07 受弯构件斜截面承载力计算
- 格式:ppt
- 大小:5.98 MB
- 文档页数:38
简述受弯构件斜截面承载力计算步骤受弯构件是建筑物结构中常见的构件,如梁、柱、框架等。
在设计和评估过程中,需要计算其斜截面承载力,以确定其结构安全性和可行性。
下面将简述受弯构件斜截面承载力计算的步骤。
第一步:斜截面的分段首先,需要将斜截面分为若干个分段,以便于计算。
一般情况下,会将受力构件分为两段:其中一段为纵向力作用下的受力部分,另一段为剩余部分。
因为斜截面会导致截面上出现剪力和弯矩,所以需要分段计算。
第二步:计算斜截面剩余部分的斜截面承载力对于斜截面剩余部分,其承载力可以通过材料本身的特性进行计算,例如钢材的强度。
需要根据剩余部分的截面面积和材料强度计算其承载力。
第三步:计算斜截面受力部分的受力情况对于斜截面受力部分,需要计算出其所受的剪力和弯矩。
在计算过程中,需要考虑受力构件的长度、截面形状、截面面积和受力方式等因素。
其中,弯矩是影响受力构件承载能力的主要因素。
第四步:计算斜截面受力部分的承载能力通过计算斜截面受力部分所受的剪力和弯矩,可以确定其承载能力。
其中,剪力会影响受力构件的变形,而弯矩则直接影响构件的破坏。
需要根据受力构件的材料强度、截面形状和所受荷载计算其承载能力。
第五步:比较分析两部分承载能力最后,需要将斜截面剩余部分的承载能力和受力部分的承载能力作比较分析,确定总的承载能力。
如果受力部分的承载能力大于斜截面剩余部分的承载能力,则说明受弯构件的斜截面是安全的;反之,则需要进行修补或更改设计方案。
总之,受弯构件斜截面承载力计算是一个复杂的过程,需要考虑多个因素,并进行多次计算和比较分析。
只有在综合考虑各种因素后,才能确定其承载能力和结构安全性。
第 1 页/共 2 页第四章 受弯构件斜截面承载力计算1、钢筋混凝土受弯构件沿斜截面破坏的形态有几种?各在什么情况下发生? 答:(1)斜拉破坏:在荷载作用下,梁的剪跨段产生由梁底竖向裂缝沿主压应力轨迹线向上延伸发展而成的斜裂缝。
其中有一条主要斜裂缝很快形成,并疾驰舒展至荷载垫板边缘而使梁体混凝土裂通,梁被撕裂成两部分而丧失承载力,同时,沿纵向钢筋往往陪同产生水平撕裂裂缝。
这种破坏发生骤然,破坏荷载等于或者略高于主要斜裂缝浮上时的荷载,破换面比较整洁,无混凝土压碎现象。
发生条件:在剪跨比比较大时。
(m >3)(2)斜压破坏:当剪跨比较小时,(m <1),首先是荷载作用点和支座之间浮上一条斜裂缝,然后浮上若干条大体相平行的斜裂缝,梁腹被分割成若干个倾斜的小柱体。
随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,破环时斜裂缝多而密,但没有主裂缝,所以称为斜压破坏。
(3)剪压破坏:随着荷载的增大,梁的剪弯区段内陆续浮上几条斜裂缝,其中一条发展成为临界斜裂缝。
临界斜裂缝浮上后,梁承受的荷载还能继续增强,而斜裂缝舒展至荷载垫板下,直到斜裂缝顶端(剪压区)的混凝土在正应力x σ,剪应力τ及荷载引起的竖向局部压应力y σ的共同作用下被压酥而破坏。
破坏处可见到无数平行的斜向断裂缝和混凝土碎渣。
发生条件:多见于剪跨比13≤≤m 的情况中。
2、名词解释:广义剪跨比、狭义剪跨比、理论充足利用点、理论不需要点、 弯矩包络图、抵御弯矩图 答:广义剪跨比:剪跨比是一个无量纲常数,用0Vh m M =来表示,此处M 和V 分离为剪弯区段中某个竖直截面的弯矩和剪力,0h 为截面有效高度,普通把m 的这个表达式称为“广义剪跨比”。
