,求AC的长.23.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,射线ED⊥BC于点E,AD =AB=BE=BC=4,动点P从点E出发,沿射线ED以每秒2个单位长度的速度运动,以PE为对角线做正方形PMEN,设运动时间为t秒,正方形PMEN与四边形ABCD重叠部分面积为S.(1)当点N落在边DC上时,求t的值.(2)求S与t的函数关系式.(3)当正方形PMEN被直线BD分成2:1两部分时,直接写出t的值.24.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.2018-2019学年苏科版九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.方程x2=4的解是()A.x1=4,x2=﹣4B.x1=x2=2C.x1=2,x2=﹣2D.x1=1,x2=4解:∵x2=4,∴x=2或x=﹣2,故选:C.2.抛物线y=﹣(x+2)2+3的顶点坐标是()A.(﹣2,3)B.(﹣2,﹣3)C.(2,3)D.(2,﹣3)解:抛物线y=﹣(x+2)2+3的顶点坐标为(﹣2,3).故选:A.3.若=,则等于()A.B.C.D.解:∵=,∴设a=5k,b=3k,(k≠0),∴==.故选:D.4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米解:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BO tanα=30tanα(米).故选:C.5.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.6.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2﹣3B.y=(x+2)2+3C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(x+2)2﹣3.故选:A.7.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=182解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.8.如图,线段AB两端点的坐标分别为A(4,4)、B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(2,1)B.(2,2)C.(1,2)D.(3,1)解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为:(2,2).故选:B.二、填空题(每小题3分,共18分)9.若x=2是关于x的一元二次方程x2﹣2mx+m=0的一个解,则m的值为.解:把x=2代入方程x2﹣2mx+m=0得4﹣4m+m=0,解得m=.故答案为.10.若一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值为9.解:∵关于x的一元二次方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=36﹣4m=0,解得:m=9,故答案为:9.11.如图,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则∠ABC的正弦值是.解:连接AC,由网格特点和勾股定理可知,AC=,AB=2,BC=,AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴sin∠ABC==,故答案为:.12.如图,直线l1∥l2,AC=10,DE=3,EF=2,则AB的长是6.解:∵线l1∥l2,∴,∵AC=10,DE=3,EF=2,∴,∴AB=6,故答案为:6.13.如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,则OC=4.解法一:∵点D、E分别为AB、AC的中点,线段BE、CD相交于点O,∴O点为△ABC的重心,∴OC=2OD=4;解法二:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴OD:OC=DE:BC=1:2,∴OC=2OD=4.故答案为4.14.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1.解:∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.三、解答题(本大题10小题,共78分)15.(6分)计算:+tan45°﹣sin60°.解:+tan45°﹣sin60°=2+1﹣=+1.16.(6分)解方程:x2+x﹣1=0.解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;∴x1=,x2=.17.(6分)某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.解:设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.18.(7分)如图,在△ABC中,D在AB上,DE∥BC交AC于点E,EF∥AB交BC于F,求证:△ADE∽△EFC.证明:∵DE∥BC,EF∥AB,∴△ADE∽△ABC,△EFC∽△ABC,∴△ADE∽△EFC.19.(7分)如图,在平面直角坐标系中,点A(﹣2,﹣3)、B(2,﹣1).请以点O为位似中心,在x轴的上方将△OAB放大为原来的2倍,得到△OA′B′.(1)在平面直角坐标系中画出△OA′B′.(2)直接写出△OA′B′的面积为16.解:(1)如图所示:△OA′B′,即为所求;(2)△OA′B′的面积为:6×8﹣×4×8﹣×2×4﹣×4×6=16.故答案为:16.20.(7分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm.使用时发现:光线最佳时灯罩BC与水平线所成的角为25°,求光线最佳时灯罩顶端C到桌面的高度CD的长.【参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47】.解:由题意得:AD⊥CE,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为25°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin25°==,∴CF=30×0.42=12.6(cm),∴CD=CF+FD+DE=CF+AB+DE=12.6+40+2=54.6(cm)答:光线最佳时灯罩顶端C到桌面的高度CD的长54.6cm.21.