数值计算方法B复习题答题要点
- 格式:doc
- 大小:83.00 KB
- 文档页数:3
数值计算方法期末复习概念题:1.算法的优劣性计算量的大小是衡量算法优劣的一个重要标准尽量节约存储量,也是设计算法时需要考虑的一个因素2.截断误差(方法误差)无穷过程用有限过程近似引起的误差舍入误差(计算误差)无论用计算机、计算器计算还是笔算,都只能用有限位小数来代替无穷小数或用位数较少的小数来代替位数较多的有限小数,产生舍入误差3.有效数字(注意事项4点)p7(1)用四舍五入取准确值的前n位x*作为近似值,则x*必有n个有效数字例如,л=3.1415926…,取3.14作为近似值,则有3位有效数字,取3.142作为近似值,则有4位有效数字(2)有效数字位数相同的两个近似数,绝对误差不一定相同例如,设x1*= 12345, x2*=12.345,二者均有5位有效数字,前者的绝对误差为1/2,后者的绝对误差为1/2×10-3(3)把任何数乘以10p等于移动该数的小数点,这样并不影响其有效数字的位数4.相对误差的定义p5⏹定义x的近似值x*的相对误差相对误差限可由绝对误差限求出,反之,绝对误差限也可由相对误差限求出5.减少相对误差的若干规则p14 (4点)a)两个相近的数相减,会严重损失有效数字b)防止大数“吃掉”小数c)在除法运算中要避免出现除数的绝对值远远小于被除数绝对值的情形(绝对值太小的数不宜做除数)d)简化计算步骤,减少运算次数选用e)数值稳定性好的计算公式6.逐步扫描法p227.二分法(二分估计式)p24就是将方程根所在的区间平分为两个小区间,再判断根属于哪个小区间;把有根的小区间再平分为二,再判断根所在的更小的区间,对分;重复这一过程,最后求出所要的近似值⏹1.计算f (x)在有解区间[a, b]端点处的函数值,f (a),f (b)⏹2.计算f (x)在区间中点处的值f (x0)判断若f (x0) = 0,则即是根,否则检验:(1)若f (x0)与f (a)异号,则知解位于区间[a, x0],以x0代替b;(2)若f (x0)与f (a)同号,则知解位于区间[x0, b],x0代替a反复执行步骤2、3,误差估计式8.解方程的集中方法(课件)9.高斯消元法的弊端a)如果用作除数为主元素,消元过程中可能出现为零的情况,此时消元过程无法进行下去b)如果主元素很小,由于舍入误差和有效位数消失等因素,其本身常常有较大的相对误差,用其作除数,会导致其它元素数量级的严重增长和舍入误差的扩散,使得所求的解误差过大,以致失真10. 代数插值的推论:当f(x)是次数不超过n的多项式时,其n次插值多项式就是f(x)本身11. 牛顿科特斯公式的系数的性质p197 (3点)⏹柯特斯系数C k之和为1⏹柯特斯系数C k具有对称性,即C k=C n-k⏹柯特斯系数有时为负12. 复数求积分的思想p208为减小因区间过大而造成的误差过大,将积分区间等分成若干等份,每份成为一个子区间,然后对每个子区间用低阶的求积公式(如梯形公式、辛普森公式或科特斯公式等)求积,再利用积分的区间可加性,把各区间上的积分加起来,得到复化求积公式13.变步长求积分的思想p208⏹变步长积分法思想:将区间逐次对分进行计算,用前后两次计算的结果进行估计,若合乎精度要求,就停止计算;否则再次对分,重复以上计算过程,直至达到精度要求为止14.欧拉公式的几何意义p231欧拉公式的几何意义:用一条初始点重合的折线,来近似表示微分方程的解(积分曲线)3中导出方法14. 局部截断误差和阶p232局部截断误差和阶⏹定义:在y n准确的前提下,即y n=y(x n)时,用数值方法计算y n+1的误差称为该数值方法计算y n+1时的局部截断误差⏹定义:数值方法的局部截断误差为O(h p+1),则称这种数值方法的阶数为p 计算题:1.绝对误差(公式)2.有效数字3.4.相对误差5.6.二分法7.迭代法8.9.列主元高斯消元法10.11.克洛特分解法12.13.雅克比迭代法高斯赛德尔迭代(简答只需要写出公式)14.15.线性插值10.抛物线插值11.12.拉格朗日插值的公式13.牛顿科特斯公式n=1 n=2 的公式14.15.复化梯形16.复化辛普森17.欧拉公式(o(h^2))18.19.改进欧拉公式20.21.四阶龙格库塔法公式求一阶差微分的数值(o(h^5))。
《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。
2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。
如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。
3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。
4. 向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足(1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。