狭义剪跨比:例如图中CC ‵截面的剪跨比00h a h V m c c =M =,其中a 为扩散力作用点至简支梁最近的支座之间的距离,称为“剪跨”。
偶尔称0h a m =为“狭义剪跨比”。
抵御弯矩图:它又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵御弯矩图,即表示各正截面所具有的抗弯承载力。
受弯构件斜截面承载力计算公式中没有体现
受弯构件斜截面承载力计算公式通常是根据弯矩和截面的几何特性来确定的。
一般来说,这个公式涉及到以下几个要素:
1. 弯矩(M):是指作用在构件上的力在截面上引起的弯曲力矩;
2. 惯性矩(I):也称为截面的二阶矩,是描述截面几何特性的一个参数;
3. 抗弯强度(σ):是指构件材料能够抵抗弯曲时所能承受的最大应力;
4. 约束条件和边界条件:包括缺口、孔洞等对截面刚度和承载能力的影响。
通常情况下,受弯构件斜截面的承载力计算公式可以表示为:P = β * M / D
其中,P表示构件的承载力;β表示取决于约束条件和边界条件的一个系数;M表示作用在构件上的弯矩;D表示由截面几何特性计算得到的抗弯刚度。
需要注意的是,不同材料和不同截面形状的受弯构件的计算公式可能会略有不同。
因此,在具体计算时,需要根据具体的材料和截面几何特性确定相应的计算公式。
受弯构件斜截面受剪承载力计算一、有腹筋梁受剪承载力计算基本公式1.矩形、T形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为:VVc0.7ftbh01.25fyvAvh0(5-6)式中ft一混凝土抗拉强度设计值;b一构件的截面宽度,T形和Ⅰ形截面取腹板宽度;h0一截面的有效高度;fyv一箍筋的抗拉强度设计值;Av一配置在同一截面内箍筋各肢的全部截面面积,AvnAv1;n一在同一截面内箍筋的肢数;Av1一单肢箍筋的截面面积;一箍筋的间距。
2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算:VVcA1.75ftbh0fyvvh01.0(5-7)式中一剪跨比,可取a/h0,a为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。
当小于1.5时,取1.5;当大于3.0时,取3.0。
独立梁是指不与楼板整浇的梁。
构件中箍筋的数量可以用箍筋配箍率v表示:vAvb(5-8)3.当梁内还配置弯起钢筋时,公式(5-4)中Vb0.8fyAbin式中(5-9)fy一纵筋抗拉强度设计值;Ab一同一弯起平面内弯起钢筋的截面面积;一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取45o,当梁较高时,可取60。
剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力一般都能达到屈服强度,但是拉应力可能不均匀。
为此,在弯起钢筋中考虑了应力不均匀系数,取为0.8。
另外,虽然纵筋的销栓作用对斜截面受剪承载力有一定的影响,但其在抵抗受剪破坏中所起的作用较小,所以斜截面受剪承载力计算中没有考虑纵筋的作用。
二、混凝土的受剪承载力可以抵抗斜截面的破坏,可不进行斜截面承载力计算,仅需按构造要求配置箍筋的条件oV0.7ftbh0或(5-10)V1.75ftbh01.0(5-11)三、计算公式的适用范围(上限和下限)l.截面限制条件当配箍特征值过大时,箍筋的抗拉强度不能发挥,梁的斜截面破坏将由剪压破坏转为斜压破坏,此时,梁沿斜截面的抗剪能力主要由混凝土的截面尺寸及混凝土的强度等级决定,而与配筋率无关。