(8分)在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,﹣2)、(2,﹣3).(1)求这条抛物线所对应的函数表达式.(2)点P是抛物线上一点,其横、纵坐标互为相反数,求点P的坐标.解:(1)将点(1,﹣2)、(2,﹣3)代入解析式,得:,解得:b=﹣4,c=1,所以抛物线解析式为y=x2﹣4x+1;(2)由题意可得,解得:或,∴点P的坐标为(,﹣)或(,).22.(9分)问题探究如图1,在△ABC中,D、E分别为BC、AB边的中点,∠DAC=40°,∠DAB=70°,AD=4cm,求AC的长.方法拓展如图2,在△ABC中,D为BC边上的一点,=,∠DAC=120°,∠DAB=30°,AD=6cm,求AC的长.解:问题探究∵D、E分别为边BC、AB的中点,∴DE∥AC,DE=AC,∴∠DAC=∠ADE=40°,∵∠DAB=70°,∴∠AED=180°﹣∠DAB﹣∠ADE=70°,∴∠DAE=∠AED=70°,∴AD=DE=4,∴AC=2DE=8;方法拓展过B作BE∥AC,交AD延长线于E,如图2所示:∵BE∥AC,∴∠E=∠DAC=120°,∵∠DAB=30°,∴∠ABE=30°,∴AE=BE,∵BE∥AC,∴△BED∽△CAD,∴===,∴AC=2BE,AD=2DE,∵AD=6,∴DE=3,∴BE=AE=9,∴AC=18.23.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,射线ED⊥BC于点E,AD =AB=BE=BC=4,动点P从点E出发,沿射线ED以每秒2个单位长度的速度运动,以PE为对角线做正方形PMEN,设运动时间为t秒,正方形PMEN与四边形ABCD重叠部分面积为S.(1)当点N落在边DC上时,求t的值.(2)求S与t的函数关系式.(3)当正方形PMEN被直线BD分成2:1两部分时,直接写出t的值.解:(1)如图1中,当点N落在边DC上时,∵△DEC是等腰直角三角形,∴当点P与D重合时,点N落在CD上,∵PE=DE=4,∴t==2s时,点N落在边DC上;(2)①如图2中,当0<t≤2时,重叠部分是正方形EMPN,S=PE2=2t2;②如图3中,当2<t≤4时,重叠部分是五边形EFDGM,S=×42×+•(2t)2×﹣(2t﹣4)2=﹣t2+8t﹣4;③如图4中,当t>4时,重叠部分是四边形EFDA,S=8+4=12.综上所述,S=(3)①如图5中,设EM交BD于G,当EG=2GM时,∵EG=2,∴GM=,∴EN=3,∴PE=EM=6,∴t==3s.②如图6中,当MG=2GE时,MG=4,EM=6,PE=12,t==6s.综上所述,t=3s或6s时,正方形PMEN被直线BD分成2:1两部分;24.(12分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.解:(1)∵二次函数y=x2+bx+c的图象过A(2,0),B(8,6)∴,解得∴二次函数解析式为:y=x2﹣4x+6,(2)由y=x2﹣4x+6,得y=(x﹣4)2﹣2,∴函数图象的顶点坐标为(4,﹣2),∵点A,D是y=x2+bx+c与x轴的两个交点,又∵点A(2,0),对称轴为x=4,∴点D的坐标为(6,0).(3)∵二次函数的对称轴交x轴于C点.∴C点的坐标为(4,0)∵B(8,6),设BC所在的直线解析式为y=kx+b′,∴,解得,∴BC所在的直线解析式为y=x﹣6,∵E点是y=x﹣6与y=x2﹣4x+6的交点,∴x﹣6=x2﹣4x+6解得x1=3,x2=8(舍去),当x=3时,y=﹣,∴E(3,﹣),∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×=7.5.(4)存在,设点P到x轴的距离为h,∵S△BCD=×2×6=6,S△ADP=×4×h=2h∵S△ADP=S△BCD∴2h=6×,解得h=,当P在x轴上方时,=x2﹣4x+6,解得x1=4+,x2=4﹣,当P在x轴下方时,﹣=x2﹣4x+6,解得x1=3,x2=5,∴P1(4+,),P2(4﹣,),P3(3,﹣),P4(5,﹣).。
江苏省无锡市梁溪区2018-2019第一学期初三数学期中试题一、选择题(本大题共10小题,共30.0分)1.方程是关于x的一元二次方程,则A. B. C. D.【答案】D【解析】解:根据题意得:,解得:,故选:D.根据一元二次方程的定义,得到关于m的不等式,解之即可.本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.2.一元二次方程配方后可变形为A. B. C. D.【答案】A【解析】解:,,即,故选:A.先把方程的常数项移到右边,然后方程两边都加上,这样方程左边就为完全平方式.本题考查了利用配方法解一元二次方程:先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.3.已知一元二次方程的两实数根为、,则的值为A. 2B.C. 1D.【答案】D【解析】解:一元二次方程的两实数根为、,所以.故选:D.直接应用根与系数的关系,得结论.本题考查了根与系数的关系若一元二次方程有两个根、,则,.4.某种药品经过了两次降价,从每盒54元降到每盒42元若平均每次降低的百分率都为x,则根据题意,可得方程A. B. C. D.【答案】A【解析】解:设平均每次降价的百分率为x,.故选:A.设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的54元降至42元,可列方程.本题考查由实际问题抽象出一元二次方程,关键知道经过了两次降价,降价前和降价后的价格,可列方程.5.下列四个命题中不正确的是A. 直径是弦B. 三角形的内心到三角形三边的距离都相等C. 经过三点一定可以作圆D. 半径相等的两个半圆是等弧【答案】C【解析】解:A、直径是圆内最长的弦,故正确;B、三角形的内心到三角形三边的距离都相等,正确;C、经过不在同一直线上的三点可以作圆,故错误;D、半径相等的两个半圆是等弧,正确,故选:C.利用弦的定义、三角形的内心的性质、确定圆的条件及等圆的概念分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解弦的定义、三角形的内心的性质、确定圆的条件及等圆的概念等知识,难度不大.6.