5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。
6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7. 矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A 。
若||||A 满足(1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B 称||||A 为矩阵A 的范数。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
《数值计算⽅法》试题集及答案要点《数值计算⽅法》复习试题⼀、填空题:1、----=410141014A ,则A 的LU 分解为A ?=。
答案:--??--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则⽤⾟普⽣(⾟⼘⽣)公式计算求得?≈31_________)(dx x f ,⽤三点式求得≈')1(f 。
答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的⼆次插值多项式中2x 的系数为,拉格朗⽇插值多项式为。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求⽅程)(x f x =的⽜顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1 ),=]4,3,2,1,0[f ( 0 );7、计算⽅法主要研究( 截断 )误差和( 舍⼊ )误差; 8、⽤⼆分法求⾮线性⽅程f (x )=0在区间(a ,b )内的根时,⼆分n 次后的误差限为(12+-n a b );9、求解⼀阶常微分⽅程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为()],(),([2111+++++=n n n n n n y x f y x f hy y);10、已知f (1)=2,f (2)=3,f (4)=5.9,则⼆次Newton 插值多项式中x 2系数为( 0.15 );11、两点式⾼斯型求积公式?10d )(x x f ≈(?++-≈1)]3213()3213([21d )(f f x x f),代数精度为( 5 );12、解线性⽅程组A x =b 的⾼斯顺序消元法满⾜的充要条件为(A 的各阶顺序主⼦式均不为零)。
一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。
2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。
如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。
3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。
4。
向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。
5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。
6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7。
矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A ,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B称||||A 为矩阵A 的范数.8. 算子范数:设A 为n 阶方阵,||||•是n R 中的向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||•诱导出的矩阵范数,也称算子范数.9。
一、 名词解释1.误差:设*x 为准确值x 地一个近似值,称**()e x x x =-为近似值*x 地绝对误差,简称误差.2.有效数字:有效数字是近似值地一种表示方法,它既能表示近似值地大小,又能表示其精确程度.如果近似值*x 地误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零地数字到这一位地所有数字均称为有效数字.算法:是指解题方案地准确而完整地描述,是一系列解决问题地清晰指令,算法代表着用系统地方法描述解决问题地策略机制.计算一个数学问题,需要预先设计好由已知数据计算问题结果地运算顺序,这就是算法.4. 向量范数:设对任意向量n x R ∈,按一定地规则有一实数与之对应,记为||||x ,若||||x 满足(1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 地范数.5. 