分别写出建筑工程与桥梁工程中的斜截面承载力计算公式。
在建筑工程和桥梁工程中,斜截面承载力的计算可是相当重要的哟!这就好比我们做饭时掌握食材和调料的比例,要是弄错了,这“菜”可就不好吃啦。
先来说说建筑工程中的斜截面承载力计算公式。
对于受弯构件,斜截面受剪承载力由混凝土和箍筋共同承担。
其计算公式为:$V\leqV_{cs}+V_{sb}$ ,其中 $V_{cs}$ 是混凝土和箍筋共同抗剪承载力,$V_{sb}$ 是弯起钢筋抗剪承载力。
$V_{cs}=0.7f_{t}bh_{0}+1.25f_{yv}\frac{A_{sv}}{s}h_{0}$ ,这里面,$f_{t}$ 是混凝土轴心抗拉强度设计值,$b$ 是截面宽度,$h_{0}$ 是截面有效高度,$f_{yv}$ 是箍筋抗拉强度设计值,$A_{sv}$ 是配置在同一截面内箍筋各肢的全部截面面积,$s$ 是沿构件长度方向的箍筋间距。
就拿我曾经参与的一个住宅项目来说吧。
那是一个多层的住宅楼,在计算某一梁的斜截面承载力时,我们就得严格按照这个公式来。
当时,我和同事们拿着尺子在现场仔细测量截面的宽度和高度,一丝一毫都不敢马虎。
回到办公室,对着一堆数据,反复核算。
就怕一个不小心,算错了,那可会影响整个建筑的安全性呐!再看看桥梁工程中的斜截面承载力计算公式。
对于矩形、T 形和工字形截面的受弯构件,其斜截面抗剪承载力的计算公式为:$V_{d}\leq V_{c}+V_{s}$ ,其中 $V_{d}$ 是考虑承载能力极限状态下的剪力组合设计值,$V_{c}$ 是混凝土提供的抗剪能力,$V_{s}$ 是箍筋和弯起钢筋提供的抗剪能力。
$V_{c}=0.45\times 10^{-3}\beta_{c}f_{cu,k}b_{h_{0}}$ ,这里的$\beta_{c}$ 是有关混凝土强度影响的系数,$f_{cu,k}$ 是混凝土立方体抗压强度标准值。
记得有一次在参与一座小型桥梁的建设时,为了算出准确的斜截面承载力,我们在施工现场顶着烈日,对桥梁的各个关键部位进行测量和记录。
受弯构件斜截面承载力计算公式是依据斜截面构件是指构件角度轴线和主轴线之间形成的夹角,这种构件在很多场合下都有着广泛的使用,但是在受力分析中,很多结构设计中都会涉及到斜截面构件的受力分析。
因此,计算斜截面构件的承载力非常重要,在这里我们将介绍受弯构件斜截面承载力计算公式。
一般来讲,受弯构件斜截面承载力的计算,要考虑力学要求,假设受弯构件的斜截面的宽度为w,厚度为h,内轴线半径为r,外轴线半径为R,轴向反力作用下,轴向应力计算公式为σ=F/A,A为断面截面积,其计算公式为:A = (R- r)h +wr。
根据Gao&Yang(2005)的研究,斜截面受弯构件的承载力由以下公式计算:F=FoC%Fo=∫-1/r~1/Rf(x)dx其中:Fo=πWh(R-r)/2f(x)= (R2-r2-2x2)/2(R2-x2)(r2-x2)以上是受弯构件斜截面承载力计算公式。
取极限值后,可以得到有限的载荷力值,其计算结果取决于斜截面构件的尺寸以及各个参数的值。
本文简要介绍了受弯构件斜截面承载力计算的方法,进行计算前有必要确定各个参数值,只有这样才能得到合理的结果,从而更好地为结构设计提供支持。
受弯构件斜截面承载力计算是一项复杂而又艰巨的工作,需要综合多个方面的因素进行参数分析,全面考虑结构的构造、受力情况和材料性能等因素,以确定计算结果的合理性。
