錯解
錯因剖析
(-1,5) 忽略了端點1與a-4重合、a+4與3 重合的情況
【防範措施】 1.集合關係中等號的處理 在已知兩集合間的關係求參數的值或範圍時,等號問題常有以下 兩種處理方法:一是借助數軸分析法,二是假設等號成立求出字 母的值,再驗證其是否符合題意.如本例中a-4≤1,a+4≥3都能夠 取到等號. 2.轉化思想的應用 在由充分和必要條件轉化為集合間的關係時,要分清是包含關係 還是真包含關係,如本例應是Q P.
【微思考】 (1)若p是q的充分條件,p是惟一的嗎? 提示:不一定惟一,凡是能使q成立的條件都是它的充分條件,如 x>3是x>0的充分條件,x>5,x>10等都是x>0的充分條件. (2)“若﹁p,則﹁q”為真命題,則p是q的什麼條件? 提示:“若﹁p,則﹁q”為真命題,則其逆否命題“若q,則p”也為 真命題,即q⇒p,故p是q的必要條件.
1.2 充分條件與必要條件 第1課時 充分條件與必要條件
பைடு நூலகம்
1.充分條件、必要條件的定義是什麼? 問題
2.如何判斷p是q的充分條件,q是p的必要條 引航
件?
充分條件、必要條件 (1)前提:“若p,則q”形式的命題為_真__命__題__. (2)條件:p⇒q. (3)結論:p是q的_充__分__條件,q是p的_必__要__條件.
來判斷充分條件、必要條件為: ①若P⊆Q,則p是q的充分條件,q是p的必要條件. ②若p是q的充分條件,即p⇒q,相當於P⊆Q,即:要使x∈Q成立, 只要x∈P就足夠了——有它就行;為使x∈P成立,必須要使 x∈Q——缺它不可.
【易錯誤區】弄錯兩個集合間的關係而致誤
【典例】(2014·成都高二檢測)已知P={x|a-4<x<a+4},Q={x|1