线段的大小比较教学设计(教案)
- 格式:doc
- 大小:39.97 KB
- 文档页数:4
(实际生活经验的小视频引入引发学生的兴趣,根据学生的生活经验东知道中间的路线最短,教师要提出疑问,你能用数学道理来解释吗?这节课我们一起来探究一下,引出下一个问题)二、探究学习如右图,从A地到C地有四条道路,那条路最近?你发现了什么规律?结论:线段的性质两点之间的所有连线中,线段最短。
简述为两点之间线段最短。
两点之间线段的长度叫做两点之间的距离。
学以致用:刚才的视频说明的数学道理你知道了么?请同学回答。
三、合作学习:活动一:请两位学生比身高,让学生说明理由。
教师引入你能比较两条线段的长短吗?动动手,小组合作:各小组拿着你们手中的绳子与其他同学的进行比较,看看谁的长,谁的短?并且思考怎样比较两条线段的长短?学生思考并回答结论:1.把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,这种方法叫做叠合法。
2.用刻度尺量出它们的长度,再进行比较,这种方法叫做度量法。
3.说明:如果两条线段相差很大,直接视察就可以进行比较了。
学以致用:怎样比较下面两棵树的高矮?怎样比较两根铅笔的长短?怎样比较窗框相邻两边的长?( ) ( ) ( )活动二:1.什么是尺规作图?2.小组合作交流,试一试用尺规做一条线段等于已知直线。
尺规作图 :只用没有刻度的直尺和圆规画图称为尺规作图教师引导学生:作一条线段等于已知线段如图,已知线段AB,用尺规作一条线段等于已知线段AB.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A ′C ′上截取A ′B ′=AB.线段A ′B ′就是所求作的线段.活动三:想一想,折一折,怎样找到你手上绳子的中点位置?点M 把线段AB 分成相等的两条线段AM 与BM, 点M 叫做线段AB 的中点.表达式:如果点M 是线段AB 的中点, 那么AM=BM= ( 21) AB. 或者AB=2AM=2BM 练习:如图示:点C 为AB 的中点,AC=3cm ,则BC=() cm ,AB=()cm 。
《7.1线段的大小的比较》教学设计
教学目标:(知识技能、过程方法、情感态度价值观)
1.经历用叠合法比较两条线段的大小关系的过程,并会用数学符号表示线段;掌握两点间距离的概念,并理解“两点之间,线段最短”的意义;
2.掌握用直尺、圆规等学习工具画相等的线段的方法,初步体验用作图语言叙述画法的规范性和严谨性;
3.在活动过程中感悟数学来源于生活,并用来指导生活,渗透德育.
教学重点:
用直尺、圆规画与已知线段相等的线段;
教学难点:
用作图语言叙述画法.