一般情况下,斜截面构件的受弯设计不仅仅考虑此受力分析,还要考虑其他因素,比如尺寸变形等。
此外,多次实际应用表明,为了确保斜截面构件的安全性能,应当在斜截面构件承载力分析时考虑相关变形影响及材料疲劳寿命。
尤其是对于极端条件下的受力分析,更应当加以考虑,以提高受弯构件斜截面承载力的计算精度。
总之,受弯构件斜截面承载力的计算是一项重要的工作,必须仔细分析,全面考虑各个因素,以达到计算精度较高的要求,确保结构的安全可靠性。
经过以上的介绍,受弯构件斜截面承载力计算公式已经有了一定的了解,熟悉这种计算方法可以更好地满足结构设计的需求,为可靠和安全的结构设计提供必要的理论支撑和技术保障。
钢筋混凝土受弯构件斜截面承载力计算(一)仅配箍筋梁的受剪承载力Vu 的计算公式 1.计算简图2.计算表达式(1)对于承受一般荷载的矩形,T 形和工形截面受弯构件(包括连续梁和约束梁)根据试验分析,梁的受剪承载力随 箍筋数量的增加而提高。
当其它条件不变时,V cs /(f c bh 0)和ρsv f yv /f c 基本上呈线性关系(图4-12中λ=1.4关系线)。
规范给出的V cs 计算公式如下:sv y v 0c cs 25.107.0h sAf bh f V += (4-8)式中 f c ——混凝土轴心抗压强 度设计值;b ——矩形截面的宽度或T 形、工形截面的腹板宽度;h 0——截面有效高度;f yv ——箍筋抗拉强度设计值,可按附录4表3采用,但取值不应大于310N/mm 2。
(2)对于承受以集中荷载为主的矩形截面独立梁(包括连续梁和约束梁)规范对集中荷载作用下(包括作用有多种荷载,且集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况)的矩形截面独立梁给出了如下的V cs 计算公式:0sv y v 0c cs 25.15.12.0h sA f bh f V ++=λ (4-9)式中 λ——计算剪跨比,λ=a /h 0,在此a 为集中荷载作用点至支座截面或节点边缘的距离。
当λ<1.4 时,取λ=1.4。
当λ>3时,取λ=3。
对于集中荷载作用下的T 形和工形截面梁,由于翼缘对抗剪有利,因此仍可按式(4-8)计算。
如采用式(4-9)计算,就更偏安全。
(二)同时配箍筋和弯起钢筋的梁受剪承载力Vu 的计算公式 1.计算简图图4-13为一既配箍筋又配弯起钢筋的梁,与斜裂缝相交的弯筋的抗剪能力为T sb sin αs 。
若在同一弯起平面内弯起钢筋截面面积为A sb ,并考虑到和斜裂缝相交的弯起钢筋的应力达到抗拉强度设计值,于是图4--11 仅配箍筋梁的斜截面受剪承载力计算图图4-12 有腹筋梁V cs实测值与计算值的比较s s A f T V ααs i n s i n sb y sb sb == (4-10)式中 A sb ——同一弯起平面内弯起钢筋截面面积;αs ——斜截面上弯起钢筋与 构件纵向轴线的夹角2.计算表达式矩形、T 形和工形截面的受弯构件,当同时配有箍筋和弯起钢筋时的斜截面受剪承载力计算公式s sb y cs sb cs u sin αA f V V V V +=+=(三)受剪承载力计算设计表达式在设计中为保证斜截面受剪承载力,应满足 (1)仅配箍筋的梁V ≤V u /γd =V cs /γd (4-12)(2)同时配箍筋和弯起钢筋的梁V ≤V u /γd =(V cs +V sb )/γd (4-13)式中 γd ——钢筋混凝土结构的结构系数,按附录3表2取用;V ——剪力设计值。