正弦函数图象的对称性
- 格式:doc
- 大小:384.00 KB
- 文档页数:7
三角函数正弦余弦正切的定义与性质三角函数是数学中的重要概念之一。
其中,正弦函数、余弦函数和正切函数是最为常见和常用的三角函数。
本文将对正弦函数、余弦函数和正切函数的定义与性质进行详细介绍。
一、正弦函数的定义与性质1. 正弦函数的定义正弦函数(Sine Function)是一个周期函数,可以表示为y = sin(x),其中x为自变量,y为函数值。
正弦函数的定义域为全体实数,值域为[-1,1]。
2. 正弦函数的性质正弦函数有以下几个重要的性质:(1)对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
(2)周期性:正弦函数的周期为2π,即sin(x+2π) = sin(x)。
(3)奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x)。
(4)单调性:在一个周期内,正弦函数是先递增后递减的,且在[0,π]上为递增函数,在[π,2π]上为递减函数。
二、余弦函数的定义与性质1. 余弦函数的定义余弦函数(Cosine Function)也是一个周期函数,可以表示为y = cos(x),其中x为自变量,y为函数值。
余弦函数的定义域为全体实数,值域为[-1,1]。
2. 余弦函数的性质余弦函数有以下几个重要的性质:(1)对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
(2)周期性:余弦函数的周期为2π,即cos(x+2π) = cos(x)。
(3)奇偶性:余弦函数是偶函数,即cos(-x) = cos(x)。
(4)单调性:在一个周期内,余弦函数在[0,π/2]上为递减函数,在[π/2,2π]上为递增函数。
三、正切函数的定义与性质1. 正切函数的定义正切函数(Tangent Function)可以表示为y = tan(x),其中x为自变量,y为函数值。
正切函数的定义域为全体实数,但在其周期的特殊点(如π/2)处无定义。
2. 正切函数的性质正切函数有以下几个重要的性质:(1)周期性:正切函数的周期为π,即tan(x+π) = tan(x)。
三角函数的像对称性与对称轴分析三角函数是数学中常见的函数类型之一,它包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
其中,正弦函数和余弦函数在图像上展现出像对称性,并且在对称轴上具有特殊的性质。
本文将着重分析三角函数的像对称性以及对称轴的特点。
一、正弦函数的像对称性与对称轴分析正弦函数的表达式为:y = sin(x)。
我们可以通过对其图像进行观察来探究其像对称性和对称轴的情况。
1. 像对称性观察正弦函数的图像,我们可以发现它在原点(0,0)处具有像对称性。
即,对于任意实数a,都有sin(-a) = -sin(a)。
这意味着,如果一个角度a使得sin(a)等于某个特定的值,那么角度-a也将使得sin(-a)等于这个特定的值。
这种像对称性在数学运算和图像分析中具有重要的作用。
2. 对称轴正弦函数的图像相对于x轴是关于原点对称的。
也就是说,如果通过将正弦函数的图像沿着x轴翻转,那么翻转后的图像与原图像完全重合。
因此,x轴即为正弦函数的对称轴。
二、余弦函数的像对称性与对称轴分析余弦函数的表达式为:y = cos(x)。
我们同样可以通过观察余弦函数的图像来研究其像对称性和对称轴的特点。
1. 像对称性余弦函数也具有像对称性,即对于任意实数a,都有cos(-a) = cos(a)。
如果一个角度a使得cos(a)等于某个特定的值,那么角度-a也将使得cos(-a)等于这个特定的值。
这种像对称性与正弦函数的像对称性相似,可以在数学运算和图像分析中发挥重要作用。
2. 对称轴余弦函数的图像相对于y轴是关于原点对称的。
也就是说,如果通过将余弦函数的图像沿着y轴翻转,那么翻转后的图像与原图像完全重合。
因此,y轴即为余弦函数的对称轴。
三、三角函数的常见性质除了像对称性和对称轴这两个特点之外,三角函数还具有其他一些常见的性质。
以下列举其中几个重要的性质:1. 周期性正弦函数和余弦函数是周期函数,它们的周期都是2π。
