2015离散数学命题公式
- 格式:ppt
- 大小:994.50 KB
- 文档页数:25
离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B 是等值的,记作A<=>B。
约束变元和自由变元:在合式公式xA和 xA中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Qk…xkB,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。
深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。
相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。
命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。
下面我们引入高一级的语言成分——命题公式。
定义1.1 以下三条款规定了命题公式(proposition formula)的意义:(1)命题常元和命题变元是命题公式,也称为原子公式或原子。
(2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。
(3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。
命题公式简称公式,常用大写拉丁字母A,B,C等表示。
公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。
例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。
为使公式的表示更为简练,我们作如下约定:(1)公式最外层括号一律可省略。
(2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。
(3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。
例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s)))设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。
如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A 的子公式;q∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。
离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。
在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。
以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。
用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。
这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。
4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。
用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。
这个定理在密码学、计算机科学等领域都有广泛的应用。
5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。
反证法则是通过假设相反的命题成立来证明原命题的一种方法。
在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。
这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。
在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。
离散数学公式范文离散数学是一门关于离散结构及其运算规则的数学课程。
它研究的对象包括离散对象(如集合、图、函数等)和离散运算(如关系、代数运算等),以及这些对象和运算之间的关系和性质。
离散数学具有广泛的应用领域,如计算机科学、信息技术、电子通信等。
本文将介绍一些离散数学中常用的公式及其应用。
一、集合公式1.交集运算:对于集合A和B,它们的交集记作A∩B,定义为A和B 中都包含的元素所组成的集合。
A∩B={x,x∈A且x∈B}2.并集运算:对于集合A和B,它们的并集记作A∪B,定义为A和B 中所有元素所组成的集合。
A∪B={x,x∈A或x∈B}3.差集运算:对于集合A和B,它们的差集记作A-B,定义为属于A 但不属于B的元素所组成的集合。
A-B={x,x∈A且x∉B}4.对称差运算:对于集合A和B,它们的对称差记作A△B,定义为属于A或属于B但不同时属于A和B的元素所组成的集合。
A△B={x,(x∈A且x∉B)或(x∉A且x∈B)}二、数学归纳法数学归纳法是一种证明方法,用于证明一类命题对于所有正整数成立。
它的基本思想是通过证明基本情况成立,然后证明如果对于一些正整数n成立,则对于n+1也成立,从而得出结论对于所有正整数成立。
数学归纳法的三个步骤:1.基础步骤:证明当n取最小值时命题成立。
2.归纳假设:假设当n=k时命题成立,即P(k)成立。
3.归纳步骤:证明当n=k+1时命题也成立,即P(k+1)成立。
三、逻辑公式逻辑公式是描述命题之间关系的数学表达式。
常用的逻辑公式有如下几种:1.否定:对于命题p,它的否定记为¬p,表示p是假的。
2.合取:对于命题p和q,它们的合取记为p∧q,表示p和q同时为真时整个表达式才为真。
3.析取:对于命题p和q,它们的析取记为p∨q,表示p和q至少有一个为真时整个表达式才为真。
4.蕴含:对于命题p和q,它们的蕴含记为p→q,表示如果p为真,则q也为真;如果p为假,则整个表达式为真。
一、基本等值式⑴双重否定律A A⑵幂等律A∧A A A∨A A⑶交换律A∧B B∧A A∨B B∨A⑷结合律A∨(B∨C)(A∨B)∨CA∧(B∧C)(A∧B)∧C⑸分配律A∨(B∧C)(A∨B)∧(A∨C)A∧(B∨C)(A∧B)∨(A∧C)(6)德摩根律(A∨B)A ∧B(A∧B)A ∨B(7)吸收律A∨(A∧B) AA∧(A∨B)A(8)零律A∨1 1 A∧00(9)同一律A∧1 AA∨0A(10)排中律A ∨A1(11)矛盾律A ∧A0(12)蕴含等值式A B A∨B(13)等价等值式A B (A B)∧(B A)A B (A∨B)∧(A ∨B)A B(A∧B)∨(A ∧ B )(14)假言易位A B B A(15)等价否定等值式A B A B(16)归谬论(A B)∧(A B) A二、推理定律——重言蕴涵式1.A (A B)附加律2.(A B)A化简律3.(A B)A B假言推理4.(A B)B A拒取式5.(A B)B A析取三段论6.(A B)(B C)(A C)假言三段论7.(A B)(B C)(A C)等价三段论8.(A B)(C D)(A C)(B D)构造性二难(A B)(A B)B构造性二难(特殊形式)9.(A B)(C D)(B D)(A C)破坏性二难三、量词辖域收缩与扩张x(A(x)∨B)xA(x)∨B x(A(x)∧B)xA(x)∧B x(A(x)→B)xA(x)→B x(B1/ 2→A(x))B→xA(x)x(A(x)∨B)xA(x)∨B x(A(x)∧B)xA(x)∧B x(A(x)→B )xA(x)→B x(B→A(x))B→xA(x)四、量词分配x(A(x)∧B(x))xA(x)∧xB(x)x(A(x)∨B(x))xA(x)∨xB(x)x(A(x)∨B(x) )xA(x)∨xB(x)x(A(x)∨B(x))xA(x)∨xB(x)个体域为全体自然数; A(x):x是偶数, B(x):x是奇数;左1,右0x(A(x)∧B(x))xA(x)∧xB(x)x(A(x)∧B(x))xA(x)∧xB(x)个体域为全体自然数; A(x):x是偶数B(x):x是奇数;左0,右 12/ 2。