若一个圆锥的侧面展开图是半径为18cm,圆心角为的扇形,则这个圆锥的底面半径长是A. 3cmB.C. 6cmD. 9cm【答案】C【解析】解:设这个圆锥的底面半径为rcm,根据题意得,解得,所以这个圆锥的底面半径长为6cm.故选:C.设这个圆锥的底面半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到,然后解方程求出r即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,四边形ABCD为的内接四边形,已知,则的度数为A.B.C.D.【答案】D【解析】解:由圆周角定理得,,四边形ABCD为的内接四边形,,故选:D.根据圆周角定理求出,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.8.如图,已知,添加下列一个条件,不能使∽ 的是A. B. C. D.【答案】A【解析】解:,,即,或或,∽ ,故选:A.先证出,再根据三角形相似的判定方法即可得出 ∽ .本题考查了三角形相似的判定方法;熟练掌握三角形相似的判定方法,弄清角之间的关系是解决问题的关键.9.如图,在中,点O是三角形的重心,连接下列结论:;;::2;::其中正确的个数有A. 1 个B. 2 个C. 3 个D. 4 个【答案】B【解析】解:点O是三角形的重心,、D分别是AB、AC的中点,,,,错误;,正确;::4,错误;::2,正确;故选:B.根据三角形的重心的概念和性质得到D、E分别是AB、AC的中点,根据三角形中位线定理,三角形的面积公式计算,判断即可.本题考查的是三角形的重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.10.如图,AB为的直径,且,点C在半圆上,,垂足为点O,PBC上任意一点,过P点作于点E,M是的内心,连接OM、PM,当点P在弧BC上从点B运动到点C时,求内心M所经过的路径长A. B. C. D.【答案】D【解析】解:的内心为M,,,,,即,,,,。
江苏省无锡市2018届九年级数学上学期期中试题苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省无锡市2018届九年级数学上学期期中试题苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省无锡市2018届九年级数学上学期期中试题苏科版的全部内容。
江苏省无锡市2018届九年级数学上学期期中试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是ﻩﻩﻩ( ▲ )A.x-1=0 ﻩB.x 错误!+x =3ﻩﻩ C.x 错误!+3x-5=0D.ax 错误!+bx +c =02.关于x 的方程x 2+x-k=0有两个不相等的实数根,则k 的取值范围为ﻩﻩ( ▲ )A .k>-错误! ﻩ B.k≥-错误!ﻩ C.k <-错误!ﻩﻩﻩ D.k >-错误!且k ≠0 3.45°的正弦值为ﻩﻩ ﻩﻩﻩ ﻩﻩ( ▲ )A.1 ﻩ ﻩB.12ﻩﻩﻩ C .错误! ﻩﻩD .错误!4.已知△A BC ∽△DE F,∠A =∠D ,AB =2c m,AC =4cm ,DE =3cm,且DE <DF , 则DF 的长为ﻩﻩ ﻩﻩﻩﻩ( ▲ )A .1cm ﻩﻩﻩﻩ B.1。
最新苏科版九年级数学第一学期期中考试模拟试题一、选择题(本大题共10小题,每小题3分,共30分)1.2-的绝对值是( ▲ )A .2-B .2C .21- D .21 2.下列计算正确的是 ( ▲ )A.12=-a aB. 4222a a a =+C. 532a a a =⋅D. 222)(b a b a -=-3.已知x =2是关于x 的一元二次方程x 2-x -2a =0的一个解,则a 的值为( ▲ )A .0B .-1C . 1D . 24.将161000用科学记数法表示为( ▲ )A .0.161×106B .1.61×105C .16.1×104D .161×1035.三角形的两边长分别为3和6,第三边的长是方程x 2-6x+8=0的一个根,则这个三角形的周长为 ( ▲ )A .11B .12C .11或 13D . 136.若一个多边形的内角和为1080°,则这个多边形的边数为( ▲ )A .6B .7C .8D .97.已知圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积是( ▲ )考试用时: 120 分钟 满分: 130 分A .20 cmB .20πcm 2C .40πcm 2D .40cm 28.如图,点D 是△ABC 的边AC 的上一点,且∠ABD =∠C ;如果CD AD =31,那么BCBD = ( ▲ )A .21B .31C .41D .43 9.如图,已知⊙O 的半径OD 与弦AB 互相垂直,垂足为点C ,若AB =16cm ,CD =6cm ,则⊙O 的半径为( ▲ )A .253cmB .10cmC .8 cmD .193cm 10.如图,Rt △ABC 中,AC ⊥BC,AD 平分BAC ∠交BC 于点D ,DE AD ⊥交AB 于点E ,M 为AE 的中点,BF⊥BC 交CM 的延长线于点F ,BD=4,CD=3.下列结论①AED ADC ∠=∠;②3 4DE DA =;③AC BE 12⋅=;④3BF 4AC =;其中结论正确的个数有( ▲ )A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题2分,共16分) 11.因式分解:a a 32-= ▲ .12.函数21-=x y 中,自变量x 的取值范围是▲. 13.01342m =++++m x x m )(是关于x 的一元二次方程,则m=_______.14.已知1x 、2x 是一元二次方程0232=--x x 的两根,则21x x +=▲ .15.如图,在△ABC 中,DE ∥BC,AD =1,AB =3,DE =2,则BC = ▲ .16.如图,在⊙O 中,AB 为⊙O 的弦,点C 为圆上异于A 、B 的一点,∠OAB=25°,则∠ACB= ▲ .17.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 ▲ .18.如图,Rt△ABC 中,∠BAC=90°,将△ABC 绕点C 逆时针旋转,旋转后的图形是△A′B′C,点A 的对应点A′落在中线AD 上,且点A′是△ABC 的重心,A′B′与BC 相交于点E ,那么BE :CE= ▲ .(三角形的三条中线相交于一点,这点叫做三角形的重心)三、解答题(本大题共10小题,共84分)19.