三角函数的周期与对称性三角函数是数学中重要的概念之一,它们在几何、物理、工程等领域有着广泛的应用。
在研究三角函数时,周期与对称性是两个重要的性质。
本文将讨论三角函数的周期与对称性,并且给出相关的定义和性质。
一、三角函数的周期1. 正弦函数的周期正弦函数是最基本的三角函数之一,在数学中用符号sin(x)表示。
正弦函数具有周期性,即它的函数值在一定的间隔内反复变化。
正弦函数的周期是2π(或360度),即sin(x+2π) = sin(x)。
这意味着当自变量x增加2π时,正弦函数的值会重复。
2. 余弦函数的周期余弦函数也是常见的三角函数,用符号cos(x)表示。
余弦函数同样具有周期性,其周期也是2π。
也就是说,当自变量x增加一个周期的长度,余弦函数的值会重新开始。
3. 正切函数的周期正切函数是tan(x),它的周期是π(或180度)。
当自变量x增加π时,正切函数的值会重新开始。
4. 正割、余割和余切函数的周期正割函数(sec(x)),余割函数(csc(x))和余切函数(cot(x))的周期与它们的倒数函数的周期相同。
这意味着它们的周期分别是2π、2π和π。
二、三角函数的对称性1. 正弦函数的对称性正弦函数具有奇对称性。
也就是说,对于任何实数x,有sin(-x) = -sin(x)。
这表示正弦函数以坐标原点为对称中心呈现镜像对称。
2. 余弦函数的对称性余弦函数具有偶对称性。
对于任何实数x,有cos(-x) = cos(x)。
这意味着余弦函数以y轴为对称中心呈现轴对称。
3. 正切函数的对称性正切函数具有周期性和奇对称性。
即tan(-x) = -tan(x),而且tan(x+π) = tan(x)。
这表示正切函数以坐标原点和间隔为π的位置为对称中心,可以同时看作奇对称和周期性的体现。
4. 正割、余割和余切函数的对称性正割函数、余割函数和余切函数的对称性与它们的倒数函数的对称性相同。
正割函数具有偶对称性,余割函数具有奇对称性,余切函数具有周期性和奇对称性。
函数对称性公式大总结1. 引言在数学中,函数对称性是指函数在某种变换下保持不变的特性。
函数对称性广泛应用于各个数学分支,如代数、几何和微积分等。
本文将对常见的函数对称性公式进行总结,以帮助读者更好地理解和应用这些公式。
2. 对称轴对称轴是函数对称性的一个重要概念。
对称轴是指函数图像关于某一直线对称。
对称轴上的点与其对称点关于对称轴对称。
对称轴的方程可以通过观察函数的特性或运用特定的公式来确定。
2.1 y轴对称性若函数满足f(x) = f(-x),则函数具有y轴对称性。
对于奇函数来说,其图像关于y轴对称;对于偶函数来说,其图像与y 轴重合。
常见的函数对称于y轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)2.2 x轴对称性若函数满足f(x) = -f(x),则函数具有x轴对称性。
对于奇函数来说,其图像关于x轴对称;对于偶函数来说,其图像与x 轴重合。
常见的函数对称于x轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)3. 极限和导数对称性在微积分中,极限和导数也可以与函数的对称性相关联。
3.1 极限对称性若函数f(x)在某一点x=a的极限存在,并且与x=a的对称点x=-a的极限相等,即lim(x->a) f(x) = lim(x->-a) f(x),则函数具有极限对称性。
常见的函数具有极限对称性的公式有:•正弦函数的极限对称性:lim(x->0) sin(x) = lim(x->0) sin(-x)•余弦函数的极限对称性:lim(x->0) cos(x) = lim(x->0) cos(-x)3.2 导数对称性若函数f(x)在某一点x=a可导,并且其导数与x=a的对称点x=-a的导数相等,即f’(a) = f’(-a),则函数具有导数对称性。
常见的函数具有导数对称性的公式有:•正弦函数的导数对称性:(sin(x))’ = cos(-x)•余弦函数的导数对称性:(cos(x))’ = -sin(-x)4. 对称性的应用函数对称性是解决许多数学问题的重要工具。
三角函数的图像与性质三角函数是数学中的重要概念,它们的图像和性质对于初中数学学习者来说是必须掌握的内容。