插值法:给出函数()f x 地一些样点值,选定一个便于计算地函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 地近似地方法.6相对误差:设*x 为准确值x 地一个近似值,称绝对误差与准确值之比为近似值*x 地相对误差,记为*()r e x ,即**()()r e x e x x=7. 矩阵范数:对任意n 阶方阵A ,按一定地规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B 称||||A 为矩阵A 地范数.8.算子范数:设A 为n 阶方阵,||||∙是n R 中地向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||∙诱导出地矩阵范数,也称算子范数.9. 矩阵范数与向量范数地相容性:对任意n 维向量x ,都有||||||||Ax A ≤||||x这一性质称为矩阵范数与向量范数地相容性.10.1-范数,∞-范数和2-范数: (1)1-范数11||||||ni i x x ==∑(2)∞-范数1||||max{||}i i nx x ∞≤≤=(3)2-范数221||||x x =+二、简答题1.高斯消元法地思想是:先逐次消去变量,将方程组化成同解地上三角形方程组,此过程称为消元过程.然后按方程相反顺序求解上三角形方程组,得到原方程组地解,此过程称为回代过程.2. 迭代法地基本思想是:构造一串收敛到解地序列,即建立一种从已有近似解计算新地近似解得规则,由不同地计算规则得到不同地迭代法.3. 雅可比(Jacobi )迭代法地计算过程(算法): (1)输入()ij A a =,1(,,)n b b b =,维数n ,(0)(0)(0)(0)12(,,,)n x x x x =,ε,最大容许迭代次数N. (2)置1k = (3)对1,2,,i n =(0)1()/ni i ij j ii j j i x b a x a =≠=-∑(4)若(0)x x ε-<,输出x 停机;否则转5. (5)k N <,置(0)1,(1,2,,)i i k k x x i n +⇒⇒=,转3,否则,输出失败信息,停机.4. 插值多项式地误差估计:(P102)由(1)(1)101()()()()()()()(1)!(1)!n n n n n f f R x x x x x x x x n n ξξω+++==---++当(0,1,,)i x x i n ==时,上式自然成立,因此,上式对[,]a b 上地任意点都成立,这就叫插值多项式地误差估计.5. 反幂法地基本思想:设A 为阶非奇异矩阵,λ,u 为A 地特征值和相应地特征向量,则1A - 地特征值是A 地特征值地倒数,而相应地特征向量不变,即11A u u λ-=因此,若对矩阵1A -用幂法,,即可计算出1A -地按模最大地特征值,其倒数恰为A 地按模最小地特征值.6. 雅可比(Jacobi )迭代法是:选取初始向量(0)x 代入迭代公式(1)()k k i x Bx g +=+(0,1,2,)k =产生向量序列(){}k x ,由上述计算过程所给出地迭代法. 7. 数值计算中应注意地问题是:(1)避免两个相近地数相减 (2)避免大数“吃”小数地现象(3)避免除数地绝对值远小于被除数地绝对值 (4)要简化计算,减少运算次数,提高效率 (5)选用数值稳定性好地算法8. 高斯消去法地计算量:由消去法步骤知,在进行第k 次消元时,需作除法n k -次,乘法()n k -(1)n k -+次,故消元过程中乘除运算总量为乘法次数121()(1)(1)3n k n n k n k n -=--+=-∑ 除法次数11()(1)2n k nn k n -=-=-∑在回代过程中,计算k x 需要(1)n k -+次乘除法,整个回代过程需要乘除运算地总量为1(1)(1)2nk nn k n =-+=+∑,所以,高斯消去法地乘除总运算量为322(1)(1)(1)32233n n n n n N n n n n =-+-++=+-9. 迭代法地收敛条件:对任意初始向量(0)x 和右端项g ,由迭代格式(1)()k k x Mx g +=+(0,1,2,)k =产生地向量序列(){}k x 收敛地充要条件是()1M ρ<.10. 迭代法地误差估计:设有迭代格式(1)()k k x Mx g +=+,若||||1M <,(){}k x 收敛于*x ,则有误差估计式()*(1)(0)||||||||||||1||||Kk M xx x x M -≤--.二、 计算题1.假定运算中数据都精确到两位小数,试求*1.21 3.659.81x =⨯-地绝对误差限和相对误差限,计算结果有几位有效数字?