光接枝聚合改性
- 格式:ppt
- 大小:435.50 KB
- 文档页数:37
零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。
聚合物改性的目的:所谓的聚合物改性,突出在一个改字。
改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。
聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。
聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。
资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。
3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。
聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。
这是第一个实现了工业化生产的聚合物共混物。
1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。
二者可称为高分子合金系统研究开发的起点。
1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。
1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。
IPN已成为共混与复合领域一个独立的重要分支。
1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。
聚合物改性聚合物定义:聚合物即高分子化合物,所谓的高分子化合物,就是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。
聚合物改性通过物理与机械的方法在聚合物中加入无机或有机物质,或将不同种类聚合物共混,或用化学方法实现聚合物的共聚、接枝、交联,或将上述方法联用、并用,以达到使材料的成本下降、成型加工性能或最终使用性能得到改善,或在电、磁、光、热、声、燃烧等方面被赋予独特功能等效果,统称为聚合物改性。
聚合物改性的方法总体上分为: 物理方法化学方法表面细分:共混改性、填充改性、纤维增强复合材料化学改性、表面改性、共混改性:两种或者两种以上聚合物经混合制备宏观均匀材料的过程。
可分为物理、化学共混。
填充改性:向聚合物中加入适量的填充材料(如无机粉体或者纤维),以使制品的某些性能得到改善,或降低原材料成本的改性技术。
纤维增强复合材料又称聚合物基复合材料,就就是以有机聚合物为基体,纤维类增强材料为增强剂的复合材料。
化学改性:在改性过程中聚合物大分子链的主链、支链、侧链以及大分子链之间发生化学反应的一种改性方法。
原理:主要靠大分子主链或支链或侧基的变化实现改性。
改性手段有:嵌段、接枝、交联、互穿网络等特点:改性效果耐久,但难度大,成本高,可操作性小,其一般在树脂合成厂完成,在高分子材料加工工厂应用不多。
表面改性:就是指其改性只发生在聚合物材料制品的表层而未深入到内部的一类改性。
特点:性能变化不均匀种类:表面化学氧化处理,表面电晕处理,表面热处理,表面接枝聚合,等离子体表面改性等适应于只要求外观性能而内部性能不重要或不需要的应用场合,常见的有:表面光泽,硬度,耐磨、防静电等的改性。
接枝反应:以含极性基团的取代基,按自由基反应的规律与聚合物作用,生成接枝链,从而改变高聚物的极性,或引入可反应的官能团。
官能团反应:可以发生在聚合物与低分子化合物之间,也可发生在聚合物与聚合物之间。
可以就是聚合物侧基官能团的反应,也可以就是聚合物端基的反应接枝共聚改性对聚合物进行接枝,在大分子链上引入适当的支链或功能性侧基,所形成的产物称作接枝共聚物。
聚合物表面改性聚合物表面改性根据方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。
一、化学改性化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。
1.1化学氧化法是通过氧化反应改变聚合物表面活性,例如聚乙烯这种材料的表面能很低,用氧化剂处理聚乙烯,使其表面粗糙并氧化生成极性基团,从而使其表面能增高;在室温下将聚乙烯在标准铬酸洗液中浸泡1-1.5h,66-71℃条件下浸泡1-5min,80-85℃处理几秒钟,也可以达到同样效果;通过臭氧氧化处理可有效地改善聚丙烯表面的亲水性,处理前的表面接触角为97°,臭氧氧化处理后,表面接触角将达到67°。
1.2化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等1.3聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。
二、光化学改性光化学改性主要包括光照射反应、光接枝反应。
2.1光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。
如用波长184nm的紫外线在大气中照射聚乙烯能使表面发生交联,粘接的搭接剪切强度提高到15.4Mpa。
2.2光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应,该技术尤其适用于聚合物的表面改性,这是因为紫外线能量低,条件温和,只是在聚合物表面引发接枝聚合反应,很难影响到聚合物本体。
例如对于一些含光敏基(如羰基),特别是侧链含光敏基的聚合物,当紫外线光照射其表面时,会发生反应,产生表面自由基。
三、表面改性剂改性采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。
光化学接枝与辐射接枝改性聚合物的方法、原理及其应用20系房威PB02206227高分子材料在工业和现实生活中的应用日益广泛。
然而,由于许多聚合物本身所固有的性质不很理想,,从而限制了它们在一些领域中的应用。
而聚合物改性技术可以改变聚合物的本体性质或使聚合物表面获得新的性质而不影响其本体性质。
因此,聚合物的改性越来越受到人们的重视。
光化学接枝与辐射接枝是高聚物改性的重要方法。
它们在原理和实验方法上有相似之处,都是用一定波长的电磁波来引发聚合物的接枝反应,从而达到改性的目的。
它们的不同之处在于光化学接枝使用的是紫外光,而辐射接枝一般是用高能射线如γ射线来引发接枝聚合。