离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。
2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。
3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。
二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。
2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。
3. 简单蕴涵:P→Q,Q即P的蕴涵结果。
三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。
2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。
3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。
四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。
2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。
3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。
离散数学公式
离散数学是一门利用数学原理研究离散复杂系统的科学,是一门多维而全面的学科,其研究范围涵盖了计算机科学、逻辑学、概率论和组合数学等领域。
关系公式:若集合X和Y之间存在一对一的函数关系,则X到Y的映射关系可以用公式f:X→Y表示,其中•x∈X表示x是X集合中的一个元素,•f(x)∈Y表示f(x)是Y集合中的一个元素,•f:X→Y表示Y集合的每个元素都可以通过函数f映射回X集合中的一个元素。
函数关系公式:若集合X和Y之间存在可定义的函数关系,则可以用f:X→Y表示,其中•f:X→Y表示函数f把X集合中的元素映射到Y集合中,•f(x)表示x在X集合中的元素映射到Y集合中的元素。
算数逻辑公式:若集合X和Y之间存在逻辑关系,则可以用公式
x∈X⊃y∈Y表示,其中•x∈X表示x是X集合中的一个元素,•y∈Y表示y是Y集合中的一个元素,•x∈X⊃y∈Y表示若x属于X集合,则y属于Y集合。
离散数学公式范文离散数学是研究离散对象及其性质、结构和相互关系的一门数学学科。
它是数学中的一个重要分支,广泛应用于计算机科学、信息科学、金融、工程和其他领域。
离散数学的内容丰富多样,其中包括了许多重要的公式。
本文将介绍一些与离散数学相关的公式,帮助读者更好地理解和应用离散数学。
1.排列组合公式:排列公式表示从n个不同元素中取r个元素所能组成的不同排列的个数,记作P(n,r)。
组合公式表示从n个不同元素中取r个元素所能组成的不同组合的个数,记作C(n,r)。
它们的计算公式如下:P(n,r)=n!/(n-r)!C(n,r)=n!/(r!*(n-r)!)2.容斥原理公式:容斥原理是一种计数方法,用于计算多个集合的交集和并集中的元素个数。
假设A1,A2,...,An是n个集合,容斥原理公式如下:A1∪A2∪...∪An,=Σ(,Ai,)-Σ(,Ai∩Aj,)+Σ(,Ai∩Aj∩Ak,)-...+(-1)^(n-1)*,A1∩A2∩...∩An3.递推关系公式:递推关系是一种数列的定义方式,通过前几项的关系来递推出后面的项。
其中最著名的递推关系是斐波那契数列的定义,即F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1)=14.二项式定理公式:二项式定理是代数中一种重要的展开公式,用于计算(x+y)^n的展开式。
它的公式如下:(x+y)^n=Σ(C(n,r)*x^(n-r)*y^r),其中r取值范围为0到n。
5.欧拉欧系数公式:欧拉欧系数是用于描述图的性质的一种算子。
对于一个图G的顶点集V和边集E,欧拉欧数E(G)定义为:E(G)=,E,-,V,+16.布尔代数公式:布尔代数是一种逻辑代数,用于描述和操作命题的真值。
其中的一些重要公式包括德摩根定律、分配律、吸收定律等。
7.图论中的公式:图论是离散数学中的一个重要分支,用于研究图的性质和结构。
其中一些重要的公式包括图的度数和、握手定理、树的性质等。
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
第一章命题逻辑一、等价公式(真值表)1)常用联结词:┐否定∨析取∧合取→:条件∆:双条件当且仅当Q 取值为F 时P →Q 为F ,否则为T ★等价公式表(等值公式表)常用的其它真值表┐┐P<=>P 双重否定P ∨P<=>P P ∧P<=>P幂等律(P ∧Q)∧R<=>P ∧(Q ∧R)(P ∨Q)∨R<=>P ∨(Q ∨R)结合律P ∧Q<=>Q ∧P P ∨Q<=>Q ∨P交换律P ∧(Q ∨R)<=>(P ∧Q)∨(P ∧R)P ∨(Q ∧R)<=>(P ∨Q)∧(P ∨R)分配律P ∨(P ∧Q)<=>P P ∧(P ∨Q)<=>P 吸收┐(P ∧Q)<=>┐P ∨┐Q ┐(P ∨Q)<=>┐P ∧┐Q 德摩根P ∨F<=>P P ∧T<=>P 同一律P ∨T<=>T P ∧F<=>F 零律P ∨┐P<=>T P ∧┐P<=>F否定律常用的其它真值表P ┐P T F FTP Q P ∨Q T T T T F T F T T FFFP Q P ∧Q T T T T F F F T F F FFP Q P →Q (┐P ∨Q)T T T T F F F T T FFTP→Q<=>┐P ∨Q P ∆Q<=>(P→Q)∧(Q→P)P ∆Q<=>Q ∆PP ∆Q<=>(P ∧Q)∨(┐P ∧┐Q)┐(P ∆Q)<=>P ∆┐Q R ∨(P ∨┐P)<=>T R ∧(P ∧┐P)<=>F P→Q<=>┐Q→┐P ┐(P→Q)<=>P ∧┐Q (P→Q)∧(P→┐Q)<=>┐P P→(Q→R)<=>(P ∧Q)→R (P ∆Q)∆R<=>P ∆(Q ∆R)命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。