《函数对称性的解题方法归纳》
- 格式:doc
- 大小:347.00 KB
- 文档页数:4
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数的对称问题讲解一、函数对称性的定义函数的对称性是指函数图像关于某条直线或某个点对称的性质。
函数的对称性可以通过函数自身的性质进行描述和刻画,例如函数在某点的导数可以描述函数图像在该点的切线斜率。
函数的对称性分为轴对称和中心对称两种,轴对称是指函数图像关于某条直线对称,中心对称是指函数图像关于某点对称。
二、函数图像的对称轴和对称中心1.对称轴:如果函数图像关于直线x=a对称,那么对于任意x,都有f(a+x)=f(a-x),即函数在x=a处取得极值。
2.对称中心:如果函数图像关于点(a,b)对称,那么对于任意x,都有f(a+x)+f(a-x)=2b,即函数在x=a处的值等于b。
三、奇函数和偶函数的对称性1.奇函数:如果对于任意x,都有f(-x)=-f(x),则函数f(x)是奇函数。
奇函数的图像关于原点对称。
2.偶函数:如果对于任意x,都有f(-x)=f(x),则函数f(x)是偶函数。
偶函数的图像关于y轴对称。
四、对称性与周期性的关系函数的对称性和周期性之间有一定的联系。
例如,如果函数f(x)是周期为T的周期函数,并且图像关于直线x=a对称,那么对于任意x,都有f(a+x)=f(a-x),即函数在x=a处取得极值。
因此,函数的对称性和周期性是相互联系的。
五、对称性与函数最值的关系函数的对称性和最值之间也有一定的关系。
例如,如果函数f(x)在区间[a,b]上单调递增或递减,并且图像关于直线x=(a+b)/2对称,那么f(x)在(a,b)上的最小值或最大值一定出现在对称轴上。
因此,函数的对称性和最值之间也是相互联系的。
六、对称性在解题中的应用函数的对称性在解题中有着广泛的应用。
例如,在求解函数的极值、最值等问题时,可以利用函数的对称性简化问题;在判断函数的单调性时,可以利用函数的对称性寻找关键点;在解决与周期性相关的问题时,可以利用函数的对称性寻找周期的规律等等。
因此,掌握函数的对称性对于解决数学问题具有重要的意义。
函数的对称性真题答案解析在高中数学的学习中,函数的对称性是一个重要的概念。
了解和掌握函数的对称性对于解题和理解函数性质都有很大的帮助。
下面,我们将通过对几道函数对称性的真题进行解析,来深入了解函数对称性的应用和解题技巧。
1. 已知函数f(x)在R上满足f(1-x) = f(x) + 1,求f(0)的值。
首先,我们来分析题目中给出的函数对称性条件,即f(1-x) = f(x) + 1。
这个条件意味着函数关于直线x=1/2对称。
我们可以利用这个对称性进行解题。
假设f(x)的图像在平面直角坐标系上对称于直线x=1/2,那么对于任意x,x和1-x关于直线x=1/2的距离是相等的。
也就是说,对于任意实数x,有|x-1/2|=|1-x-1/2|。
当x=0时,左边的绝对值式子等于1/2,右边的绝对值式子也等于1/2。
所以,f(0)的值与f(1/2)的值是相等的。
进一步推导,我们可以得到f(0) = f(1/2) + 1。
再来看题目中给出的等式f(1-x) = f(x) + 1。
将x替换为1/2,得到f(1/2) = f(1/2) + 1。
这个等式显然是不成立的。
所以,我们可以得出结论,函数f(x)在R上不存在。
通过这道题目的解析,我们可以看到函数的对称性在解题中的应用。
通过观察题目中给出的条件,我们可以得到函数图像的对称轴,进而得到所求的函数值。
这种方法可以解决关于函数对称性的问题,尤其是对称于直线x=a的情况。
2. 已知函数f(x)在[-1,1]上是奇函数,且满足f(x) = f(3x),求f(0)的值。
对于这道题目,我们需要利用函数的对称性以及函数在给定区间上等式的性质来进行解答。
首先,我们来分析题目中给出的条件。
题目中指出函数f(x)在[-1,1]上是奇函数,说明函数关于原点(0,0)对称。
另外,已知f(x) = f(3x),表明函数满足f(x) = f(3x)的等式关系。
结合这两个条件,我们可以得到f(x)在[-1,1]上的对称轴是直线x=0,同时函数满足f(x) = f(3x)的等式关系。
函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。
在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。
首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。
具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。
这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。
常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。
这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。
2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。
这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。
3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。
这意味着函数的图像在x轴上对称,即图像关于x轴对称。
函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。
例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。