在本文中,我将详细介绍三角函数的图像与性质,并给出一些例子和说明,帮助中学生和他们的父母更好地理解和应用这些知识。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,它的图像是一条连续的曲线,呈现出周期性变化。
正弦函数的性质包括:1. 周期性:正弦函数的周期是2π,即在每个2π的区间内,正弦函数的图像重复出现。
2. 幅度:正弦函数的幅度表示波峰和波谷的最大差值,通常记为A。
幅度越大,波峰和波谷的差值越大。
3. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。
4. 奇偶性:正弦函数是奇函数,即f(x) = -f(x)。
举例说明:假设有一条正弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,正弦函数的图像先从0逐渐上升到1,然后下降到0,再下降到-1,最后又上升到0。
这样的周期性变化会一直重复下去。
根据正弦函数的性质,可以得出该图像关于y轴对称,且是奇函数。
二、余弦函数的图像与性质余弦函数也是一种常见的三角函数,它的图像和正弦函数有些相似,但也有一些不同之处。
余弦函数的性质包括:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。
2. 幅度:余弦函数的幅度也表示波峰和波谷的最大差值,通常记为A。
与正弦函数不同的是,余弦函数的幅度表示波峰和波谷的绝对值最大差值。
3. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。
4. 奇偶性:余弦函数是偶函数,即f(x) = f(x)。
举例说明:假设有一条余弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,余弦函数的图像先从1逐渐下降到0,然后下降到-1,再上升到0,最后又上升到1。
这样的周期性变化会一直重复下去。
根据余弦函数的性质,可以得出该图像关于y轴对称,且是偶函数。
三、正切函数的图像与性质正切函数是三角函数中的另一种重要函数,它的图像与正弦函数和余弦函数有很大的不同。
正弦,余弦正切函数的图像与性质
正弦、余弦和正切是三角函数的代表,其图形及性质有所不同。
在三
角函数中,正弦函数的图像具有周期性,一般用y=sin x来表示,它
的值域在-1到1之间。
它的周期为T=2π,即对于x=kT(k为任意整数)时,sin x的值不变。
此外,正弦函数的图像具有对称的特点,即**它的图像在点(0,0)处关于y轴对称**,并且关于x轴的对称点是
(*π/2,1)、(*3π/2,-1) 都是关于y轴对称的,
余弦函数和正弦函数类似,也有周期性和对称性,相较于正弦函数,
它的周期为T=2π,值域也是-1到1之间。
其对称性和正弦函数类似,即它也关于y轴对称,对称点是(*π/2,0)、(*3π/2,0)。
正切函数的图像在(-π/2,π/2)绘制出一条曲线,与正弦和余弦不一样,它的值域不是-1和1之间,而是一切实数值。
这种特点也是正切
函数的主要特点,即**具有不断增加不断减少的特点**。
正切函数也
具有周期性,周期为2π,但**它没有对称性**,即它的图像不关于y
轴对称。
正弦函数图象的对称性【教学目标】1.使学生把握正弦函数图象的对称性及其代数表示形式,明白得诱导公式(R)与(R)的几何意义,体会正弦函数的对称性.2.在探究过程中渗透由具体到抽象,由专门到一样以及数形结合的思想方法,提高学生观看、分析、抽象概括的能力.3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识.【教学重点】正弦函数图象的对称性及其代数表示形式.【教学难点】用等式表示正弦函数图象关于直线对称和关于点对称.【教学方法】教师启发引导与学生自主探究相结合.【教学手段】运算机、图形运算器(学生人手一台).【教学过程】一、复习引入1.展现生活实例对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).2.