状态反馈控制器设计
- 格式:ppt
- 大小:1.51 MB
- 文档页数:41
PID控制器与状态反馈控制器MATLAB教学实例设计作者:张栋来源:《教育教学论坛》2015年第04期摘要:为解决控制理论授课过程中PID控制器与状态反馈控制器设计的区别与联系,本文设计了一个MATLAB/SIMULINK仿真教学实例,便于学生深入理解与掌握教学过程中的基本理论与方法。
关键词:PID控制器;状态反馈;观测器;参数整定中图分类号:G642.1 文献标志码:A 文章编号:1674-9324(2015)04-0165-02一、引言PID控制器设计与状态反馈控制器两类控制器[1,2]相同之处为二者均属于反馈控制,因此在实际使用中,都需考虑闭环系统的稳定性;两类控制器最主要的相异之处为二者闭环系统极点的配置灵活性不同: PID控制器属于输出反馈,只能将闭环极点配置到闭环系统的根轨迹上;而状态反馈控制器在被控系统状态完全可控的条件下,可以将闭环极点任意配置。
本文利用MATLAB与SIMULINK仿真设计了一个实例,对同一个被控对象进行PID控制器设计与基于观测器的状态反馈控制器设计,将教学过程中较深刻的控制器设计理论用最直观的方式体现出来,利于学生的理解与掌握。
二、仿真实例设计选取被控对象微分方程数学模型如下:三种控制器下,单位阶跃响应曲线如图2所示。
在MATLAB中输入如下代码:G=tf([2.93*6 23.898*6 48.721*6],[1,6,41,7,0])%计算带有PID控制器的控制系统前向通道传递函数;rlocfind(G)%当K=1时,从根轨迹取相应闭环极点;rlocus(G)%绘制闭环系统根轨迹图;((a)闭环系统根轨迹图(根轨迹增益为1时的某一根);(b)PID控制器参数取某一数据时,闭环系统在根轨迹上的落点上。
)代码运行结果(图3)显示具有PID控制器的闭环系统闭环极点为-1.4771+6.3688i,-1.4771-6.3688i,-1.5229+2.1260i,-1.5229-2.1260i,一定落在该系统的根轨迹上。
第五章 状态反馈控制器的设计题目:系统结构图如下图所示:要求:闭环系统的输出超调量σ≤5%,峰值时间t p ≤0.5s 。
分别求出开环、PID 闭环、状态反馈闭环、PID/状态反馈闭环的单位阶跃响应,并分析相应曲线得出结论。
1.开环系统单位阶跃响应图 1 开环系统仿真模型0.0.0.0.1.1.仿真时间(s )阶跃响应图2 开环系统单位阶跃响应分析:由图中的响应曲线可知开环系统不稳定,通过开环传递函数G K (s )=3211872s s s++也可以判断出开环系统不稳定。
2.闭环传递函数及其单位阶跃响应(1)闭环传递函数G B (s)=32118721s s s +++,特征根分别为λ1=-12.0138,λ2=-5.9722,λ3=-0.0139。
(2)闭环传递函数仿真模型及其单位阶跃响应曲线见图3、图4。
图3 闭环传递函数仿真模型图4 闭环传递函数单位阶跃响应分析:响应曲线表明,系统是稳定的,但是系统的响应时间太长,远达不到要求。
3.加入PID控制器,并进行参数整定后的单位阶跃响应图 5 PID控制仿真模型其中参数设置为:K p =256.8 ,K i =0.2,K d=23.2。
图6 PID 闭环控制输出波形图分析:通过Workspace 数据查询可知峰值时间tp=0.98686s ,最大输出值为1.0485,所以超调量为4.85%,满足要求,峰值时间达不到要求。
4.加入状态反馈控制器的单位阶跃响应图7 状态反馈控制仿真模型其中H1 到H3依次为10000、284.8、96.1。
0.0.0.0.1.-4t i m e(sec)O u t p u t图8 状态反馈控制单位阶跃响应分析:通过Workspace数据查询可知峰值时间tp=0.4492s,最大输出值为1.0449,所以超调量为4.49%,满足性能指标要求。
5.状态反馈/PID控制的单位阶跃响应图9 状态反馈/PID控制仿真模型其中PID参数设置为:K p =1.05 ,K i =0.01,K d=0;状态反馈控制H1 到H3依次为10000、284.8、96.1。
(完整版)状态反馈控制器的设计上海电⼒学院实验报告⾃动控制原理实验课程题⽬:状态反馈控制器的设计班级:姓名:学号:时间:⼀、问题描述已知⼀个单位反馈系统的开环传递函数为,试搭建simulink 模型。
仿真原系统的阶跃响应。
再设计状态反馈控制器,配置系统的闭环极点在,并⽤simulink 模型进⾏仿真验证。
⼆、理论⽅法分析MATLAB提供了单变量系统极点配置函数acker (),该函数的调⽤格式为K=place ( A,b,p)其中,P为期望闭环极点的列向量,K为状态反馈矩阵。
Acker ()函数时Ackerman 公式编写,若单输⼊系统可控的,则采⽤状态反馈控制后,控制量u=r+Kx 。
对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调⽤格式为K=place ( A,B,P)状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输⼊端与参考输⼊叠加形成控制量,作为受控系统的输⼊,实现闭环系统极点的任意配置,⽽且也是实现解耦和构成线性最优调节器的主要⼿段。
只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。
这个定理是⽤极点配置⽅法设计反馈矩阵的前提和依据。
在单输⼊,单输出系统中,反馈矩阵有唯⼀解,且状态反馈不改变系统的零点。