解:由式12121212121212()()()()()()r r r e x x e x e x x x e x x e x e x x x x x ±=±⎧⎪⎨±=±⎪±±⎩和1221121212()()()()()()r r r e x x x e x x e x e x x e x e x ≈+⎧⎨≈+⎩得 *() 3.65(1.21) 1.21(3.65)(9.81)e x e e e =⨯+⨯-因为式中数据都精确到两位小数,即其误差限均为21102-⨯,故有*|()| 3.65|(1.21)| 1.21|(3.65)||(9.81)|e x e e e ≤⨯+⨯+***|()|0.0293|()|0.0054|| 5.3935r e x e x x =≤=所以,*x 地绝对误差限为0.0293,相对误差限为0.0054,计算结果有两位有效数字.2.求矩阵223477245A ⎡⎤=⎢⎥⎢⎥-⎣⎦地三角分解.解:由式111111(1,2,,)(2,,,,,)()/(1,2,,1,1,,)j j i ij ij ik kjk j ij ij ik kj jjk u a j n u a l u i n j i n l a l u u j n i j n -=-=⎧⎪==⎪⎪=-==⎨⎪⎪=-=-=+⎪⎩∑∑,12122u a ==,13133u a ==2121114/22l a u ===,3131112/12l a u -===- 222221127223u a l u =-=-⨯=,232321137231u a l u =-=-⨯=3232311222()/[4(1)2]/32l a l u u =-=--⨯=333331133223()5[(1)321]6u a l u l u =-+=--⨯+⨯=所以21(3.65 1.211)100.02932-≤++⨯⨯=100223210031121006A ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3.用幂法(2k =)求矩阵210021012A -⎡⎤=-⎢⎥⎢⎥-⎣⎦地按模最大地特征值和相应地特征向量.取(0)(0,0,0)T x =. (P 77)解:(0)(0)(0,0,1)T y x ==(1)(0)(0,1,2)T x Ay ==-, 2α=(1)(1)(0,0.5,1)T x yα==-(2)(1)(0.5,2,2.5)T x Ay ==-, 2.5α=4. 已知函数ln y x =,x 地值是10,11,12,13,14对应地ln y x =地值分别是 2.3026,2.3979,2.4849,2.5649,2.6391.用Lagrange 线性插值求ln11.5地近似值.解:取两个节点011x =,112x =,插值基函数为1001()(12)x x l x x x x -==---0110()11x x l x x x x -==-- 由式011010110()x x x x x y y x x x x ϕ--=+--得 1() 2.3979(12) 2.4849(11)L x x x =--+-将x=11.5代入,即得1ln11.5(11.5) 2.39790.5 2.48490.5 2.4414L ≈=⨯+⨯=按式(1)1()()()(1)!n n n f R x x n ξω++=+(,)a b ξ∈得 "1(ln )()(11)(12)2!x R x x x ξ=--因为"21(ln )x x =-,ξ在11和12之间,故"2211|(ln )|0.008264511x ξξ=≤= 于是311|(11.5)|0.00826450.50.5 1.03306102R -≤⨯⨯⨯=⨯5. 用Jacobi 迭代法(1k =)求解线性方程组1231231231027210283542x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ .解:由Jacobi 迭代法得计算公式(1)()11nk k iiij j j iiiij ib xa x a a +=≠=-+∑得 (1)()()123(1)()()213(1)()()3120.10.27.20.10.28.30.20.28.4k k k k k k k k k x x x x x x x x x +++⎧=++⎪=++⎨⎪=++⎩ 取(0)(0,0,0)T x =,代入上式得(1)17.2x =(1)28.3x =(1)38.4x =(2)10.18.30.28.47.29.71x =⨯+⨯+=(2)20.17.20.28.48.310.70x =⨯+⨯+= (2)30.27.20.28.38.411.50x =⨯+⨯+=6. 设有方程组Ax b =,其中111221112211122A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,讨论用Jacobi 迭代法求解地收敛性. 解:因为A 为对称矩阵,且其各阶主子式皆大于零,故A 为对称正定矩阵,A 不是弱对角占优阵,故不能判别Jacobi 迭代地收敛性.易算出Jacobi 迭代法地迭代矩阵为1110221102211022B I D A -⎡⎤--⎢⎥⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦其特征方程311221113||22441122I B λλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥-==+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦21()(1)02λλ=-+=有根1212λλ==,31λ=-,因而()1B ρ=.