2. 对称性可以帮助我们发现函数的特点。
例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。
现在,让我们来看看如何判断一个函数是否具有对称性。
一般来说,我们可以通过一些简单的方法来进行判断。
1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。
例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。
2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。
我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。
3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。
高三函数对称性知识点总结在高三数学中,函数是一个重要的概念和知识点。
在函数的学习中,函数的对称性是一个关键的概念。
了解和掌握函数的对称性是解题的基础,本文将对高三函数的对称性知识点进行总结。
函数的对称性可以分为平面对称和轴对称两种情况。
平面对称是指函数图像关于某个平面对称,而轴对称则是指函数图像关于某个轴对称。
接下来将分别从平面对称和轴对称两个方面来介绍高三函数的对称性知识点。
平面对称性是函数图像相对于某个平面的对称性。
当函数的图像关于$x$轴或$y$轴对称时,即可说函数具有平面对称性。
平面对称的函数具有以下特点:1. 关于$x$轴对称:当函数图像关于$x$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$P$为函数图像上的任意一点,则$P$关于$x$轴对称的点也在函数图像上。
2. 关于$y$轴对称:当函数图像关于$y$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$P$为函数图像上的任意一点,则$P$关于$y$轴对称的点也在函数图像上。
轴对称性是函数图像相对于某个轴的对称性。
当函数的图像关于$x$轴、$y$轴或者直线$x=a$对称时,即可说函数具有轴对称性。
轴对称的函数具有以下特点:1. 关于$x$轴对称:当函数图像关于$x$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$(x,y)$为函数图像上的任意一点,则$(x,-y)$也在函数图像上。
2. 关于$y$轴对称:当函数图像关于$y$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。
这种情况下,若$(x,y)$为函数图像上的任意一点,则$(-x,y)$也在函数图像上。
函数对称性知识点归纳总结一、函数的对称性概念1.1 函数的定义在数学中,函数是一种将输入值映射到输出值的关系。
它通常表示为f(x),其中x是输入值,f(x)是输出值。
函数可以用数学公式、图表、图形等方式来表示。
1.2 函数的对称性函数的对称性是指在某种变换下,函数图像保持不变的性质。
这种变换可以是关于坐标轴的对称、关于原点的对称、关于直线或平面的对称等。
函数的对称性可以分为以下几种:- 偶函数:如果对任意的x,有f(x) = f(-x),那么函数f(x)是关于y轴对称的,称为偶函数。
偶函数的图像在y轴对称。
- 奇函数:如果对任意的x,有f(x) = -f(-x),那么函数f(x)是关于原点对称的,称为奇函数。
奇函数的图像关于原点对称。
- 周期函数:如果存在一个正数T,使得对任意的x,有f(x+T) = f(x),那么函数f(x)是周期函数。
周期函数的图像在某一段距离上重复。
1.3 示例以函数f(x) = x^2为例,它是一个偶函数。
因为对任意的x,有f(x) = x^2 = (-x)^2 = f(-x),所以函数图像关于y轴对称。
又如函数f(x) = sin(x),它是一个奇函数。
因为对任意的x,有f(x) = sin(x) = -sin(-x) = -f(-x),所以函数图像关于原点对称。
二、函数对称性的判定与应用2.1 函数对称性的判定在判断一个函数是否具有对称性时,可以通过以下方法进行判定:- 偶函数:验证函数f(x)是否满足f(x) = f(-x)即可判断是否为偶函数。
- 奇函数:验证函数f(x)是否满足f(x) = -f(-x)即可判断是否为奇函数。
- 周期函数:通过周期函数的定义,验证函数f(x)是否满足f(x+T) = f(x)即可判断是否为周期函数。
2.2 函数对称性的应用函数对称性在数学分析、物理学、工程学等领域中有着广泛的应用。
以下是函数对称性的一些应用场景:- 在积分计算中,利用函数的对称性可以简化积分的计算。
高中数学对称性解题技巧在高中数学中,对称性是一个非常重要的概念。
它不仅可以帮助我们解决问题,还可以提高我们的思维能力和创造力。
本文将介绍一些常见的对称性解题技巧,并通过具体的题目进行说明和分析,帮助高中学生和他们的父母更好地理解和应用对称性解题技巧。
一、轴对称和中心对称轴对称和中心对称是对称性的两种基本形式。
轴对称是指物体或图形相对于某条轴线对称,而中心对称是指物体或图形相对于某个中心点对称。
在解题过程中,我们可以利用轴对称和中心对称的性质来简化问题,找到问题的对称部分,从而得到解题的关键。
例如,考虑以下数学题目:题目:已知平面上有一个正方形 ABCD,点 M 为边 AB 的中点,点 N 为边 BC 的中点。
若点 P 在边 CD 上,并且满足角 MPN = 90°,求证:三角形 MPN 是等腰直角三角形。
解析:首先,我们可以通过观察发现,正方形 ABCD 是以对角线 BD 为轴对称的。
