2015离散数学谓词演算与前束范式
- 格式:ppt
- 大小:890.50 KB
- 文档页数:19
离散数学第⼆章谓词逻辑2-6前束范式在命题演算中,常常要将公式化成规范形式,对于谓词演算,也有类似情况,⼀个谓词演算公式,可以化为与它等价的范式。
定义2-6。
1 ⼀个公式,如果量词均在全式的开头,它们的作⽤域,延伸到整个公式的末尾,则该公式叫做前束范式。
前束范式可记为下述形式:(□v1)(□v2)…(□v4)a,其中□可能是量词或量词ヨ,v i(i=1,2,3,…,n)是客体变元,a是没有量词的谓词公式。
例如("x)("y)($z)(q(x,y)®r(z)),("y)("x)(øp(x,y)®q(y))等都是前束范式。
定理2-6.1 任意⼀个谓词公式,均和⼀个前束范式等价。
证明⾸先利⽤量词转化公式,把否定深⼊到命题变元和谓词填式的前⾯,其次利⽤("x)(aúb(x))ûaú("x)b(x)和($x)(aùb(x))ûaù($x)b(x)把量词移到全式的最前⾯,这样便得到前束范式。
例题1 把公式("x)p(x)®($x)q(x)转化为前束范式。
解("x)p(x)®($x)q(x)û($x)øp(x)ú($x)q(x)û($x)(øp(x)úq(x))例题2 化公式("x)("y)(($z)(p(x,y)ùp(y,z))®($u)q(x,y,u))为前束范式。
解原式û("x)("y)(ø($z)(p(x,z)ùp(y,z))ú($u)q(x,y,u))û("x)("y)(("z)(øp(x,z)úøp(x,z))ú($u)q(x,y,u))û("x)("y)("z)($u)(øp(x,z)úøp(x,y)úq(x,y,u))例题3 把公式ø("x){($y)a(x,y)®($x)("y)[b(x,y)ù("y)(a(y,x)®b(x,y))]}化为前束范式。