线段的比较大小
- 格式:ppt
- 大小:571.50 KB
- 文档页数:11
线段的大小比较完整版课件一、教学内容本节课我们将探讨教材第三章“平面几何初步”中的第二节“线段的大小比较”。
具体内容包括:线段的定义、线段长度的度量方法、以及线段大小比较的方法。
二、教学目标1. 理解并掌握线段的概念及其性质。
2. 学会使用工具测量线段的长度,并能准确进行比较。
3. 能够运用线段大小比较的方法解决实际问题。
三、教学难点与重点教学难点:线段大小比较的方法在实际问题中的应用。
教学重点:线段的定义、测量及大小比较。
四、教具与学具准备教具:尺子、直尺、圆规、多媒体课件。
学具:尺子、直尺、练习本。
五、教学过程1. 实践情景引入通过展示一些日常生活中的实例,如操场的跑道、书本的尺寸等,引导学生理解线段的概念及其在生活中的应用。
2. 知识讲解(1)线段的定义:线段是由两个端点及这两个端点之间的所有点组成的图形。
(2)线段长度的测量:使用尺子、直尺等工具,按照一定的比例进行测量。
(3)线段大小比较:通过比较线段的长度,判断线段的大小。
3. 例题讲解例题1:比较下列线段的长度,指出较长的线段。
解答:通过直接测量或比较,得出结论。
例题2:在下列图形中,找出最长的线段。
解答:观察图形,比较各线段的长度,找出最长的线段。
4. 随堂练习发放练习题,让学生独立完成,巩固所学知识。
六、板书设计1. 线段的定义2. 线段长度的测量3. 线段大小比较4. 例题及解答5. 随堂练习七、作业设计1. 作业题目线段AB:________ 线段CD:________(2)找出下列图形中最长的线段:答案:________2. 答案(1)线段AB:________ 线段CD:________(2)最长的线段:________八、课后反思及拓展延伸1. 反思:本节课学生掌握了线段的概念、测量及大小比较,但在解决实际问题时,还需加强练习。
2. 拓展延伸:引导学生了解线段的性质,如线段的垂直平分线、线段的中点等,为后续学习打下基础。
线段的大小比较完整版课件一、教学内容本节课我们将探讨教材第五章“平面几何中的基本元素”中第二节“线段的大小比较”。
具体内容包括:线段的定义、线段长度的度量方法、线段大小比较的方法,以及线段等分的概念。
二、教学目标1. 理解线段的定义,掌握线段长度的度量方法。
2. 学会线段大小比较的方法,并能应用于实际问题。
3. 了解线段等分的概念,能够运用等分线段的方法解决相关问题。
三、教学难点与重点教学难点:线段大小比较的方法,线段等分的实际应用。
教学重点:线段的定义,线段长度的度量方法,线段大小比较的方法。
四、教具与学具准备1. 教具:黑板、粉笔、尺子、圆规、直角三角板。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入:通过展示生活中常见的线段,如跳绳的长度、书桌的长度等,引导学生认识到线段在生活中的广泛应用。
2. 新课导入:(1)讲解线段的定义,强调线段是有限长的直线部分。
(2)介绍线段长度的度量方法,演示如何使用尺子测量线段长度。
(3)引导学生发现,当线段长度相等时,线段大小相同;当线段长度不等时,可以通过比较长度来判断线段的大小。
3. 实践操作:(1)让学生分组讨论,如何比较两条线段的大小。
4. 例题讲解:(1)给出两条线段,让学生比较大小。
(2)通过分析题目,引导学生运用所学知识解决问题。
5. 随堂练习:(1)让学生完成教材第5页的练习题1。
(2)教师挑选部分题目进行讲解,分析解题思路。
6. 知识拓展:(1)介绍线段等分的概念。
(2)演示如何使用尺子和圆规进行线段等分。
(1)回顾本节课所学内容,强调线段大小比较的方法。
(2)提醒学生注意线段等分在实际问题中的应用。
六、板书设计1. 板书线段的大小比较2. 主要内容:(1)线段的定义(2)线段长度的度量方法(3)线段大小比较的方法(4)线段等分的概念及方法七、作业设计1. 作业题目:(1)教材第5页的练习题2。
(2)自编题目:给出两条线段,让学生比较大小,并说明理由。
A BA AA DC4.2直线、射线、线段(2)的导学案【学习目标】:1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念.【学习重点】:会使用圆规比较线段的大小,用尺规作线段的和差,掌握线段的中点及等分点的的概念。
【学习难点】:用尺规作线段的和差是难点。
【导学指导】:阅读教材,小组合作完成以下内容:1.限定用_______和_______作图,叫做尺规作图.2.比较两条线段的长短,我们可以用刻度尺分别测量出它们的______来比较,即度量法,或用圆规把其中一条线段移到另一条线段____作比较,即叠合法.3.如果线段上的一点将线段分成相等的两条线段,这一点叫做线段的_____.一、温故知新1.过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为的说法是对的,并画出图形。