因此,我们可以将问题简化为只考虑正方形的一半,即三角形 MPN。
接下来,我们观察到点 M 和点 N 是以对角线 BD 的中点为中心对称的。
因此,我们可以得出结论:三角形 MPN 是以边 MN 为中心对称的,即 MN 是三角形MPN 的中线,且 MN 垂直于边 PN。
由于 MN 是三角形 MPN 的中线,根据中线定理,我们可以得知三角形 MPN是等腰三角形。
又因为 MN 垂直于边 PN,所以三角形 MPN 是直角三角形。
通过以上分析,我们可以得出结论:三角形 MPN 是等腰直角三角形。
二、图形的旋转对称性除了轴对称和中心对称外,图形的旋转对称性也是解题中常用的对称性。
通过图形的旋转对称性,我们可以找到图形的重叠部分,从而简化问题。
考虑以下数学题目:题目:已知正方形 ABCD 的边长为 a,点 M 在边 AB 上,且满足 AM = a/3。
连接点 M 和点 D,延长线段 MD 到点 E,使得 ME = MD。
掌握中考数学解题技巧如何应对函数的对称性和奇偶性问题函数的对称性和奇偶性问题在中考数学中是一个重要的考点,通过掌握相应的解题技巧,可以更好地应对这类问题。
本文将介绍如何通过观察函数的图像和运用相应的性质来解决这类数学问题。
一、函数的对称性问题对称性是函数图像的一个重要特征,通过观察函数图像的对称性可以得到一些有用的信息。
常见的对称性有关于x轴对称、y轴对称和原点对称。
1. 关于x轴对称若函数图像关于x轴对称,即对于函数f(x),有f(-x) = f(x),则函数在对称轴上的函数值相等。
对于这类对称性问题,我们可以通过观察函数的部分图像来确定函数的性质。
例如,对于二次函数y = ax^2 + bx + c,若其图像关于x轴对称,则a = 0,此时函数为一次函数。
2. 关于y轴对称若函数图像关于y轴对称,即对于函数f(x),有f(-x) = -f(x),则函数在对称轴上的函数值相等但符号相反。
同样,我们可以通过观察函数的图像来判断函数的性质。
例如,对于奇次函数,其图像关于y轴对称,而对于偶次函数,其图像关于y轴对称。
3. 关于原点对称若函数图像关于原点对称,即对于函数f(x),有f(-x) = -f(x),则函数在原点对称。
我们可以通过观察函数的图像来判断函数的性质。
例如,对于奇次函数,其图像关于原点对称,而对于偶次函数,其图像关于原点对称。
二、函数的奇偶性问题奇偶性是函数的一个重要性质,同样可以通过观察函数的图像和运用相应的性质来解决相关数学问题。
下面我们将介绍奇函数和偶函数的性质以及解题技巧。
1. 奇函数若函数f(x)满足f(-x) = -f(x),则称该函数为奇函数。
奇函数的图像关于原点对称。
奇函数的特点是在定义域内,当变量取相反数时,函数值取相反数。
例如,对于一次函数y = kx,当x取相反数时,函数值取相反数;对于三次函数y = ax^3 + bx,同样满足奇函数的性质。
在解题过程中,我们可以利用奇函数的性质简化计算。
函数对称性5个结论的推导1.奇函数的推导:奇函数是指函数关于原点对称。
设函数f(x)是奇函数,那么有f(x)=-f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=-f(x)。
这表明,当自变量的符号发生变化时,函数值也会发生变化,并保持相反的正负号。
例如,f(2)=-f(-2),f(3)=-f(-3)等等。
因此,奇函数关于原点对称。
2.偶函数的推导:偶函数是指函数关于y轴对称。
设函数f(x)是偶函数,那么有f(x)=f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=f(x)。
这表明,当自变量的符号发生变化时,函数值保持不变。
例如,f(2)=f(-2),f(3)=f(-3)等等。
因此,偶函数关于y轴对称。
3.半个周期对称的推导:半个周期对称是指函数的两个相邻的波峰或波谷关于y轴对称。
设函数f(x)是半个周期对称,那么有f(x)=f(x+T/2),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/2得到f(x+T/2)=f(x+T/2+T)=f(x+T)=f(x),即f(x)=f(x+T/2)。
这表明,函数在每个周期的半个周期上关于y轴对称。
4.四分之一周期对称的推导:四分之一周期对称是指函数的四个相邻的波峰或波谷关于y轴对称。
设函数f(x)是四分之一周期对称,那么有f(x)=f(x+T/4),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/4得到f(x+T/4)=f(x+T/4+T)=f(x+T)=f(x),即f(x)=f(x+T/4)。
这表明,函数在每个周期的四分之一周期上关于y轴对称。
5.中心对称的推导:中心对称是指函数关于一些点对称,该点称为中心。
设函数f(x)是中心对称,那么有f(x)=f(2a-x),其中a表示中心点的横坐标。
为了推导这个结论,我们考虑将自变量x替换成2a-x,得到f(2a-x)=f(x)。
高中数学对称性求解题技巧对称性在高中数学中是一个重要的概念,它不仅可以帮助我们更好地理解数学问题,还可以提供解题的技巧和方法。
下面将介绍一些常见的高中数学对称性求解题技巧。
1. 图形对称性求解题技巧图形对称性是指图形中存在某种对称的特征。
在解题时,我们可以利用这种对称性来简化问题。
例如,对于一道求解平面镜反射的问题,我们可以利用镜面对称性。
通过将问题中的图形沿着镜面进行对称,我们可以获得一个与原图形相同但在镜面另一侧的图形。
这样,我们可以利用对称的图形性质,简化问题,将问题转化为求对称图形中某个点的位置或某条线段的长度,从而快速求解问题。
又如,在解决关于几何形状的证明问题时,可以利用图形的对称性来简化证明过程。