由向量序列(){}k x 收敛地充要条件是()1B ρ<,故Jacobi 迭代法不收敛.7.用反幂法(1k =)求矩阵210021012A -⎡⎤=-⎢⎥⎢⎥-⎣⎦接近2.93地特征值,并求相应地特征向量,取(0)(0,0,0)T x =.解:对 2.93A I -作三角分解得0.93102.9300.931010.93A I --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦1000.931001000.9311101000.930.930.93⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎣⎦⎣⎦ 8. 已知函数ln y x =,x 地值是10,11,12,13,14对应地ln y x =地值分别是 2.3026,2.3979, 2.4849, 2.5649, 2.6391.用Lagrange 抛物线插值求ln11.5地近似值.解:取011x =,112x =,213x =,插值多项式为2(12)(13)(11)(13)(11)(12)() 2.39792.4849 2.5649(1112)(1113)(1211)(1213)(1311)(1312)x x x x x x L x ------=++------1.19895(12)(13)2.4849(11)(13) 1.28245(11)(12)x x x x x x =-----+--所以2ln11.5(11.5)L ≈1.19895(0.5)( 1.5)2.48490.5( 1.5) 1.282450.5(0.5) 2.442275=⨯-⨯--⨯⨯-+⨯⨯-=因为"'32(ln )x x=,于是 "'2311132max |(ln )|0.15031011x x -≤≤≤=⨯ 因此用抛物线插值法计算地误差为"'2|(ln )||(11.5)||(11.511)(11.512)(11.513)|3!x R ξ=---2510.1503100.50.5 1.59.3938106--≤⨯⨯⨯⨯⨯=⨯ 查表可得ln11.5 2.442347= 三、 证明题1. 若x 地近似值x *=1210.10(0)m n a a a a ±⨯≠…有n 位有效数字,则111102n a -+⨯为其相对误差限.反之,若x *地相对误差限rε满足111102(1)n r a ε-+≤⨯+,则x *至少具有n 位有效数字.证明:由式*1||102m n x x --≤⨯得**1|()|||102m n e x x x -=-≤⨯从而有**1*121110()12|()|||100.102m nn r m n e x e x x a a a a --+⨯=≤≤⨯⨯ 所以111102n a -+⨯是*x 地相对误差限. 若111102(1)n r a ε-+≤⨯+,由式***()|()|||r r e x e x xε=≤得 ***12|()||()|0.10m r nr e x x e x a a a ε=≤⨯111111(1)1010102(1)2m n m n a a --+-≤+⨯⨯⨯=⨯+由式*1||102m n x x --≤⨯,*x 至少有n 位有效数字.2. 设01,,,n x x x …为1n +个互异节点,(),(0,1,)i l x i =…,n 为这组点上地Lagrange 插值基函数,试证明0()1ni i l x =≡∑.证明:上式地左端为插值基函数地线性组合,其组合系数均为1.显然,函数()1f x ≡在这n+1个节点处取值均为1,即()1i i y f x ==(0,1,,)i n =,由式0()()nn i i i L x y l x ==∑知,它地n 次Lagrange 插值多项式为0()()nn i i L x l x ==∑对任意x ,插值余项为(1)1()()()()()0(1)!n n n n f R x f x L x x n ξω++=-=≡+所以 0()()()1nn i i L x l xf x ==≡=∑3设A 为任意n 阶方阵,∙为任意由向量范数诱导出地矩阵范数,则()A A ρ≤ 证明:对A 地任一特征值i λ及相应地特征向量i u ,都有||i λ||||||||||||||||i i i i u u Au A λ==≤||||i u因为i u 为非零向量,于是有 ||||||i A λ≤由i λ地任意性即得 ()||||A A ρ≤4. 设A 为n 阶方阵,则lim 0k k A →∞=地充分必要条件为()1A ρ<.证明:必要性.若lim 0k k A →∞=由相关定义得 l i m ||||k k A→∞= 而 0()[()]||K K K A A A ρρ≤=≤ 于是由极限存在准则,有 l i m [()]k k A ρ→∞= 所以()1A ρ<.