复习对称概念初中我们差不多学习过轴对称图形和中心对称图形的有关概念:轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合;中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合.3.作图观看请同学们用图形运算器画出正弦函数的图象(见图),认真观看正弦曲线是否是对称图形?是轴对称图形依旧中心对称图形?4.猜想图形性质通过简单交流后,能够发觉正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书)如何检验猜想是否正确?我们明白,诱导公式(R),刻画了正弦曲线关于原点对称,而(R),刻画了余弦曲线关于轴对称. 从这两个专门的例子中我们得到一些启发,假如我们能够用代数式表示所发觉的对称性,就能够从代数上进行严格证明.今天我们利用图形运算器来研究正弦函数图象的对称性.(板书课题)二、探究新知分为两个时期,第一时期师生共同探讨正弦曲线的轴对称性质,第二时期学生自主探究正弦曲线的中心对称性质.(一)关于正弦曲线轴对称性的研究第一时期,实例分析——对正弦曲线关于直线对称的研究.1.直观探究——利用图形运算器的绘图功能进行探究请同学们在同一坐标系中画出正弦曲线和直线的图象,选择恰当窗口并充分利用画图功能对问题进行探究研究(见图),在直线两侧正弦函数值有什么变化规律?给学生一定的时刻操作、观看、归纳、交流,最后得出猜想:当自变量在左右对称取值时,正弦函数值相等.从直观上得到的猜想,需要从数值上进一步精确检验.2.数值检验——利用图形运算器的运算功能进行探究请同学们摸索,关于上述猜想如何取值进行检验呢?教师组织学生通过合作的方式,对称地在左右自主选取适当的自变量,并运算函数值,对结果进行列表比较归纳.同时为没有思路的学生预备参考表格如下:给学生一定的时刻进行摸索、操作,依照情形进行指导并组织学生进行交流,然后请一组学生说明他们的研究过程.学生能够采纳不同的数据采集方法,得到的结果如下列图表(表格中函数值精确到0.001):-0.4160.0710.5400.87810.8780.5400.071-0.416上述运算结果,初步检验了猜想,并能够把猜想用等式(R)表示.请同学们利用前面得到的数据,用图形运算器描点画图(见下图),然后进行观看比较,摸索点P和P′在平面直角坐标系中有如何样的位置关系?依照画图结果,能够看出,点P和P′关于直线对称.如此,正弦曲线关于直线对称,能够用等式(R)表示.如此的运确实是有限的,并受到精确度的阻碍,还需要对等式进行严格证明.3.严格证明——证明等式对任意R恒成立请同学们摸索,证明等式的差不多方法有哪些?所要证的等式左右两端有何特点?有可能选用什么样的公式?预案一:依照诱导公式,有预案二:依照公式和,有.预案三:依照正弦函数的定义,在平面直角坐标系中,不管取任何实数,角和的终边总是关于轴对称(见图),他们的正弦值恒相等.如此我们就证明了等式对任意R恒成立,也就证明了正弦曲线关于直线对称.事实上,诱导公式也能够由等式推出,即这两个等式是等价的.因此,正弦曲线关于直线对称,是诱导公式(R)的几何意义.时期小结:我们从几何直观获得启发,又通过数据运算进一步检验,得出正弦曲线关于直线对称能够用等式(R)表示,通过对这一等式的严格证明,证实了我们猜想的正确性.上述等式与诱导公式(R)的等价性,使我们对这一诱导公式有了新的明白得.第二时期,抽象概括——探究正弦曲线的其他对称轴.师生、生生交流,步步深入.问题一:正弦曲线还有其他对称轴吗?有多少条对称轴?对称轴方程形式有什么特点?能够发觉,通过图象最大值点和最小值点且垂直于轴的直线差不多上正弦曲线的对称轴(教师利用课件演示),则对称轴方程的一样形式为:(Z).问题二:能用等式表示“正弦曲线关于直线(Z)对称”吗?依照前面的研究,上述对称能够用等式(Z,R)表示.请学生证明上述等式,然后组织学生交流证明思路.证明预案:.(二)关于正弦曲线中心对称性的研究我们差不多明白正弦函数(R)是奇函数,即(R),反映在图象上,正弦曲线关于原点对称. 那么,正弦曲线还有其他对称中心吗?请同学们参照轴对称的研究方法,小组合作进行研究.第一时期,对正弦曲线关于点对称的研究.1.直观探究——从图象上探究在点两侧的函数值的变化规律.2.数值检验——在左右对称地选取一组自变量,运算函数值并列表整理.3.严格证明——证明等式对任意R恒成立.