通过找到图形中的对称点、对称线或对称中心,我们可以直接得出结论或简化推理过程。
2. 函数对称性求解题技巧函数对称性是指函数中存在某种对称的特征。
在解题时,我们可以利用这种对称性来简化问题或得到一些特殊的性质。
例如,对于奇函数和偶函数,我们可以利用它们的对称性质进行猜测和求解。
奇函数满足f(-x)=-f(x),即对称轴为原点。
当我们需要求解奇函数在某点的函数值时,可以利用函数的对称性,将其转化为对称点的函数值。
这样,可以节约计算时间和精力。
偶函数满足f(-x)=f(x),即对称轴为y轴。
当我们需要求解偶函数在某点的函数值时,可以直接由已知求得,省去了计算步骤。
另外,对于一些具有周期性的函数,我们也可以利用其对称性来简化问题。
例如,正弦函数和余弦函数有周期为2π,我们可以利用周期性和对称性的特点来求解具体的数值问题。
3. 代数方程对称性求解题技巧代数方程中的对称性指的是方程中的变量或项之间存在某种对称的关系。
在解题时,我们可以利用这种对称性来简化方程,从而求得解或简化计算过程。
例如,对称方程是指方程中某些项之间满足对称关系。
在解这类方程时,我们可以只考虑其中一部分项或利用对称关系得到方程解的特殊性质。
参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。
2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。
3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。
4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。
5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。
6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。
对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。
函数对称性知识点归纳总结函数对称性是数学中一个重要的概念,它涉及到函数图像在某种变换下的性质和特点。
本文将针对函数对称性的相关知识进行归纳总结,包括函数关于x轴对称、y轴对称和原点对称的特点以及应用。
希望通过本文的介绍,读者能够全面了解函数对称性,并能够应用到实际问题中。
1. 函数关于x轴对称函数关于x轴对称是指函数图像在x轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(x, -y)。
如果函数的表达式为f(x),那么函数关于x轴对称可以表示为f(x) = f(-x)。
常见的函数关于x轴对称的例子有二次函数和正弦函数。
2. 函数关于y轴对称函数关于y轴对称是指函数图像在y轴旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, y)。
如果函数的表达式为f(x),那么函数关于y轴对称可以表示为f(x) = f(-x)。
常见的函数关于y轴对称的例子有二次函数和余弦函数。
3. 函数关于原点对称函数关于原点对称是指函数图像以原点为对称中心,旋转180度后重合。
具体表现为当函数中的每一个点(x, y)都对应于另一个点(-x, -y)。
如果函数的表达式为f(x),那么函数关于原点对称可以表示为f(x) = -f(-x)。
常见的函数关于原点对称的例子有奇次函数和正切函数。
除了以上三种常见的对称性,函数还可能具有其他特殊的对称性,比如关于直线y=x的对称性、关于直线y=-x的对称性等。
这些对称性在函数的研究和应用中都有重要的意义。
函数对称性的应用十分广泛。
其中一项重要的应用是利用对称性来求函数的零点。
如果函数关于x轴对称,也就是满足f(x) = f(-x),那么我们可以通过找到函数图像上的一个零点,得到一个对称的零点。
这是因为如果f(x) = 0,则f(-x) = 0,对称点也是零点。
同样,对于关于y 轴对称或原点对称的函数,我们也可以利用对称性来求解零点。
函数的对称技巧函数的对称技巧在数学中有着重要的地位,这是因为对称性可以帮助我们更好地理解函数的性质和特点。
函数的对称性包括了几何意义上的对称和代数意义上的对称。
接下来,我将详细讨论几种常见的函数对称技巧,并解释它们在解题过程中的作用。
1. 奇偶对称当函数满足f(x)=f(-x)时,我们称函数具有奇偶对称。
其中,如果函数满足f(-x)=-f(x),则称函数具有奇对称;如果函数满足f(-x)=f(x),则称函数具有偶对称。
奇偶对称在函数的图像研究中起到了至关重要的作用。
通过奇偶对称,我们可以推断出函数图像的对称轴和对称点。
对于奇对称函数,其对称轴一定为原点(0,0),对于偶对称函数,其对称轴可以是任意直线x=a。
奇偶对称还能帮助我们简化函数的计算。
例如,对于奇偶对称函数,当x=0时,函数的值一定为0,因此我们可以通过奇偶对称性将复杂的表达式简化为更简单的形式。
2. 周期性当函数满足f(x+T)=f(x)时,我们称函数具有周期性,其中T为函数的周期。
周期函数在许多实际问题中非常常见,例如正弦函数和余弦函数。
周期性可以帮助我们预测函数的图像和性质。
通过观察函数的周期长度和振幅,我们可以了解到函数图像的重复规律和变化趋势。
周期性还可以帮助我们简化函数的计算。
例如,对于周期函数,我们只需要计算一个周期内的函数值,然后可以通过平移、拉伸等运算得到其他任意点的函数值。
这极大地简化了复杂函数的计算过程。
3. 对数对称当函数满足f(a^x) = f(x)时,我们称函数具有对数对称。
对数对称在函数的图像研究和计算中都起到了重要的作用。
对数对称可以帮助我们推断函数图像的性质。