(本题满分6分)计算:(1)()()023162-+-- (2)()()()114242-+-+x x x20.(本题满分8分)解方程:(1)022=+x x (2)0342=+-x x21.(本题满分6分)已知关于x 的一元二次方程0132=-++m x x 有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数...,求此时方程的根.22.(本题满分8分)如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若BD=1,BE=2,求AC 的长.23.(本题满分8分)如图,已知AB = DC ,AC = DB ,AC 与DB 交于点M .过点C 作CN∥BD,过点B 作BN∥AC , CN 与BN 交于点N .(1)求证:△ABC ≌△DCB ;(2)求证:四边形BNCM是菱形.24.(本题满分8分)如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=4cm,CD=6cm,求⊙O的半径.25.(本题满分10分)某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如下表关系:每箱售价x(元) 68 67 66 65 (40)每天销量y(箱) 40 45 50 55 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m<100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m 的值.26.(本题满分10分)如图,△ABC 中,∠ACB=90°,BC=6,AB=10.点Q 与点B 在AC 的同侧,且AQ ⊥AC.(1)如图1,点Q 不与点A 重合,连结CQ 交AB 于点P .设AQ=x ,AP=y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(2)是否存在点Q ,使△PA Q 与△ABC 相似,若存在,求AQ 的长;若不存在,请说明理由;(3)如图2,过点B 作BD⊥A Q ,垂足为D .将以点Q 为圆心,QD 为半径的圆记为⊙Q .若点C 到⊙Q 上点的距离的最小值为8,求⊙Q 的半径.27.(本题满分10分)如果一个三角形的三边a ,b ,c 能满足222nc b a =+(n 为正整数),那么这个三角形叫做“n 阶三角形”.如三边分别为1、2、5的三角形满足()2225121⨯=+ ,所以它是1阶三角形,但同时也满足()2221925⨯=+,所以它也是9阶三角形.显然,等边三角形是2阶三角形,但2阶三角形不一定是等边三角形.(1)在我们熟知的三角形中,何种三角形一定是3阶三角形?(2)若三边分别是a ,b ,c (a <b <c )的直角三角形是一个2阶三角形,求a :b :c .(3)如图1,直角△ABC 是2阶三角形,AC <BC <AB ,三条中线BD 、AE 、CF 所构成的三角形是何种三角形?四位同学作了猜想:A 同学:是2阶三角形但不是直角三角形;B 同学:是直角三角形但不是2阶三角形;C 同学:既是2阶三角形又是直角三角形;D 同学:既不是2阶三角形也不是直角三角形. 请你判断哪位同学猜想正确,并证明你的判断.(4)如图2,矩形OACB 中,O 为坐标原点,A 在y 轴上,B 在x 轴上,C 点坐标是(2,1),反比例函数()0>=k xk y 的图象与直线AC 、直线BC 交于点E 、D ,若△ODE 是5阶三角形,直接写出所有可能的k 的值.28.(本题满分10分)已知:如图1,菱形ABCD 的边长为6,∠DAB=60°,点E 是AB 的中点,连接AC 、EC .点Q 从点A 出发,沿折线A —D —C 运动,同时点P 从点A 出发,沿射线AB 运动,P 、Q 的速度均为每秒1个单位长度;以PQ 为边在PQ 的左侧作等边△PQF,△PQF 与△AEC 重叠部分的面积为S ,当点Q 运动到点C 时P 、Q 同时停止运动,设运动的时间为t .(1)当等边△PQF 的边PQ 恰好经过点D 时,求运动时间t 的值;当等边△PQF 的边QF恰好经过点E 时,求运动时间t 的值;(2)在整个运动过程中,请求出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点Q 到达C 点时,将等边△PQF 绕点P 旋转α ° (0<α<360°),直线PF 分别与直线AC 、直线CD 交于点M 、N .是否存在这样的α ,使△CMN 为等腰三角形?若存在,请直接写出此时线段CM 的长度;若不存在,请说明理由.参考答案:1.B2.C3.C4.B5.D6.C7.B8.A9.A10.C11.()3-a a 12.2≠x 13.2 14.3 15.6 16.65° 17.10% 18.4:319.(1)1 ------按照步骤给分 (2)12 ------按照步骤给分20.(1)2,021-==x x (2)3,121==x x21. 解:(1)∵原方程有两个不相等的实数根, ∴94(1)m ∆=--450m =+>,即54m >-.-------- 3分(2)∵m 为负整数,∴1m =-. ∴方程为2320x x ++=,即(1)(2)0x x ++=.解得2,121-=-=x x -------- 6分 22. (1)证明:连结AE ,如图,∵AC 为⊙O 的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC ,∴BE=CE;-----------------------3分(2)连结DE ,如图,∵BE=CE=2,∴BC=4,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC, ∴BC BD BA BE =,即412=BA ,∴BA=8,∴AC=BA=8.---------------------5分23. 解:在△ABC 和△DCB 中,(1)∵AB = DC,AC = DB ,BC=CB …………………2分∴△ABC ≌△DCB…………………………………3分(2)∵CN∥BD、BN∥AC∴四边形BNCM 是平行四边形……………………5分∵△ABC ≌△DCB∴∠1=∠2 ………………………………………6分∴BM=CM …………………………………………7分∴四边形BNCM 是菱形. ………………………8分24. (1)证明:连结OA .∵OA=OD ,∴∠ODA=∠OAD. …………1分∵DA 平分∠BDE , ∠ODA=∠ED A .∴∠OAD=∠EDA,∴EC∥OA. …………2分∵AE⊥CD, ∴OA⊥AE. …………3分∵点A 在⊙O 上,∴AE 是⊙O 的切线.………4分(2)过点O 作OF⊥CD,垂足为点F .∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE 是矩形.………5分∴OF=AE =4cm . …………6分又∵OF⊥CD,∴DF =12CD =3cm . …………7分 在Rt△ODF 中, OD =22DF OF +=5cm , 即⊙O 的半径为5cm . ……8分25.(1)3805+-=x y -------------------------3分(2)()()1600380540=+--x x ,60,5621==x x ,顾客要得到实惠,售价低,所以60=x 舍去,所以56=x 。