预案一:依照诱导公式,有.预案二:依照诱导公式和,有.预案三:依照正弦函数的定义,在平面直角坐标系中,不管取任何实数,角和的终边总是关于轴对称(见图),他们的正弦值互为相反数.事实上,等式与诱导公式是等价的. 如此,正弦曲线关于点对称,是诱导公式(R)的几何意义.第二时期,探究正弦曲线的其它对称中心.请同学尝试解决下列三个问题:1.归纳正弦函数图象对称中心坐标的一样形式.正弦函数图象对称中心坐标的一样形式为:(Z)(教师利用课件演示).2.用等式表示“正弦曲线关于点(Z)对称”.上述对称能够用等式(Z,R)表示3.证明归纳出的等式. (依照课堂情形能够由学生课后完成证明)三、课堂小结1.课堂小结(1)知识上:得出了正弦函数图象对称轴方程和对称中心坐标的一样形式,研究了对称性的代数表示形式,并利用诱导公式完成了严格的理论证明. 在研究的过程中,对诱导公式与(R)有了新的明白得,感受了正弦函数的对称性以及数和形的辨证统一.(2)方法上:直观→抽象,专门→一样,体验了观看—归纳—猜想—严格证明的研究方法.2.作业(1)总结课上的研究过程和方法,尝试研究余弦函数图象的对称性,并结合自己的研究过程和结论写出研究报告,与其他同学交流收成.(2)找一个一样函数,如,R,研究它的图象及对称性;并与正弦函数的图象及对称性进行比较.(3)摸索:如何用等式表示函数关于直线对称,以及关于点对称?(4)尝试证明函数的图象分别关于直线和直线对称.【教学设计说明】1.关于教学内容正弦函数和余弦函数的大部分性质是借助函数图象进行研究的.然而,在本章第五节中,借助单位圆中的三角函数线差不多研究了它们的四个重要性质,并归纳为四组诱导公式,其中公式三、四、五分别刻画了两个函数图象的一部分对称性,奇偶性只是专门的对称性.因此,本课时以正弦函数为例补充研究图象的对称性,从函数图象的特点动身,引导学生利用运算器自主探究,并最终发觉与诱导公式的联系. 通过本课时的教学,能够使学生在进一步把握图象特点的同时,加深对正弦函数及其诱导公式的明白得,既是对往常所学知识的梳理,也为后面进一步学习和明白得“由已知三角函数值求角”奠定基础.2.关于教学设计本课时我采纳启发引导与学生自主探究相结合的教学方法.在回忆旧知识的基础上提出新的研究问题,引导学生从形象思维逐步过度到抽象思维,突破教学难点. 教学设计流程图如下:通过引导学生带着问题的主动摸索、动手操作、合作交流的探究过程,力求使他们在把握知识的同时,还能学会研究方法.“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性教材:人教版全日制普通高级中学数学教科书(必修)第一册(下)授课教师: 北京市第十九中学 檀晋轩【教学目标】1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正弦函数的对称性.2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力.3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识.【教学重点】正弦函数图象的对称性及其代数表示形式.【教学难点】 用等式表示正弦函数图象关于直线2π=x 对称和关于点)0,(π对称.【教学方法】教师启发引导与学生自主探究相结合.【教学手段】计算机、图形计算器(学生人手一台).【教学过程】一、复习引入1.展示生活实例对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).2.复习对称概念初中我们已经学习过轴对称图形和中心对称图形的有关概念:轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合.3.作图观察请同学们用图形计算器画出正弦函数的图象(见右图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形?4.猜想图形性质经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书)如何检验猜想是否正确?我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明.