例如,如果一个函数具有对数对称,那么它的图像一定关于y=x直线对称。
通过借助对数对称,我们可以在不求解具体函数表达式的情况下,推断出函数图像的形状和性质。
对数对称还可以帮助我们简化函数的计算。
例如,对于具有对数对称的函数,我们可以通过变量代换,将复杂的函数表达式转化为更简单的形式。
函数对称性知识点梳理总结一、轴对称轴对称是最常见的一种函数对称性,它指的是函数图象关于某一条直线对称。
这条直线称为对称轴,通常用方程 x=a 来表示。
如果函数 f(x) 满足 f(a+x) = f(a-x),那么 f(x) 关于 x=a 轴对称。
对于二元函数 f(x,y),如果 f(a+x,y) = f(a-x,y),那么 f(x,y) 关于直线 x=a 对称;如果 f(x,a+y) = f(x,a-y),那么 f(x,y) 关于直线 y=a 对称。
轴对称性在几何学中有着广泛的应用,许多平面图形都具有轴对称性,比如圆形、椭圆形等。
函数的轴对称性也有很多实际的应用,比如在电路分析中,对称性可以帮助简化复杂的电路分析问题。
另外,在数学建模和图像处理领域,轴对称性也经常被用来简化问题求解。
二、中心对称中心对称是指函数图象关于某一点对称,这一点称为中心。
对于函数 f(x),如果 f(a+x) = f(a-x),那么 f(x) 关于 x=a 点对称。
对于二元函数 f(x,y),如果 f(a+x,b+y) = f(a-x,b-y),那么 f(x,y) 关于点 (a,b) 对称。
中心对称性在几何学中也有很多重要应用,比如圆形就是一个非常常见的中心对称图形。
在实际应用中,中心对称性也经常被用来简化问题求解,比如在物理学和工程学中,很多问题都具有中心对称性,通过利用中心对称性可以大大简化问题求解的复杂度。
三、旋转对称旋转对称是指函数图象关于某一点旋转一定角度后,与原图象完全重合。
对于函数 f(x),如果 f(a+x) = f(x-a),那么 f(x) 关于点 x=a 有旋转对称性。
对于二元函数 f(x,y),如果f(a+x,a+y) = f(x-a,y-a),那么 f(x,y) 关于点 (a,a) 有旋转对称性。
旋转对称性在几何学中有着重要的应用,很多图形都具有旋转对称性,比如正方形、菱形等。
在实际应用中,旋转对称性通常被用来简化问题求解,比如在工程学和建筑学领域,很多结构都具有旋转对称性,通过利用旋转对称性可以简化结构分析和设计的复杂性。
高一数学《函数的对称性》知识点总结一、函数自身的对称性探究定理1.函数y=f的图像关于点A对称的充要条件是f+f=2b证明:(必要性)设点P是y=f图像上任一点,∵点P 关于点A的对称点P'(2a-x,2b-y)也在y=f图像上,∴2b-y=f即y+f=2b故f+f=2b,必要性得证。
(充分性)设点P是y=f图像上任一点,则y0=f∵f+f=2b∴f+f=2b,即2b-y0=f。
故点P'(2a-x0,2b-y0)也在y=f图像上,而点P与点P'关于点A对称,充分性得征。
推论:函数y=f的图像关于原点o对称的充要条件是f+f=0定理2.函数y=f的图像关于直线x=a对称的充要条件是f=f即f=f(证明留给读者)推论:函数y=f的图像关于y轴对称的充要条件是f=f 定理3.①若函数y=f图像同时关于点A和点B成中心对称(a≠b),则y=f是周期函数,且2a-b是其一个周期。
②若函数y=f图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f是周期函数,且2a-b是其一个周期。
③若函数y=f图像既关于点A成中心对称又关于直线x=b成轴对称(a≠b),则y=f是周期函数,且4a-b是其一个周期。
①②的证明留给读者,以下给出③的证明:∵函数y=f图像既关于点A成中心对称,∴f+f=2c,用2b-x代x得:f+f[2a-]=2c………………(*)又∵函数y=f图像直线x=b成轴对称,∴f=f代入(*)得:f=2c-f[2+x]…………(**),用2(a-b)-x代x得f[2+x]=2c-f[4+x]代入(**)得:f=f[4+x],故y=f是周期函数,且4a-b是其一个周期。
二、不同函数对称性的探究定理4.函数y=f与y=2b-f的图像关于点A成中心对称。
定理5.①函数y=f与y=f的图像关于直线x=a成轴对称。
②函数y=f与a-x=f的图像关于直线x+y=a成轴对称。
③函数y=f与x-a=f的图像关于直线x-y=a成轴对称。
函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦ ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
高中数学函数的对称性知识点讲解及典型习题分析新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。
尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。
一、对称性的概念及常见函数的对称性1、对称性的概念:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
③二次函数:是轴对称,不是中心对称,其对称轴方程为ab x 2-=。
④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。
⑤指数函数:既不是轴对称,也不是中心对称。
⑥对数函数:既不是轴对称,也不是中心对称。
⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2ππ+=k x 是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