2019年无锡市九年级数学上期中模拟试题带答案一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1 B .1 C .-4 D .42.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个3.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .4.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1)5.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( )A .4.75B .4.8C .5D .46.用配方法解方程2410x x -+=,配方后的方程是 ( ) A .2(2)3x += B .2(2)3x -=C .2(2)5x -=D .2(2)5x += 7.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .78.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( )A .12019B .2020C .2019D .20189.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角 10.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( )A .-41B .-35C .39D .45 11.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A .30ºB .35ºC .25ºD .60º12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<o o,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.16.用半径为12cm ,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm.17.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与轴的一个交点的坐标为(m,0),若2<m<3,则a的取值范围是_________.18.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为_____.19.一元二次方程x2=3x的解是:________.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b <a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有_____.(填序号)三、解答题21.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.22.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x 天的成本y (元/件)与x(天)之间的关系如图所示,并连续 60 天均以 80 元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第 25 天,该商家的成本是 元,获得的利润是 元;(2)设第 x 天该商家出售该产品的利润为 w 元.①求 w 与 x 之间的函数关系式;②求出第几天的利润最大,最大利润是多少?23.如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.24.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.25.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯的概率是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.【详解】解:根据题意可得:△=2(4) -4×4c=0,解得:c=1 故选:B .【点睛】本题考查一元二次方程根的判别式. 2.B解析:B【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B .考点: 1.轴对称图形;2.中心对称图形.3.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选:B .【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.5.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.6.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.7.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.8.B解析:B【解析】【分析】对于一元二次方程a (x-1)2+b (x-1)-1=0,设t=x-1得到at 2+bt-1=0,利用at 2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020.