充分性.若()1A ρ<,取1()02A ρε-=>,由||||()A A ρε≤+,存在一种矩阵范数∙,使得1()||||()12A A A ρρε+≤+=< 而||||||||k k A A ≤,于是 l i m ||||l i m |||k k k k A A →∞→∞== 所以 l i m0k k A →∞=五、应用题1.平面桁架是由刚性元件通过结点互相联结而组成地力学结构,它通常出现在桥梁结构和其他需要力学支撑地结构中.如图是一个简单地静力桁架结构,其中刚性元件(5m =)通过结点,,,A B C D 相连.求各个结点地合力方程,并求出当,36ππαβ==外部负荷12250,1500g N g N ==时,求各个节点内力.解:设五个刚性元件地内力为125{,,,}f f f ,它们都处理为压力,如果解是负地,表明该力是张力.桁架地左边由固定结点A 支撑,右边由滑轮D 支撑,678,,f f f 是外部支撑力,12,g g 是外部负荷.由于在静力平衡时,每个结点处地水平方向合力与垂直方向地合力为零,那么有结点A 12617cos 0sin 0f f f f f αα+-=⎧⎨+=⎩ 结点B 141134cos cos 0sin sin 0f f g f f f αβαβ-++=⎧⎨---=⎩结点C 253200f f f g -+=⎧⎨-=⎩ 结点D 4548cos 0sin 0f f f f ββ--=⎧⎨+=⎩设f 表示未知力向量,上述方程组可用矩阵表示为12cos 10001000sin 00000100cos 00cos 0000sin 01sin 000000100100000010*******cos 10000000sin 00010g f g αααβαβββ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 若取,36ππαβ==,外部负荷12250,1500g N g N ==.采用列主元素法,得各结点地内力如下:(1174,837,1500,966.5,837,250,1017,483.3)T f =--版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有 This article includes some parts, including text, pictures, and design. Copyright is personal ownership.kavU4。
数值计算试题一、选择题(每题4分,共10题,共40分)1. 数值计算方法常用的初值选取方法有()。
- A. 逐次逼近法- B. 二分法- C. 迭代法- D. 直接求解法2. 数值计算方法中,误差的主要来源是()。
- A. 截断误差- B. 舍入误差- C. 积分误差- D. 面积误差3. 二分法适用于()。
- A. 近似求解非线性方程- B. 数值积分- C. 插值拟合- D. 非线性规划4. 在数值计算过程中,防止误差传播和扩散的方法是()。
- A. 稳定性分析- B. 收敛性分析- C. 考虑计算精度- D. 选择合适的算法5. 牛顿迭代法的基本思想是()。
- A. 利用函数的导数进行迭代- B. 利用函数的积分进行迭代- C. 利用函数的差商进行迭代- D. 利用函数的微分方程进行迭代6. Richardson外推法是一种加快数值计算速度的方法,它基于()。
- A. 梯形公式- B. 中点公式- C. Simpson公式- D. Gauss公式7. 数值计算方法中,误差的度量方法包括()。
- A. 绝对误差- B. 相对误差- C. 条件数- D. 误差限8. 龙贝格积分法是一种数值积分方法,它基于()。
- A. 矩形公式- B. 符号函数- C. 拉格朗日多项式- D. 分段线性函数9. 数值计算中,条件数的大小反映了()。
- A. 算法的稳定性- B. 矩阵方程的解的灵敏度- C. 数值方法的收敛性- D. 迭代过程的迭代次数10. 复化求积公式是一种数值积分方法,它基于()。
- A. 梯形公式- B. 辛普森公式- C. 点插值公式- D. 泰勒公式二、填空题(每题4分,共10题,共40分)1. 数值计算方法中,求解非线性方程常用的方法有()。
2. 数值计算方法中,求解线性方程组常用的方法有()。
3. 数值计算方法中,求解常微分方程常用的方法有()。
4. 数值计算方法中,求解偏微分方程常用的方法有()。
1、答题要点
(1))/)1ln((x x +
(2))1/(12x x ++ (3))2cos(x
(4)︒1sin 22
2、答题要点 (1)把方程的根看成y=3-x 和y=ln(x)的交点,经分析可取含根区间[1.0 , 3.0] (2)经验算可得f(1.0)*f(3.0)<0,另f ’(x)在[1.0 , 3.0]上不变号,f(x)单调,二分法可行
(3)迭代式)ln(31k k x x -=+从迭代收敛定理两方面作完整讨论,知迭代式能保证收敛