函数的对称问题湖南彭向阳一、函数的自对称问题1.函数y=f(x的图象关于直线x=a对称f(a+x=f(a-x;特别,函数y=f(x的图象关于y轴对称f(x=f(-x.2.函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b;特别,函数y=f(x的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴(中心:除了三角函数y=sinx,y=cosx的对称轴(中心)可以由下列结论直接写出来(对称轴为函数取得最值时的x=,对称中心为函数与x轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例1 确定函数的图象的对称中心.解析1 设函数的图象的对称中心为(h,k),在图象上任意取一点P (x,y),它关于(h,k)的对称点为Q(2h-x,2k-y),Q点也在图象上,即有,由于,两式相加得,化简得(*).由于P点的任意性,即(*)式对任意x都成立,从而必有x的系数和常数项都为0,即h=1,k=1.所以函数的图象的对称中心为(1,1).解析2 设函数,则g(x为奇函数,其对称中心为原点,由于,说明函数f(x的图象是由g(x的图象分别向右、向上平移1个单位得到,而原点向右、向上分别平移1个单位得到点(1,1.所以函数的图象的对称中心为(1,1).例2 曲线f(x=ax3+bx2+cx,当x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1处切线的斜率为.(1求f(x;(2曲线上是否存在一点P,使得y=f(x的图象关于点P中心对称?若存在,求出点P的坐标,并给出证明;若不存在,请说明理由.解析 (1=3ax2+2bx+c,由题意知1-与1+是=3ax2+2bx+c=0的根,代入解得b=-3a,c=-6a.又f(x 在x=1处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .(2假设存在P(x0,y0,使得f(x的图象关于点P中心对称,则f(x0+x+f(x0-x=2y0,即,化简得. 由于是对任意实数x都成立,所以,而P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P中心对称.2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论(函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例3 求证函数的图象关于点P(1,3)成中心对称.证明1 在函数的图象上任意取一点A(x,y),它关于点P(1,3)的对称点为B(2-x,6-y),因为,所以点B在函数的图象上,故函数的图象关于点P(1,3)对称.证明2 因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移1个单位,向上平移3个单位,就得到函数的图象,所以的图象关于点P(1,3)对称.所以的图象关于点P(1,3)对称.3.已知函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解.例4 已知定义在R上的函数f(x的图象关于点对称,且满足则f(1+f(2+f(3+…+f(2005的值为().A.-2 B.-1 C.0 D.1解析由f(x的图象关于点对称,则说明函数是奇函数,也就是有,即,又,所以,即,函数f(x是偶函数.所以,又,即f(x以3为周期,f(2=f(-1=1,f(3=f(0=-2,所以f(1+f(2+f(3+…+f(2005=668(f(1+f(2+f(3)+f(2005=f(2005=f(1=1,选D.例5 已知函数f(x=的图象关于点中心对称,求f(x.解析1 设f(x图象上任意一点A(x,y),它关于点的对称点为B,由于A、B都在f(x上,所以,相加整理得,解得a=1.所以f(x=.解析2 由上面的公式有,代入化简整理得a=1.解析3 由题意知将函数y=f(x的图象向左平移1个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即y=,它是奇函数必须常数项为0,即a=1.二、函数的互对称问题1. y=f(x与y=g(x的图象关于直线x=a对称f(a+x=g(a-x;2. y=f(x与y=g(x的图象关于直线y=b对称f(x+g(x=2b;3. y=f(x与y=g(x的图象关于点(a,b对称f(a+x+g(a-x=2b.4. y=f(x与y=g(x的图象关于直线y=x对称f(x和g(x互为反函数.记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题. 主要题型:1.判断两个函数图象的对称关系例6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于( .A.直线x=1对称 B.x轴对称C.y轴对称D.直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y轴对称,所以选择C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y轴对称,选C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线(点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线(点的对称点也在前一个函数的图象上,这两个步骤不能少. 当然也可利用上面的结论来解决.例7 已知函数f(x=x3-x,将y=f(x的图象沿x轴、y轴正向分别平行移动t、s单位,得到函数y=g(x的图象.