三、实验设计与实现1、搭建原系统的sumlink模型并观察其单位阶跃响应原系统sumlink模型原系统单位阶跃响应由原系统单位阶跃响应可知系统不稳定2、⽤极点配置法设计状态反馈控制器①利⽤matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b)A = -5 -6 01 0 00 1 0B = 1C = 0 0 10③系统能控性矩阵>> uc=ctrb(A,B)uc = 1 -5 190 1 -50 0 1 >> rank(uc) ans = 3 所以系统完全能控③系统能观型矩阵>> vo=obsv(A,C) vo = 0 0 100 10 010 0 0 >> rank(vo) ans = 3 所以系统完全能观所以可以⽤极点配置法设计状态反馈控制器④求解系统反馈矩阵>> p=[-3 -0.5+j -0.5-j];k=acker(A,B,p)k = -1.0000 -1.7500 3.7500 加⼊反馈后的系统闭环极点为:>>sysnew=ss(A-B*k,B,C,D);pole(sysnew)ans = -3.0000-0.5000 + 1.0000i-0.5000 - 1.0000i⑤搭建加⼊反馈控制器后系统的sumlink模型⑥观察新系统的单位阶跃响应四、实验结果分析加⼊反馈控制器后系统的闭环极点在,符合题⽬要求。
现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
测控系统课程设计题目:状态反馈控制器与状态观测器——方案B1 2院(系)机电及自动化学院专业测控技术与仪器(辅助)学号姓名级别 2 0 0 9指导老师2012年6月摘要在经典控制系统设计中,对于一个简单的SISO (单输入单输出)闭环系统而言,控制器部分只有简单的增益环节c K ,因此系统仅有唯一的控制参数c K 可供调整。
对于N 维控制系统,控制器需要至少N 个独立变量来调整系统所需根极点的位置,状态反馈控制器则可以将系统的所有状态变量X 都进行反馈,将系统的根极点调整到需要的位置。
而状态反馈控制的实现前提就是要求系统的所有状态变量可测,此时,利用系统某种数学形式的仿真来估计状态值,即系统的状态观测设计,就可以保证系统带全观测的状态反馈控制顺利实现。
本文主要介绍了带全观测器的状态反馈控制器。
关键词:状态反馈,状态观测AbstractThe classical control system design, for a simple SISO (SISO) closed loop system, a controller part is only the simple gain link, therefore only one control parameter can be adjusted. For the N control system, the controller needs at least N independent variable to adjust the system required root pole position, a state feedback controller can be a system of all state variables in X feedback, the system root poles are adjusted to the needs of the location of. While the state feedback control is the premise requirement system realizes all the state variables can be measured, this time using a mathematical form, system simulation to estimate the state value, namely the system state observer design, can guarantee system with full state feedback control for the smooth realization of observation. This paper mainly introduces the observer-based state feedback controller.Key words : state feedback, state observer目录1. 状态反馈控制器 ................................................................................................... - 4 -1.1状态反馈的定义 ................................................................................................ - 4 -1.2状态反馈控制器 ................................................................................................ - 4 -1.3完全可控性........................................................................................................... - 5 -1.4状态反馈控制器的极点配置...................................................................... - 6 -2.状态观测器设计 ...................................................................................................... - 7 -2.1系统状态观测器定义...................................................................................... - 7 -2.2完全可观性........................................................................................................... - 9 -2.3观测器增益的确定 ......................................................................................... - 10 -3.