教学过程:。
线段的长短比较教案一、教学目标1. 让学生掌握线段的定义及基本属性。
2. 培养学生观察、比较、推理的能力,提高空间想象力。
3. 培养学生合作学习、积极参与的精神。
二、教学内容1. 线段的定义及基本属性。
2. 比较线段的长短。
三、教学重点与难点1. 教学重点:线段的定义及基本属性,线段的比较方法。
2. 教学难点:如何准确、快速地比较线段的长短。
四、教学方法1. 采用直观演示法,让学生通过观察、操作,理解线段的定义及基本属性。
2. 采用比较法,让学生通过实践操作,掌握线段的长短比较方法。
3. 采用小组合作学习,培养学生的团队协作能力。
五、教学准备1. 教具:线段模型、直尺、画图工具。
2. 学具:每位学生准备一套线段模型、直尺、画图工具。
六、教学过程1. 导入新课:通过复习上节课的内容,引出本节课的主题——线段的长短比较。
2. 讲解线段的定义及基本属性:线段的定义,线段的长度、起点和终点。
3. 演示线段的长短比较方法:通过直观演示,让学生掌握比较线段长短的方法。
4. 实践操作:学生分组进行线段长短比较的实践操作,教师巡回指导。
七、课堂练习1. 让学生独立完成线段长短比较的练习题,巩固所学知识。
2. 教师选取部分学生的作品进行展示,评价学生的学习效果。
八、拓展延伸1. 引导学生思考:线段的长短比较在实际生活中的应用。
2. 学生分享生活实例,加深对线段长短比较知识的理解。
九、课堂小结2. 强调线段长短比较在实际生活中的重要性。
十、课后作业1. 让学生完成课后练习题,巩固线段长短比较的知识。
2. 鼓励学生在生活中观察、运用线段长短比较的知识。
六、教学活动1. 小组讨论:让学生分组讨论线段在实际生活中的应用,例如测量物品长度、规划路线等。
2. 分享成果:每组选取一名代表分享讨论成果,其他组成员可进行补充。
七、案例分析1. 教师展示线段长短比较在实际案例中的应用,如建筑设计、电路布线等。
2. 学生分析案例中线段长短比较的方法和原理。
第1讲:线段的大小比较(教案)一、线段点是数学中最最简单的几何图形,在一张白纸中,如果我们用钢笔或圆珠笔笔尖轻轻一点就会得到一个点。
那么在数学中,我们应该如何表示一个“点”呢?在数学中,点用一个大写字母来表示。
如下图中有两个点,这时我们可以将它们分别记作点A和点B。
当然你也可以使用其他的大写字母,都可以。
还是以上面的那幅图为例,如果我们把上面的两个点A和B用一根很直的线连接起来,这时就得到了一条线段。
线段也是数学中比较常见的简单的几何图形,那么什么才是线段,线段具有怎样的特征呢?线段的特征:(1)线段是直的;(2)线段有两个端点;(3)线段有一定的长度,可以用尺子来测量。
线段的表示方法:(1)一条线段可以用表示两个端点的大写字母来表示,两个字母的顺序可以颠倒。
例如上图中的线段可以表示为线段AB或线段BA。
(2)一条线段还可以用一个小写字母来表示。
例如上图中的线段我们也可以定义为线段l。
例题1:如下图所示,图中共有几条线段,请分别表示出来。
提示:做这类题,要按照一定的顺序一一写出线段,避免遗漏和重复。
在该题中,从左向右以A为端点的线段有3条,分别是线段AB、线段AC、线段AD;以B为端点的线段有2条,分别是线段BC、线段BD;以C为端点的线段有1条,是线段CD。
例题2:如下图所示,图中共有几条线段,请表示出它们。
例题3:(1)一条线段AB上有1个点(不是端点),则共能确定________条线段;(2)一条线段AB上有2个点(不是端点),则共能确定________条线段;(3)一条线段AB上有3个点(不是端点),则共能确定________条线段;(4)一条线段AB上有n个点(不是端点),则共能确定(1)2n n条线段;二、线段的比较通过上面的学习我们已经知道了线段是有长度的,线段的长度可以用尺子来测量。
如果给出两条线段AB和线段CD,如何比较它们的大小呢?首先我们想到的是:可以拿出尺子分别测量出线段AB和线段CD的长度,一比较就可以了,这种方法最为便捷。
线段的大小比较教学设计(教案)本节课我们将研究如何比较线段的大小,这个问题在我们的日常生活中也经常会遇到。