【详解】对于一元二次方程a (x-1)2+b (x-1)-1=0,设t=x-1,所以at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2019,所以at 2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC 绕点A 旋转一定角度得到△ADE ,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE 是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.10.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a ,b 为方程2x 5x 10--=的两个实数根,∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 11.A解析:A【解析】【分析】连OA ,OB,可得△OAB 为等边三角形,可得:60∠=o ,AOB 即可得∠C 的度数. 【详解】连OA ,OB ,如图,∵OA=OB=AB ,∴△OAB 为等边三角形,60AOB ∴∠=o ,又12C AOB ∠=∠Q , 16030.2C ∴∠=⨯=o o 故选:A .【点睛】本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB ,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB 为直径,且点E 是点D 关于AB 的对称点∴∠E=∠ODE ,AB ⊥DE∴∠CED =30°=12∠DOB , 故②正确;∵M 和A 重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM ⊥CE故③不正确;根据轴对称的性质,可知D 与E 对称,连接CE ,根据两点之间线段最短,可知这时的CM+DM 最短,∵∠DOB=∠COD=∠BOE=60°∴CE 为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大. 二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.14.15°或60°【解析】【分析】分情况讨论:①DE⊥BC②AD⊥BC然后分别计算的度数即可解答【详解】解:①如下图当DE⊥BC时如下图∠CFD=60°旋转角为:=∠CAD=60°-45°=15°;(2解析:15°或60°.【解析】【分析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算α的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:α=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:α=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.15.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径解析:252π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积,根据AB=10,BC:AC=3:4,可以求得AC,BC的长,再根据半圆的面积公式和直角三角形的面积公式进行计算.【详解】∵AB为直径,∴∠ACB=90°,∵BC:AC=3:4,∴sin∠BAC=35,又∵sin∠BAC=BCAB,AB=10,∴BC=35×10=6,AC=43×BC=43×6=8,∴S阴影=S半圆﹣S△ABC=12×π×52﹣12×8×6=252π﹣24.故答案为:252π﹣24.【点睛】本题考查求阴影部分的面积,解题关键在于能找到阴影部分的面积与半圆的面积、直角三角形的面积,三者的关系.16.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故解析:【解析】【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【详解】解:圆锥的底面周长是:9012180π⨯=6π,设圆锥底面圆的半径是r,则2πr=6π,则r=3.故答案为:3.【点睛】本题考查圆锥的计算.17.<a<或-3<a<-2【解析】【分析】先用a表示出抛物线与x轴的交点再分a>0与a<0两种情况进行讨论即可【详解】解:∵y=ax2+(a2-1)x-a=(ax-1)(x+a)∴当y=0时x1=x2=解析:13<a<12或-3<a<-2.【解析】【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【详解】解:∵y=ax2+(a2-1)x-a=(ax-1)(x+a),∴当y=0时,x1=1a,x2=-a,∴抛物线与x轴的交点为(1a,0)和(-a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<1a<3,解得13<a<12;当a<0时,2<-a<3,解得-3<a<-2.故答案为:13<a<12或-3<a<-2.【点睛】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.18.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE为正五边形,∴∠COD=3605︒=72°,∴∠CBD=12∠COD=36°.∵F是CD弧的中点,∴∠CBF=∠DBF=12∠CBD=18°.故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.19.x1=0x2=3【解析】【分析】先移项然后利用因式分解法求解【详解】x2=3xx2-3x=0x(x-3)=0x=0或x-3=0∴x1=0x2=3故答案为:x1=0x2=3【点睛】本题考查了解一元二次解析:x1=0,x2=3【解析】【分析】先移项,然后利用因式分解法求解.【详解】x 2=3xx 2-3x=0,x(x-3)=0,x=0或x-3=0,∴x 1=0,x 2=3.故答案为:x 1=0,x 2=3【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解20.