带全观测器的状态反馈控制 ...................................................................... - 10 -3.1仿真程序及分析 .............................................................................................. - 10 -3.2程序运行结果.................................................................................................... - 12 -4.学习小结....................................................................................................................... - 13 - 参考文献 ........................................................................................................................... - 13 -1. 状态反馈控制器1.1状态反馈的定义经典控制:只能用系统输出作为反馈控制器的输入; 现代控制:由于状态空间模型刻画了系统内部特征,故而还可用系统内部状态作为反馈控制器的输入。
极点配置状态反馈控制器的设计王俊伟于新海(河套学院机电工程系)摘要围绕双级倒立摆案例,对极点配置状态反馈控制器的设计方法展开讨论,对最终的计算结果进行仿真,并通过仿真结果分析了系统的稳定性、动态性能和稳态误差情况。
倒立摆的开环系统状态空间模型状态不稳定且动态性能较差,通过引进极点配置状态反馈控制器,倒立摆的闭环系统状态达到稳定,而且动态性能得到改善。
关键词状态反馈控制器双级倒立摆极点配置能控标准型爱克曼公式动态特性稳态误差中图分类号TH865文献标识码B文章编号1000-3932(2021)01-0015-05极点配置状态反馈控制器设计得好坏直接决定了控制系统动态性能的优劣!配置极点的目的不仅是使系统稳定还要使系统的动态性能满足控制要求[1]!在配置状态反馈控制器时,根据被控制对象的要求,可以采用3种方法实现:极点配置状态反馈控制器的直接法、极点配置状态反馈控制器的变换法和爱克曼公式[2]'这3种方法仅适用于单输入系统,优点是只要系统能控,就可以实现极点配置的状态反馈,缺点是不能用于多输入系统的极点配置状态反馈控制器。
对于单输入系统,如果系统能控可以实现极点的任意配置,改善动态性能,但有可能使闭环控制系统的稳态误差变大[3]!1极点配置状态反馈控制器的直接法线性时不变系统如下:x=Ax+Bu(])'=Cx其中,X是系统的*维状态向量;*是状态向量对时间的导数;u是状态反馈控制律;#、B和C是适当维数的已知常数矩阵;'是系统的输出。
采用的状态反馈控制律是:u=-kx+v(2)其中,-是一维外部输入;k是反馈增益矩阵。
将式(2)代入式(1)得到闭环系统状态方程:*二(.-Bk)x+B-(3)极点配置状态反馈控制器的直接法分5步实现⑷。
第1步,检验系统(1)的能控性,如果系统能控,进行第2步。
第2步,计算闭环系统特征多项式:)et[!0—(#—Bk)]二!*+(3*_]+k*_14!*i1--------(3]+k])!+30+,0(4)其中,!是闭环极点。
Chapter5状态反馈控制器设计控制方式有“开环控制”和“闭环控制”。
“开环控制”就是把一个确定的信号(时间的函数)加到系统输入端,使系统具有某种期望的性能。
然而,由于建模中的不确定性或误差、系统运行过程中的扰动等因素使系统产生一些意想不到的情况,这就要求对这些偏差进行及时修正,这就是“反馈控制”。
在经典控制理论中,我们依据描述控制对象输入输出行为的传递函数模型来设计控制器,因此只能用系统输出作为反馈信号,而在现代控制理论中,则主要通过更为广泛的状态反馈对系统进行综合。
通过状态反馈来改变和控制系统的极点位置可使闭环系统具有所期望的动态特性。
利用状态反馈构成的调节器,可以实现各种目的,使闭环系统满足设计要求。
参见R38例5.3.3,通过状态反馈的极点配置,使闭环系统的超调量匚p乞5%,峰值时间(超调时间)t p乞0.5s,阻尼振荡频率壮乞10。
5.1线性反馈控制系统的结构与性质设系统S=(A, B,C)为x 二Ax Bu y 二Cx (5-1)图5-1 经典控制-输岀反馈闭环系统经典控制中采用输出(和输出导数)反馈(图5-1 ):其控制规律为:u二-Fy v F为标量,v为参考输入(5-2)x 二Ax Bu 二Ax B (- Fy V (A-BFC)x Bv可见,在经典控制中,通过适当选择F ,可以利用输出反馈改善系统的动态性能现代控制中采用状态反馈(图5-2 ):其控制规律为:u - -Kx v,K〜m n (5-3)(K的行=u的行,K的列=x的行)称为状态反馈增益矩阵。
状态反馈后的闭环系统S K =(A K,B,C)的状态空间表达式为x =(A-BK)x Bv = A K X Bv y = Cx (5-4)式中:|A K三A-BK若K -FC ,“状态反馈”退化成“输出反馈”,表明“输出反馈”只是“状态反馈”的一种特例,因此,在经典控制理论中的输出反馈”(比例控制P )和 输出导数反馈”(微分控制D )能实现的任务,状态反馈必能实现,反之则未必。