求证:f(x和g(x的图象关于点A()对称.解析由已知得g(x=(x-t3-(x-t+s.在y=f(x的图象上任取一点P(x1,y1,设Q(x2,y2是P关于点A的对称点,则有,∴x1=t-x2, y1=s-y2.代入y=f(x,得x2和y2满足方程: s-y2=(t-x23-(t-x2,即 y2=(x2-t3-(x2-t+s,可知点Q(x2,y2在y=g(x的图象上.反过来,同样可以证明,在y=g(x的图象上的点关于点A的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A()对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由已知函数求出另一函数的解析式,然后再由已知条件确定参数的值.例8 已知f(x是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1对称,且当时,g(x=2a(x-2-3(x-23,其中为常数,若f(x的最大值为12,求a的值.解析由于g(x的图象与f(x的图象关于直线x=1对称,所以f(1+x=g(1-x,即f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x是偶函数,所以当时,,f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2≤-2a+9<0,所以f(x在上是减函数,从而f(x 在上是增函数,所以f(x的最大值为f(1=f(-1=2a-3=12,即.。
初三函数对称性知识点归纳总结函数是数学中的重要概念之一,对于初三学生来说,理解和掌握函数的对称性是非常关键的。
函数的对称性指的是在某些条件下,函数图像或者函数的性质在某个轴线上呈现对称的现象。
本文将对初三函数对称性的知识点进行归纳总结,以助学生更好地理解和掌握该内容。
1. 奇函数的对称性奇函数的定义是满足 f(-x) = -f(x) 的函数。
奇函数以原点为对称轴,即对于任意 x,满足 f(-x) = -f(x)。
奇函数的图像关于原点对称,左右对称。
例子:f(x) = x^3,f(-x) = -(-x)^3 = -x^3g(x) = x^5,g(-x) = -(-x)^5 = -x^52. 偶函数的对称性偶函数的定义是满足 f(-x) = f(x) 的函数。
偶函数以 y 轴为对称轴,即对于任意 x,满足 f(-x) = f(x)。
偶函数的图像关于 y 轴对称,左右对称。
例子:f(x) = x^2,f(-x) = (-x)^2 = x^2g(x) = |x|,g(-x) = |-x| = |x|3. 周期函数的对称性周期函数的定义是满足 f(x+T) = f(x) 的函数,其中 T 为正常数,称为函数的周期。
周期函数在一个周期内的图像呈现出对称性。
例子:f(x) = sin(x),f(x+2π) = sin(x+2π) = sin(x)g(x) = cos(x),g(x+2π) = cos(x+2π) = cos(x)4. 点对称和轴对称除了函数图像的对称性之外,还有一些特殊的对称性,即点对称和轴对称。
- 点对称性:对于某个点 P(x, y),如果有另外一个点 P'(-x, -y) 在该函数中,那么该函数具有点对称性。
例子:f(x) = x^2,对于点 (1, 1),有对称点 (-1, 1),故函数 f(x) 具有点对称性。
- 轴对称性:对于某条直线 L,如果对于该函数中的任意一点 P(x, y),P'(-x, y) 也在该函数中,那么该函数具有轴对称性。
函数对称性的解题方法归纳
讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。
前者是函数自身的性质,而后者是函数的变换问题。
下文中我们均简称为函数的变换性。
函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。
现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。
1. 函数自身的对称性探究
设函数
)2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f
(1)试判断函数)(x f y =的奇偶性;
(2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。
分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。
定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -=
证明(略)
推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+
证明(略)
推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。
定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。
②若函数)(x f y =的图像同时关于直线b x a x ==和直线成轴对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。
③若函数)(x f y =的图像既关于点A (a ,c )成中心对称又关于直线x =b 成轴对称(b a ≠),则)(x f y =是周期函数,且b a -4是其一个周期。
以下给出③的证明,①②的证明留给读者。
因为函数)(x f y =的图像关于点A (a ,c )成中心对称。
所以x b c x a f x f -=-+2,2)2()(用代x 得:
[](*)2)2(2)2(c x b a f x b f =--+-
又因为函数)(x f y =的图像关于直线b x =成轴对称。
所以)()2(x f x b f =-代入(*)得:
[]x x b a x b a f c x f 代用+-+--=)(2(**),)(22)(得
[][]x b a f c x b a f +--=+-)(42)(2代入(**)得:
[])(,)(4)(x f y x b a f x f =+-=故是周期函数,且b a -4是其一个周期。
2. 不同函数对称性的探究
定理4 函数)2(2)(x a f b y x f y --==与的图像关于点),(b a A 成中心对称。
证明:设点)(),(00x f y y x P =是图像上任一点,则)(00x f y =。
点),(00y x P 关于点),(b a A 的对称点为)2,2('00y b x a P --,此点坐标满足)2(2x a f b y --=,显然点)2,2('00y b x a P --在)2(2x a f b y --=的图像上。
同理可证:)2(2x a f b y --=图像上关于点),(b a A 对称的点也在)(x f y =的图像上。
推论 函数)(x f y =与)(x f y --=的图像关于原点成中心对称。
定理5 函数)(x f y =与)2(x a f y -=的图像关于直线a x =成轴对称。
证明 设点),(00y x P 是)(x f y =图像上任意一点,则)(00x f y =。
点),(00y x P 关于直线a x =的对称点为),2('00y x a P -,显然点),2('00y x a P -在)2(x a f y -=的图像上。
同理可证:)2(x a f y -=图像上关于直线a x =对称的点也在)(x f y =图像上。
推论 函数)(x f y =与)(x f y -=的图像关于直线y 轴对称。
定理6 ①函数)(x f y =与)(y a f x a -=-的图像关于直线a y x =+成轴对称。
②函数)(x f y =与)(a y f a x +=-的图像关于直线a y x =-成轴对称。
现证定理6中的②
设点),(00y x P 是)(x f y =图像上任一点,则)(00x f y =。
记点),(00y x P 关于直线a y x =-的对称点),('11y x P ,则a x y y a x -=+=0101,,所以
a x y y a x -=+=1010,代入
)(00x f y =之中得)(11y a f a x +=-。
所以点),('11y x P 在函数)(a y f a x +=-的图像上。
同理可证:函数)(a y f a x +=-的图像上任一点关于直线a y x =-的轴对称点也在函数)(x f y =的图像上。
故定理6中的②成立。
推论 函数)(x f y =的图像与)(y f x =的图像关于直线y x =成轴对称。
3. 函数对称性应用举例
例 1 定义在R 上的非常数函数满足:)10(x f +为偶函数,且)5()5(x f x f +=-,则)(x f 一定是( )
A. 是偶函数,也是周期函数
B. 是偶函数,但不是周期函数
C. 是奇函数,也是周期函数
D. 是奇函数,但不是周期函数
解:因为)10(x f +为偶函数,所以)10()10(x f x f -=+。
所以)(x f 有两条对称轴105==x x 与,因此)(x f 是以10为其一个周期的周期函数,所以x =0即y 轴也是)(x f 的对称轴,因此)(x f 还是一个偶函数。
故选
(A )。
例2 设定义域为R 的函数)(x f y =、)(x g y =都有反函数,并且)1(-x f 和)2(1--x g 的函数图像关于直线x y =对称,若2002)5(=g ,那么=)4(f ( )
A. 2002
B. 2003
C. 2004
D. 2005
解:因为)2()1(1-=-=-x g y x f y 和的函数图像关于直线x y =对称,所以)2(1-=-x g y 的反函数是)1(-=x f y ,而)2(1-=-x g y 的反函数是)(2x g y +=,
所以)(2)1(x g x f +=-,所以有2004)5(2)15(=+=-g f 故2004)4(=f ,应选(C )。
例3 设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,
x x f 2
1)(-=,则=)6.8(f ___________ 解:因为f(x)是定义在R 上的偶函数,所以)(0x f y x ==是的对称轴; 又因为)(1)1()1(x f y x x f x f ==-=+也是所以的对称轴。
故)(x f y =是以2为周期的周期函数,所以3.0)6.0()6.0()6.08()6.8(=-==+=f f f f 例4 函数)252sin(π+
=x y 的图像的一条对称轴的方程是( )
45.8.4.2.ππ
π
π
==-=-=x D x C x B x A
解:函数)252sin(π+
=x y 的图像的所有对称轴的方程是2252πππ+=+k x ,所以ππ-=2k x ,显然取1=k 时的对称轴方程是2
π-=x ,故选(A )。
例5 设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线21=
x ,则:=++++)5()4()3()2()1(f f f f f _____________ 解:函数)(x f y =的图像既关于原点对称,又关于直线21=x 对称,所以周期是2,又0)0(=f ,图像关于2
1=
x 对称,所以0)1(=f ,所以 0)5()4()3()2()1(=++++f f f f f。