③④【解析】【分析】【详解】由抛物线的开口向下可得a <0;由与y 轴的交点为在y 轴的正半轴上可得c >0;因对称轴为x==1得2a=-b 可得ab 异号即b >0即可得abc <0所以①错误;观察图象根据抛物线解析:③④【解析】【分析】【详解】由抛物线的开口向下,可得a <0;由与y 轴的交点为在y 轴的正半轴上,可得c >0;因对称轴为x=2b a-=1,得2a=-b ,可得a 、b 异号,即b >0,即可得abc <0,所以①错误; 观察图象,根据抛物线与x 轴的交点可得,当x=-1时,y <0,所以a-b+c <0,即b >a+c ,所以②错误;观察图象,抛物线与x 轴的一个交点的横坐标在-1和0之间,根据对称轴为x=2b a -=1可得抛物线与x 轴的一个交点的横坐标在2和3之间,由此可得当x=2时,函数值是4a+2b+c >0,所以③正确;由抛物线与x 轴有两个交点,可得b 2-4ac >0,所以④正确.综上,正确的结论有③④.【点睛】本题考查了二次函数y=ax 2+bx+c (a≠0)的图象与系数的关系:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点, 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.三、解答题21.(1)本次调查的学生总人数为40人,∠α=108°;(2)补图见解析;(3)书法与乐器组合在一起的概率为16. 【解析】 【分析】(1)用A 科目人数除以其对应的百分比可得总人数,用360°乘以C 对应的百分比可得∠α的度数;(2)用总人数乘以C 科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C 科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为21126=. 【点睛】本题考查了条形统计图、扇形统计图、列表法与树状图法求概率,读懂统计图、熟练掌握列表法或树状图法求概率是解题的关键.22.(1)35,1800;(2)①250750(020)551050(2060)x x w x x x +<≤⎧=⎨-++<≤⎩;②第27或28天的利润最大,最大为1806元.【解析】【分析】(1)根据已知条件可知第25天时的成本为35元,此时的销售量为40,则可求得第25天的利润.(2)①利用每件利润×总销量=总利润,分当0<x≤20时与20<x≤60时,分别列出函数关系式;②利用一次函数及二次函数的性质即可解答.【详解】解:(1)由图象可知,此时的销售量为z =25+15=40(件),设直线BC 的关系为y =kx +b ,将B (20,30)、C (60,70)代入得:20306070k b k b +=⎧⎨+=⎩,解得:k=1,b=10, ∴y =x +10,∴第 25 天,该商家的成本是y=25+10=35(元)则第25天的利润为:(80−35)×40=1800(元); 故答案为:35,1800;(2)①当0<x≤20时,(8030)(15)50750w x x =-+=+;当20<x≤60时,2[80(10)](15)551050w x x x x =-++=-++,∴ 250750(020)551050(2060)x x w x x x +<≤⎧=⎨-++<≤⎩②当0<x≤20时,∵50>0,w 随x 的增大而增大,∴当x=20时,w=50×20+750=1750(元), 当20<x≤60时,2551050w x x =-++,∵-1<0,抛物线开口向下,对称轴为552x =, 当x=27与x=28时,227552*********w =-+⨯+=(元)∵1806>1750,∴第27或28天的利润最大,最大为1806元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题,常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.(1)证明见解析;(223()2cm p . 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:3. ∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm p p 创=-=创=V 扇形 24.(1)k <2(2)120,2x x ==-【解析】【分析】(1)根据一元二次方程根的判别式与根的关系列出不等式即可求出k 的取值范围; (2)根据(1)中的k 的取值范围和k 为正整数得出k 的值,再解方程即可,【详解】(1)∵关于x 的一元二次方程有两个不相等的实数根,∴()22410k ∆=-->, =8-4k >0.,∴2k <;(2)∵k 为正整数,∴k =1,解方程220x x +=得,120,2x x ==-.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.25.(1)29;(2)2()3n 【解析】【分析】 (1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为23,到第2个路口还没有遇到红灯的概率为24293y ⎛⎫== ⎪⎝⎭【详解】解:(1)画出树状图即可得到结果;由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2, 所以到第二个路口时第一次遇到红灯的概率为29; (2)P (第一个路口没有遇到红灯)=23, P (前两个路口没有遇到红灯)=282()183=, 类似地可以得到P (每个路口都没有遇到红灯)=2()3n .故答案为:2()3n【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。
2018-2019学年九年级苏科版数学上学期期中模拟测试一、选择题:1、对于二次函数y=(x﹣1)2+2 的图象,下列说法正确的是()A.开口向下B.顶点坐标是(﹣1,2)C.对称轴是x=1 D.与x轴有两个交点2、一元二次方程x2+4x=0的解是()A.x=﹣4 B.x1=0,x2=﹣4 C.x=4 D.x1=0,x2=43、如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C 的大小等于()A.20°B.25°C.40°D.50°4、(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm5、(2018•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O 的位置关系为()A.相交 B.相切 C.相离 D.