今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题)二、探究新知分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质.(一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线2π=x对称的研究. 1.直观探索——利用图形计算器的绘图功能进行探索请同学们在同一坐标系中画出正弦曲线和直线2π=x 的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见右图),在直线2π=x 两侧正弦函数值有什么变化规律?给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在2π=x 左右对称取值时,正弦函数值相等.从直观上得到的猜想,需要从数值上进一步精确检验.2.数值检验——利用图形计算器的计算功能进行探索请同学们思考,对于上述猜想如何取值进行检验呢? 教师组织学生通过合作的方式,对称地在2π=x 左右自主选取适当的自变量,并计算函数值,对结果进行列表比较归纳.同时为没有思路的学生准备参考表给学生一定的时间进行思考、操作,根据情况进行指导并组织学生进行交流,然后请一组学生说明他们的研究过程.学生可以采用不同的数据采集方法,得到的结果如下列图表(表格中函数值精确到0.001):上述计算结果,初步检验了猜想,并可以把猜想用等式)2sin()2sin(x x +=-(∈x R )表示.请同学们利用前面得到的数据,用图形计算器描点画图(见下图),然后进行观察比较,思考点P ),2(y x -π和P ′),2(y x +π在平面直角坐标系中有怎样的位置关系?根据画图结果,可以看出,点P),2(yx-π和P′),2(yx+π关于直线2π=x对称.这样,正弦曲线关于直线2π=x对称,可以用等式)2sin()2sin(xx+=-ππ(∈x R)表示.这样的计算是有限的,并受到精确度的影响,还需要对等式进行严格证明.3.严格证明——证明等式)2sin()2sin(xx+=-ππ对任意∈x R恒成立请同学们思考,证明等式的基本方法有哪些?所要证的等式左右两端有何特征?有可能选用什么样的公式?预案一:根据诱导公式ααπsin)sin(=-,有)2sin(x-π)]2(sin[x+-=ππ)2sin(x+=π.预案二:根据公式xx cos)2sin(=-π和xx cos)2sin(=+π,有)2s i n()2s i n(xx+=-ππ.预案三:根据正弦函数的定义,在平面直角坐标系中,无论α取任何实数,角απ-2和απ+2的终边总是关于y轴对称(见右图),他们的正弦值恒相等.这样我们就证明了等式)2sin()2sin(xx+=-ππ对任意∈x R恒成立,也就证明了正弦曲线关于直线2π=x对称.事实上,诱导公式xx sin)sin(=-π也可以由等式)2sin()2sin(xx+=-ππ推出,即这两个等式是等价的.因此,正弦曲线关于直线2π=x对称,是诱导公式x x sin )sin(=-π(∈x R )的几何意义.阶段小结:我们从几何直观获得启发,又通过数据计算进一步检验,得出正弦曲线关于直线2π=x 对称可以用等式)2sin()2sin(x x +=-ππ(∈x R )表示,通过对这一等式的严格证明,证实了我们猜想的正确性.上述等式与诱导公式x x sin )sin(=-π(∈x R )的等价性,使我们对这一诱导公式有了新的理解.第二阶段,抽象概括——探索正弦曲线的其他对称轴.师生、生生交流,步步深入.问题一:正弦曲线还有其他对称轴吗?有多少条对称轴?对称轴方程形式有什么特点?可以发现,经过图象最大值点和最小值点且垂直于x 轴的直线都是正弦曲线的对称轴(教师利用课件演示),则对称轴方程的一般形式为:ππk x +=2(∈k Z ). 问题二:能用等式表示“正弦曲线关于直线ππk x +=2(∈k Z )对称”吗? 根据前面的研究,上述对称可以用等式)2sin()2sin(x k x k ++=-+ππππ(∈k Z ,∈x R )表示.请学生证明上述等式,然后组织学生交流证明思路.