这一区别导致它们有各自的应用范围:由于紫外光比高能辐射对材料的穿透力差,故接枝聚合可以严格地限定在材料的表面或亚表面进行,不会损坏材料的本体性能,所以光化学接枝一般用来对聚合物进行表面改性,而辐射接枝则用来改变其本体性质。
光化学接枝的优点,除了适合于聚合物的表面改性外,还有紫外辐射的光源及设备成本低,易于连续化操作,故近年来发展较快,极具工业应用前景。
辐射接枝聚合则具有方法简单,不需要催化剂、引发剂,可在常温下反应,接枝率容易控制等特点,引起了国内外的高度重视。
1 光化学接枝的化学原理与实施方法1.1 化学原理生成表面接枝聚合物的首要条件是生成表面引发中心——表面自由基,依据产生方式的不同可分为三种方法。
含光敏基聚合物辐照分解法对于一些含光敏基(如羰基),特别是侧链含光敏基的聚合物,当UV光照射其表面时,会发生Norrish I型反应1,产生表面自由基:这些自由基能引发乙烯基单体聚合,可同时生成接枝共聚物和均聚物,自由基链转移法安息香类引发剂在UV照射下发生均裂,产生两种自由基:在单体浓度很低的条件下,两个自由基均会向聚合物表面或大分子链转移,产生表面自由基引发烯类单体聚合而生成表面接枝链,该体系缺点是小分子自由基,如(I)能引发均聚合,故表面接枝链和均聚链能同时生成。
表面光接枝改性技术研究及应用***(天津工业大学纺织学院,天津,300387)摘要:本为介绍和总结了光接枝改性技术的原理、实施方法、影响因素和应用。
其中,光接枝原理主要是表面自由基引发单体聚合;接枝方法有气相法、液相法和本体接枝法;另外,本文还介绍了光接枝影响因素及其多种应用。
关键词:光接枝;聚合反应;表面改性;应用中图分类号:TQ 316.6+1The research of surface photo-grafting modification technologyand its applicationJin Yinshan, RenY uanlin, Dong Erying(School of Textile, Tianjin Polytechnic University, Tianjin, 300387, China)Abstract:This paper introduces and summarizes the theory, implementation methods, influencing factors and applications of photo-grafting modification technology. Among, the theory of photo-graftingis mainly surface radical-induced monomer polymerization; the method of photo-grafting includes gas phase method,liquid phase method and ontology grafting method. In addition, the article introducesthe influencing factors of photo-grafting and its application.Key words: Photo-grafting; Polymerization; surface modification; application引言随着时代的进步和科技的发展,高分子材料在材料领域中的地位越来越高,人们对材料的性能和功能化的要求也相应提高。
PVDF平板超滤膜的制备与光接枝改性研究的开题报
告
本研究计划主要针对PVDF平板超滤膜的制备和光接枝改性进行研究。
PVDF是一种常用的聚合物材料,在膜技术中广泛应用于超滤膜的制备。
但是,PVDF材料的亲水性较差,容易发生污染和膜污染问题,限制其在工业应用中的发展。
光接枝改性是一种有效的方法,可以提高PVDF 膜的亲水性和抗污染性能,从而改善其分离性能和稳定性。
本研究将通过以下几个方面进行探讨:
1. PVDF平板超滤膜的制备方法研究:本研究将采用相分离法制备PVDF平板超滤膜,并优化膜的制备工艺参数,包括溶液浓度、溶剂种类和浸渍时间等,以获得更好的分离性能和稳定性。
2. 光接枝改性方法研究:本研究将采用紫外光辐射法对制备好的PVDF平板超滤膜进行光接枝改性。
并选取不同的接枝单体进行接枝改性,以探究不同接枝单体对膜性能的影响。
3. 膜性能测试研究:本研究将对制备好的PVDF平板超滤膜和改性
后的光接枝膜进行多种性能测试,包括通量、分离因子、污染物抗污染
性能和温度稳定性等,以分析膜的分离性能和稳定性。
通过以上研究,目的是提高PVDF平板超滤膜的分离性能和稳定性,为实际应用提供科学依据。
聚多巴胺在生物材料表面改性中的应用一、本文概述本文旨在探讨聚多巴胺(Polydopamine, PDA)在生物材料表面改性中的应用。
作为一种新兴的、具有生物活性的材料,聚多巴胺因其独特的性质,如良好的生物相容性、粘附性、以及易于功能化的特性,在生物医学工程、组织工程、药物传递、生物传感器等多个领域受到广泛关注。
本文将详细介绍聚多巴胺的合成方法、表面改性的原理及其在生物材料表面改性中的具体应用,并探讨其可能存在的问题和未来发展方向。
通过本文的阐述,希望能为相关领域的研究者提供有益的参考和启示,推动聚多巴胺在生物材料表面改性领域的进一步发展和应用。
二、聚多巴胺的合成与性质聚多巴胺(Polydopamine, PDA)是一种模拟海洋生物贻贝粘附蛋白的人工合成高分子材料,因其独特的粘附性和生物活性,在生物材料表面改性领域具有广泛的应用前景。
聚多巴胺的合成主要基于多巴胺(Dopamine)的氧化自聚合反应,这一过程可以在多种基材表面进行,包括金属、非金属、有机和无机材料等。
多巴胺是一种生物活性分子,广泛存在于生物体内,特别是哺乳动物的中枢神经系统中。
在碱性条件下,多巴胺可以发生氧化自聚合反应,生成聚多巴胺。
这种聚合反应过程相对简单,可以在水溶液中进行,且对温度要求不高,通常在室温下即可进行。
聚多巴胺具有一系列独特的性质,使其成为生物材料表面改性的理想选择。
聚多巴胺具有强大的粘附性,可以紧密地附着在各种材料表面,形成一层均匀的涂层。
聚多巴胺具有良好的生物相容性和生物活性,可以促进细胞粘附和增殖,有利于生物材料在生物体内的应用。
聚多巴胺还含有丰富的官能团,如羟基、氨基和醌基等,这些官能团可以进一步与其他生物分子或药物进行化学反应,实现生物材料的功能化。
聚多巴胺的合成相对简单,性质独特,具有良好的粘附性、生物相容性和生物活性,以及丰富的官能团,这些特点使得聚多巴胺在生物材料表面改性领域具有广阔的应用前景。
通过聚多巴胺的改性,可以改善生物材料的表面性能,提高其生物相容性和功能性,从而满足生物医学工程领域对生物材料日益增长的需求。