离散数学自学笔记命题公式及其真值表
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
2 命题公式,真值表(1) 数理逻辑是通过引入表意符号研究人类思维中的推理过程及推理正确与否的数学分支.数学------⎧⎨⎩符号运算推理---思维过程:前提结论命题逻辑---研究由命题为基本单位构成的前提和结论之间的可推导关系.(逻辑演算) 即将推理(不涉及内函)形式化.例1 (a) 4是偶数.张林学习优秀.太阳系以外的星球上有生物.(b) 这朵花真美丽!现在开会吗?(c) 3 5.x +>我正在说慌.特征分析(a) 陈述句,非真即假.(b) 感叹句,疑问句.(c) 悖论.定义1 能辩真假的陈述句,称为命题,用,,,P Q Z 表示.其判断结果称为命题的真值.成真的命题称为真命题,其真值为真,记为,T 或为1.成假的命题称假命题,其真值为假,记为,F 或为0.例2 (1) 2008年奥运会在北京举行.(2) 22 5.⨯=(3) 计算机程序的发明者是诗人拜伦.用符号表是上述命题,并求真值.解 (1) :P 2008年奥运会在北京举行. .T(2) :Q 22 5.⨯= .F(3) :R 计算机程序的发明者是诗人拜伦. .F(2) 3, 35,+ 3(41).+- 例3 (1) 今天没有数学考试.(2) 下午,我写信或做练习.(3) 王芳不但用功,而且成绩优秀.(4) 如果太阳从西边出来了,那么地球停止转动.(5) 2是素数,当且仅当三角形有三条边.特征分析(a)存在自然语言中的虚词.(b)语句可以分解,细化.定义2 称下列符号为逻辑联结词否定 ⌝ 非 P ⌝析取 ∨ 或者 P Q ∨合取 ∧ 且 P Q ∧蕴涵 → 若----,则----- P Q →等价 ↔ 当且仅当 P Q ↔逻辑联结词真值的规定例4 将下列命题符号化.(1) 小李聪明,但不用功. ()P Q ∧⌝(2) 单位派小王或小苏出差. P Q ∨(3) 如果椅子是紫色的,且是园的,那么地是平的. ()P Q R ∧→ (4) n 是偶数当且仅当它能被2整除. P Q ↔注 1 逻辑联结词:运算符.顺序 ,,,,.⌝∧∨→↔2 自然语言中 虽然---,但是----; 不但---,而且----; ∧只有----,才----; 除非----,才-----; →3 ∨ 可兼或(相容) ∨ 不可兼或(排斥)小王是山东人或是河北人. ()()P Q P Q P Q ∨⇔∧⌝∨⌝∧4 ,P Q -----------------------简单命题()P Q R ∨→-----------复合命题(由简单命题及逻辑联结词按一定规则组成)5 复合命题的真值由简单命题和逻辑联结词真值规定共同确定.“若雪是黑的,那么太阳从西边出来了.”P :雪是黑的. :Q 太阳从西边出来了.P Q → 真值 为 T6 蕴含联结词的真值规定解释“若天下雨,那么我带伞.”何时自食其言.前件:P 天下雨.后件:Q 我带伞.则有命题 P Q → 仅当天下雨,我没有带伞时才自其言,即当前件为T ,后件为F 时,命题才为F .对应的真值情况如下:(3) 3,;43;ππ-221, 5.;23;24|x y x x y x y ==++-定义3 真值确定的命题,称为命题常元1,0,否则为命题变元,记号仍用,.P Q命题公式是由按下列规则生成的符号串(1)命题常元是命题公式(2)命题变元是命题公式(3)若,P Q 是命题公式,则,,,,P P Q P Q P Q P Q ⌝∨∧→↔也是命题公式.(4)有限次运用(1),(2),(3)得到的字符串也是命题公式.注 1 递归定义.():,,,().P Q R P P P Q P Q R ⌝→∧⌝⌝→⌝→∧2 ,(()Q P Q ∧∨不是命题公式.(4) 定义4 命题公式中,命题变元的一组确定的真值,称为该公式的一个真值指派.真值指派的全体构成的表,称为该公式的真值表.注 命题公式12(,,,)n A P P P 一共有2n 个真值指派.例5 求命题公式()Q P Q P ∧→→的真值表.解(5) 22sin cos 1,arcsin 2,30.x x x x +=≥+>例6 讨论下列命题公式的真值情况.(),P P Q ⌝→→ (),P Q P ∧∧⌝ ().P P Q ∨⌝→ 解定义5 命题公式12(,,,)n A P P P 在2n 个真值指派下其值⎧⎪⎨⎪⎩永真永假至少有一个真 称A 为重言式矛盾式可满足式(1) 数理逻辑、命题逻辑研究的内容。
我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。
深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。
相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。
命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。
下面我们引入高一级的语言成分——命题公式。
定义1.1 以下三条款规定了命题公式(proposition formula)的意义:(1)命题常元和命题变元是命题公式,也称为原子公式或原子。
(2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。
(3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。
命题公式简称公式,常用大写拉丁字母A,B,C等表示。
公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。
例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。
为使公式的表示更为简练,我们作如下约定:(1)公式最外层括号一律可省略。
(2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。
(3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。
例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s)))设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。
如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A 的子公式;q∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。
离散数学笔记总结一、命题逻辑。
1. 基本概念。
- 命题:能够判断真假的陈述句。
例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。
- 命题变元:用字母表示命题,如p,q,r等。
2. 逻辑联结词。
- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。
- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。
- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。
- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。
- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。
3. 命题公式。
- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。
- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。
- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。
4. 逻辑等价与范式。
- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。
例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。
- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。
- 合取范式:由有限个简单析取式的合取组成的命题公式。
- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。
- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。
二、谓词逻辑。
1. 基本概念。
- 个体:可以独立存在的事物,如人、数等。
- 谓词:用来刻画个体性质或个体之间关系的词。
例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。
- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。
- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。
离散数学(1)复习笔记Ch1 命题逻辑的基本概念1.1 命题命题:能判断真假且⾮真即假的陈述句。
命题的真值,真命题,假命题。
* 真值待定 *简单命题 | 原⼦命题,复合命题。
1.2 常⽤的5个命题联结词否定,合取,析取,蕴涵,双蕴涵。
* 异或 | 排斥或 | 不可兼或 * 注意语义判断。
* p→q = ﹁ p∨q ** 必要条件 * 只有……才……;仅当……,……;……,仅当……。
注意命题符号化的蕴涵⽅向。
* domain * A horse is white. (×)联结词集,⼀元联结词,⼆元联结词。
* 优先顺序 * (),﹁,∧,∨,→,↔1.3 合式公式及其赋值命题常项 | 命题常元(值是确定的),命题变项 | 命题变元(真值可以变化的陈述句)。
合式公式 | 命题公式 | 命题形式 | 公式(wff)(well formed formulas),原⼦命题公式(单个命题变项),⼦公式。
* 单个命题变项是合式公式,没说命题常项。
*赋值 | 解释,成真赋值,成假赋值。
真值表。
* 真值表要点:赋值从00…0开始,按照⼆进制加法,直到11…1为⽌;按照运算的优先次序写出各⼦公式。
*命题公式的分类:重⾔式 | 永真式,⽭盾式 | 永假式,可满⾜式。
1.4 重⾔式与代⼊规则代⼊规则。
* 1. 公式中被代换的只能是命题变项(原⼦命题),⽽不能是复合命题。
2.对公式中某命题变项施以代⼊,必须对该公式中出现的所有同⼀命题变项施以相同的代换。
* 1.5 命题形式化命题形式化 | 符号化。
* 注意充分条件和必要条件的区别 ** 注意语义是否考虑完整 *1.6 波兰表达式中置式 | 中缀式,前置式 | 前缀式 | 波兰式,后置式 | 后缀式 | 逆波兰式。
Ch2 命题逻辑的等值和推理演算2.1 等值定理等值 | 等价,等值定理:设A,B为两个命题公式,A = B的充分必要条件是 A↔B为⼀个重⾔式。
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散数学自学笔记命题公式及其真值表
我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。
深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。
相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。
命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。
下面我们引入高一级的语言成分——命题公式。
定义1.1 以下三条款规定了命题公式(proposition formula)的意义:
(1)命题常元和命题变元是命题公式,也称为原子公式或原子。
(2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。
(3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。
命题公式简称公式,常用大写拉丁字母A,B,C等表示。
公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。
例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。
为使公式的表示更为简练,我们作如下约定:
(1)公式最外层括号一律可省略。
(2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。
(3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。
湖南省自考网:/整理
例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s)))
设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。
如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A的子公式;q ∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。
如果公式A含有命题变元p1,p2,…,pn,记为A(p1,…,pn),并把联结词看作真值运算符,那么公式A可以看作是p1,…,pn的真值函数。
对任意给定的p1,…,pn的一种取值状况,称为指派(assignments),用希腊字母a,b等表示,A均有一个确定的真值。
当A对取值状况 a 为真时,称指派a弄真A,或a是A的成真赋值,记为a (A) = 1;反之称指派a弄假A,或a是A的成假赋值,记为a (A) = 0.对一切可能的指派,公式A的取值可能可用表1.7来描述,这个表称为真值表(truth table)。
当A(p1,…,pn)中有k个联结词时,公式A的真值表应为2n行、k+n列(不计表头)。
例1.9 作出公式┐(p→(q∧r))的真值表。
表1.7
表1.7即为所求。
可见指派(0,0,0),(0,0,1),(0,1,0),(0,1,1)及(1,1,1)均弄假该公式,而指派(1,0,0),(1,0,1),(1,1,0)
了解自考资讯:湖南大学自考网:/
湖南省自考网:/
/
资料来源网络,仅供参考。