概率与数理统计 单侧置信区间
- 格式:ppt
- 大小:521.50 KB
- 文档页数:12
概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。
2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。