证明预案:)2sin(x k -+ππ)]2(sin[x k +--=πππ)2sin(x k +-=ππ )]2(2sin[x k k +-+=πππ)2sin(x k ++=ππ. (二)对于正弦曲线中心对称性的研究我们已经知道正弦函数x y sin =(∈x R )是奇函数,即x x sin )sin(-=-(∈x R ),反映在图象上,正弦曲线关于原点对称. 那么,正弦曲线还有其他对称中心吗?请同学们参照轴对称的研究方法,小组合作进行研究.第一阶段,对正弦曲线关于点)0,(π对称的研究.1.直观探索——从图象上探索在点)0,(π两侧的函数值的变化规律.2.数值检验——在π=x 左右对称地选取一组自变量,计算函数值并列表整理.3.严格证明——证明等式)sin()sin(x x +-=-ππ对任意∈x R 恒成立. 预案一:根据诱导公式)2sin(απ-αsin -=,有)s in(x -π)](2sin[x +-=ππ )sin(x +-=π.预案二:根据诱导公式x x s i n )s i n(=-π和x x sin )sin(-=+π,有)sin()sin(x x +-=-ππ.预案三:根据正弦函数的定义,在平面直角坐标系中,无论α取任何实数,角απ-和απ+的终边总是关于x 轴对称(见右图),他们的正弦值互为相反数.事实上,等式)s i n ()s i n (x x +-=-ππ与诱导公式x x s i n )2s i n (-=-π是等价的. 这样,正弦曲线关于点0,(πx x sin )2sin(-=-π(∈x R )的几何意义. 第二阶段,探索正弦曲线的其它对称中心.请同学尝试解决下列三个问题:1.归纳正弦函数图象对称中心坐标的一般形式. 正弦函数图象对称中心坐标的一般形式为:)0,(πk (∈k Z )(教师利用课件演示).2.用等式表示“正弦曲线关于点)0,(πk (∈k Z )对称”.上述对称可以用等式)sin(x k -π)sin(x k +-=π(∈k Z ,∈x R )表示.3.证明归纳出的等式. (根据课堂情况可以由学生课后完成证明)三、课堂小结1.课堂小结(1)知识上:得出了正弦函数图象对称轴方程和对称中心坐标的一般形式,研究了对称性的代数表示形式,并利用诱导公式完成了严格的理论证明. 在研究的过程中,对诱导公式x x sin )sin(=-π与x x sin )2sin(-=-π(∈x R )有了新的理解,感受了正弦函数的对称性以及数和形的辨证统一.(2)方法上:直观→抽象,特殊→一般,体验了观察—归纳—猜想—严格证明的研究方法.2.作业(1)总结课上的研究过程和方法,尝试研究余弦函数图象的对称性,并结合自己的研究过程和结论写出研究报告,与其他同学交流收获.(2)找一个一般函数,如x a y sin +=,∈a a 为常数且R ,研究它的图象及对称性;并与正弦函数的图象及对称性进行比较.(3)思考:如何用等式表示函数)(x f 关于直线a x =对称,以及关于点),(b a 对称?(4)尝试证明函数x y 1=的图象分别关于直线x y =和直线x y -=对称.【教学设计说明】1.关于教学内容正弦函数和余弦函数的大部分性质是借助函数图象进行研究的.但是,在本章第五节中,借助单位圆中的三角函数线已经研究了它们的四个重要性质,并归纳为四组诱导公式,其中公式三、四、五分别刻画了两个函数图象的一部分对称性,奇偶性只是特殊的对称性.因此,本课时以正弦函数为例补充研究图象的对称性,从函数图象的特征出发,引导学生利用计算器自主探索,并最终发现与诱导公式的联系. 通过本课时的教学,可以使学生在进一步掌握图象特征的同时,加深对正弦函数及其诱导公式的理解,既是对以前所学知识的梳理,也为后面进一步学习和理解“由已知三角函数值求角”奠定基础.2.关于教学设计本课时我采用启发引导与学生自主探索相结合的教学方法.在回顾旧知识的基础上提出新的研究问题, 引导学生从形象思维逐步过度到抽象思维,突破教学难点. 教学设计流程图如下:通过引导学生带着问题的主动思考、动手操作、合作交流的探究过程,力求使他们在掌握知识的同时,还能学会研究方法.3.信息技术在教学中的作用图形计算器作为学具,通过学生亲自动手,人人参与探索过程,帮助学生从图象、数据、解析式等多层次、多角度地理解所研究的内容,提高他们对图形和数据信息的处理能力,培养信息素养.图形计算器和计算机相结合,力求使技术更有效地为教学服务.。