二、自主学习,合作探究:问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:已知线段a,画一条线段等于已知线段。
1.作一条线段等于已知线段现在我们来解决这个问题。
作法:(1)作射线AM(2)在AM上截取AB= a。
则线段AB为所求。
应用:已知线段a、b,求作线段AB=a+b。
解:(1)作射线AM;(2)在AM上顺次截取AC=a,CB= b。
则AB= a+b为所求。
学习的步骤:(1)读作法,学画图(2)思考:顺次是什么意思?(3)做一做:作线段AB=a-b, AB=2a-b(4)小结作线段和差方法的要点(5)观察下图,填空:(1)AD= __ __+BC+__ __=AC+__ __=AB+__ __(2)CD=____ ___-AC(3)BC=AC-___ ___2.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。
(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。
线段的大小比较完整版课件一、教学内容本节课我们将探讨教材第五章“几何初步”中的第二节“线段的大小比较”。
详细内容包括线段的定义、线段长度的测量方法,以及如何直观和准确地比较两条线段的大小。
二、教学目标1. 理解线段的定义,掌握线段长度的测量方法。
2. 学会直观和准确地比较两条线段的大小,并运用到实际问题中。
3. 培养学生的观察能力、逻辑思维能力和实际操作能力。
三、教学难点与重点教学难点:线段大小的准确比较。
教学重点:线段的定义、长度测量方法,以及线段大小比较的方法。
四、教具与学具准备1. 教具:多媒体课件、直尺、三角板、圆规等。
2. 学具:直尺、三角板、练习本等。
五、教学过程1. 实践情景引入:展示一张地图,提出问题:“如何比较地图上两个城市之间的距离?”引导学生思考线段大小比较的实际意义。
2. 知识讲解:a. 线段的定义及性质。
b. 线段长度的测量方法。
c. 线段大小比较的方法。
3. 例题讲解:a. 通过实际操作,比较两条线段的大小。
b. 讲解如何利用工具(如直尺)进行线段长度的测量和比较。
4. 随堂练习:a. 让学生测量并比较教室内不同物品的长度。
b. 在练习本上完成线段大小比较的题目。
六、板书设计1. 线段的定义及性质2. 线段长度的测量方法3. 线段大小比较的方法a. 直观比较b. 工具测量比较七、作业设计1. 作业题目:AB = 5cm,CD = 8cm;EF = 12cm,GH = 15cm。
课本的长度、宽度;笔的长度;课桌的高度。
2. 答案:a. CD > AB,GH > EF。
b. 略。
八、课后反思及拓展延伸1. 反思:本节课学生对线段大小比较的方法掌握程度,以及在实际操作中的表现。
2. 拓展延伸:a. 探讨线段长度与距离的关系。
b. 研究线段大小比较在生活中的应用,如测量地图上的距离、比较物品长度等。
重点和难点解析1. 线段大小比较的方法。
2. 实际操作中测量线段长度的准确性。
比较线段长短的四大基本方法江苏杨琢小明和聪聪两位同学正在比谁的个子更高一些。
王福说:“还是靠近些比较得更清楚。
你们两个人站到一起,看看谁个儿高。
”朱伟认为:“用尺子分别量一下他俩的身高,通过测量出的数据进行比较是最准确的。
”李明觉得:“就算没有尺子也行。
先让小明站到一面墙下,在他的头顶位置的墙面上作出记号;再让小岗站到小明刚才站的地方,在他的头顶位置的墙面上也作出记号。
谁的记号更靠上,就说明谁的个儿高。
”……李老师在旁边听着,高兴得点了点头:“同学们的办法都很有意义。
如果把小明和聪聪的身高看作两条线段的话,那么,同学们刚才实际上总结出了比较线段大小的几种常用方法。
”1.目测法对于两条线段的大小相差很明显的,一般采取这种方法。
通过直观的视觉观察,判断两条线段长短。
2.度量法分别测出两条线段的长度,比较测量结果的大小,以此确定线段的长短。
这是最为严格科学的方法,不但能够比较出大小,而且能够求出到底相差多少。
使用这种方法一般采用相同的测量标准,单位统一,精确程度一致,保证比较的结果真实可信。
3.叠合法把两条线段放到同一条直线上,使它们的一个端点重合,另一个端点在它们的公共端点的同侧。
如下图所示的两条线段AB、CD,把它们都放到直线l上,使A、C两点重合,B、D两点在点A(C)的同侧,线段CD的端点D落在线段AB上,这表明AB>CD(或说CD<AB);如果端点B、D重合,则表明AB=CD;如果线段CD的端点D落在线段AB外,则表明AB<CD(或说CD>AB)。
A BCD A(C)BDl4.截取法张开圆规的两脚,使之与第一条线段的两个端点重合,保持圆规的张开程度不变,移到第二条线段上,使圆规的一脚落在一个端点处(即以该端点为圆心),保持原来的张开程度(即以第一条线段长为半径)画圆(或弧),如果第二条线段的另一个端点落在圆(或弧)的内部,则第一条线段大于第二条线段;如果第二条线段的另一个端点落在圆的外部,则第一条线段小于第二条线段;如果第二条线段的另一个端点正好落在圆上,则第一条线段等于第二条线段。