无法确定6、(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0 B.2a+b<0 C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根7、设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28、工程上常用钢珠来测量零件上槽孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个槽孔的宽口AB的长度为()A.6mm B.8mm C.10mm D.5mm9、扬州市近年来大力发展莲藕产业,某莲藕生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80 10、二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)中的x与y的部分对应值如下表所示,则下列结论中,正确的个数有()①当x<﹣4时,y<3;②当x=1时,y的值为﹣13;③﹣2是方程ax2+(b﹣2)x+c﹣7=0的一个根;④方程ax2+bx+c=6有两个不相等的实数根.A.4个B.3个C.2个D.1个11、如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°12、(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题:13、已知圆上一段弧长为5π,它所对的圆心角为100°,则该圆的半径为.14、关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0实数根,则k的取值范围是.15、将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为.16、若a为方程x2+x﹣5=0的一个实数根,则3a2+3a+2的值为.17、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=3cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.18、如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为.19、抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.20、如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.21、如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.22、如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是.三、解答题:23、已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.24、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?25、已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.26、如图,BC是⊙O的直径,弦AD⊥BC,垂足为H,已知AD=8,OH=3.(1)求⊙O的半径;(2)若E是弦AD上的一点,且∠EBA=∠EAB,求线段BE的长.27、已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A 的坐标是(﹣1,0),点C的坐标是(0,﹣3).在第四象限内的抛物线上有一动点D,过D 作DE⊥x轴,垂足为E,交BC于点F.设点D的横坐标为m.(1)求抛物线的函数表达式;(2)连接AC,AF,若∠ACB=∠FAB,求点F的坐标;(3)在直线DE上作点H,使点H与点D关于点F对称,以H为圆心,HD为半径作⊙H,当⊙H与其中一条坐标轴相切时,求m的值.答案:一、选择题:1、C2、B3、C4、A5、B6、C7、A8、B9、D 10、C 11、C 12、B二、填空题:13、914、k≥-9/415、y=﹣5(x+1)2﹣116、1717、918、110°19、y=-2x2-4x-320、221、(﹣1,﹣2)22、6三、解答题:23、解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC=∴S△AOB=S△AOC+S△BOC=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=24、解:降价x元,则售价为(60-x)元,销售量为(300+20x)件,根据题意得,(60-x-40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,25、解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x-1)(x-3),把C(0,-3)代入得:3a=-3,解得:a=-1,故抛物线解析式为y=-(x-1)(x-3),即y=-x2+4x-3,∵y=-x2+4x-3=-(x-2)2+1,∴顶点坐标(2,1);26、解:(1)连接OA,∵BC是⊙O的直径,弦AD⊥BC,∴AH=AD=4,在Rt△AOH中,AH=4,OH=3,根据勾股定理得:OA==5,则⊙O的半径为5;(2)∵∠EBA=∠EAB,∴AE=BE,设BE=AE=x,在Rt△BEH中,BH=5﹣3=2,EH=4﹣x,根据勾股定理得:22+(4﹣x)2=x2,解得x=2.5,则BE的长为2.5.27、解:(1)∵抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3),∴解得,b=﹣2,c=﹣3,即抛物线的函数表达式是:y=x2﹣2x﹣3;(2)由x2﹣2x﹣3=0,得x1=﹣1,x2=3,∴点B的坐标为(3,0),∵点C的坐标是(0,﹣3),∴过点B、C的解析式为y=kx+m,则解得,k=1,m=﹣3,即直线BC的解析式为y=x﹣3,设点F的坐标为(m,m﹣3),∵∠ACB=∠FAB,∠ABC=∠FBA,∴△ABC∽△FBA,∴∵点B的坐标为(3,0),点A的坐标是(﹣1,0),点C的坐标是(0,﹣3),∴BA=3﹣(﹣1)=4,BC=,∴BF=,∵直线BC的解析式为y=x﹣3,点F的坐标为(m,m﹣3),∴∠EBF=45°,BE=3﹣m,∴sin45°=解得,m=,即点F的坐标是();(3)设点D的坐标为(m,m2﹣2m﹣3),点F的坐标为(m,m﹣3),则点H的坐标为(m,﹣m2+4m﹣3),∴DH=﹣2m2+6m,当⊙H与x轴相切时,﹣2m2+6m=﹣(﹣m2+4m﹣3)解得,(舍去);当⊙H与y轴相切时,﹣2m2+6m=m,解得,(舍去),由上可得,点m的值为或.。