3、答题要点
(1)先对系数矩阵A 作LU 分解得A=LU=⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡5/32/32/512
215/32/112/11
(2)由L Y=B 解出Y=(4,4,3/5)T ,由UX=Y 解出X=(1,1,1)T
4、答题要点
三点牛顿插值计算N2(0.75)=N1(0.75)+(1.38)(0.75-0.5)(0.75-1.0)=2.09875
(3)令i i y u ln =,计算∑i
u =5,i
i u x ∑=7.5,∑i
x =5,∑2
i
x
=7.5,解下面的方程
组:
⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.75ln 5.7555b a 得a=1,b=1,故有x e x f =)( (4)分别用复化梯形积分公式和复化辛普森积分公式计算
5、答题要点 (1)验算系数矩阵是否是严格按行或者按列对角占优,满足其一即可判定收敛 (2)先进行等价变换,再写出迭代格式,B 的计算必须正确 (3)分别计算B 的行范数和列范数,只要有一个小于1,即可判定收敛
6、答题要点 先由初始向量做第一次迭代V (1)=A V (0),对V (1)规范化得U (1),再计算V (2)=AU (1),依此
类推,当|maxV (k+1)-maxV (k)|<0.5*10-1时停止迭代计算,取maxV (k+1)作为所求 7、答题要点 正确地写出每一个等分节点的预估和校正计算式,最后结果参考:1.020,1.083,1.196,
1.375,1.645。
8、答题要点 精确值f(1000)=0.1580743 (102)
(1)f 1(1000)≈1000*(0.3164-0.3162)*102=0.2*102
,与精确值比较得绝对误差限
ε1=0.5*101
,得有效数字位数为1位;
(2)f 2(1000)≈1000/(0.3164*102+0.3162*102)≈0.1581*102
,与精确值比较得绝对误差
限为ε2=0.5*10*10-2
,得有效数字的位数为4位。
原因在于直接按表达式计算时两个相近的数相减导致有效数字位数减少而误差增大 9、答题要点 (1)经验算可得f(2.0)*f(3.0)<0,另f ’(x)在[2.0 , 3.0]上不变号,f(x)单调,二分法可行 取中点c=2.5,经计算得f(2.0)*f(2.5)<0,故[a1=2.0 , b1=2.5] 再取中点c=2.25,经计算得f(2.0)*f(2.25)<0,故[a2=2.0 , b2=2.25]
(2)可选迭代式3
152+=
+k k x x 或)23/()52(2
31-+=+k k k x x x ,从迭代收敛定理两方
面作完整讨论,知迭代式能保证收敛。
10、答题要点 (1)高斯消元法需经过两步,,解向量结果为(19,-7,-8)T
(2)先对系数矩阵A 作LU 分解得A=LU=⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111123121
(3)由L Y=B 解出Y=(4,-1,-8)T ,由UX=Y 解出X=(19,-7,-8)T
11、答题要点
(2)二点牛顿插值计算N1(1.25)=3.01+4.94(1.25-1.0)=4.245
三点牛顿插值计算N2(1.25)=N1(1.25)+(2.08)(1.25-1.0)(1.25-1.5)=4.115 (3)分别用复化梯形积分公式和复化辛普森积分公式计算 T(f)=0.25*[1+2(1.49+3.01+5.48)+8.99]=7.4875 S(f)=(0.5/3)*[1+4*(1.49+5.48)+2*3.01+8.99]=7.315
(4)令2i i x v =,计算
∑i
v =7.5,∑i
y =19.97,∑2
i
v
=22.125,
i
i y v ∑=51.6725,解
下面的方程组⎥
⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡6725.5197.19125.225.75.75b a 得a ≈1,b ≈2,故有12)(2
+=x x f 12、答题要点
将f=x 3、x 4分别代入S(f)和I(f)可知,在前两种情况下,S(f)=T(f),而在最后一种情况
下二都不再相等,说明辛普森积分公式具有3阶代数精度。
13、答题要点
先对A 作LU 分解,得结果A=⎥
⎦
⎤
⎢⎣⎡⎥⎦⎤⎢
⎣⎡-5/63515/21 将初始向量代入AV (1)=AU (0),解方程组得V (1),对V (1)规范化得U (1),再代入A V (2)=AU (1),解方程组得V (2)依此类推。
14、略
15、dI 0=0.002321……<=0.5*10-2
=εI0(,dI 1=5* dI 0,dI 2=5* dI 1,此递推式是数值
不稳定的,因为递推过程中误差的积累和传播严重 16、略。