比如,我们需要买一根绳子,但是不知道哪根更长,或者我们需要切一块木头,但是不知道哪一段更长更适合我们的需要。
那么,如何比较线段的大小呢?让我们一起来探究一下。
二、知识讲解1.如何比较线段的大小我们可以通过叠合、度量等方法来比较线段的大小。
同时,我们还可以从“数”和“形”两个方面理解线段存在的长短。
2.线段中点的概念和几何语言表示线段中点是指将一条线段分成两个相等的部分的点,我们可以用符号“M”来表示线段的中点。
3.线段公理和两点之间的距离线段公理是指两个不同的点之间只有一个确定的线段。
两点之间的距离是指两个点之间的最短距离,可以通过勾股定理来计算。
三、案例分析让我们来看一个实际的例子。
XXX和XXX要比较两根木棍的长度,他们用尺子分别测量了两根木棍的长度,但是发现两根木棍的长度差不多,难以判断哪根更长。
于是,他们决定将两根木棍叠在一起,发现其中一根木棍比另一根长出一小段,于是他们得出结论:这根木棍比另一根长。
四、练与总结现在,请大家拿出纸和笔,画出一条线段,并标出它的中点。
然后,用叠合或度量的方法,比较两条线段的大小,并说出比较结果。
最后,请总结本节课的重点内容。
以上是本节课的教学设计,通过情境导入、知识讲解、案例分析、练与总结等环节,帮助学生掌握如何比较线段的大小,理解线段中点的概念和几何语言表示,以及了解线段公理和两点之间的距离等知识点。
同时,也培养了学生的文字语言、图形、几何语言的转化能力,发展学生的符号感、空间观念,为将来进一步研究几何打下基础。
第四章几何图形初步4.2 直线、射线、线段:比较线段的大小一、教材分析:本节课是人教版七年级上册第四章《几何图形初步》——《4.2直线、射线、线段》第2课时,学生在初步认识了直线、射线和线段的定义、几何表示方法和直线的基本性质的基础上进一步学习线段的相关知识点,是今后学习几何知识的基础,因此本节课都起着不容忽视的作用。
二、学情分析:本节课的授课对象是七年级学生,他们的思维已经开始具备符号性和逻辑性,但还是不能完全离开具体事物的支持。
七年级学生活泼好动,充满好奇心,模仿能力较强,具备了一定的学习能力,同时他们爱发表意见,希望得到老师和同学的关注。
在教学中应借助生活中的例子,通过具体问题的指引,让学生进行动手操作等,引发学生的兴趣,充分体现学生学习的主体性,以使最终能完成教学目标。
学生此前虽初步认识了线段、射线与直线,但他们对正确使用几何语言表示线段中点,掌握形与数量关系,利用线段的和、差关系求线段的长短,存在困难,因此需要教师的引导。
三、教学三维目标:(一)知识与技能:1.通过现实情境感受线段大小的比较,掌握比较线段大小的方法(借助直尺、圆规等工具比较两条线段的长短)2.通过动手操作,会用尺规作图画一条线段等于已知线段,并能画出不同要求的线段3.理解和掌握线段的和、差,并利用线段的和、差求线段的长度4.理解线段中点、三等分点、四等分点的定义,并掌握相关的形与数量关系(二)过程与方法:通过对知识的建构,初步培养学生观察、类比、归纳以及几何语言和文字语言互相转化的能力,培养学生抽象概括的能力。
(三)情感态度与价值观:在图形的基础上发展数学语言,体会研究几何的意义四、教学重点:1.线段长短比较2.会用尺规作图画一条线段等于已知线段,并能画出不同要求的线段,掌握线段的和、差3.线段中点的形与数量关系五、教学难点:1.会用尺规作图画出不同要求的线段2.利用线段的和、差求线段的长度3.线段中点的表示方法及运用六、教学方法与手段:以启发式教学为主的教法以及自主探究、合作学习的学法。
沪教版数学六年级下册7.1《线段的大小比较》教学设计一. 教材分析《线段的大小比较》是沪教版数学六年级下册第七章的第一节内容。
本节内容主要让学生掌握比较线段大小的方法,学会用工具尺子和直尺测量线段的长度,并能够比较两条线段的长度。
教材通过具体的操作活动,让学生在实践中感受线段大小的比较,培养学生的观察能力、操作能力和表达能力。
二. 学情分析学生在学习本节内容前,已经学习了有关长度单位的知识,对长度有一定的认识。
同时,学生在生活中也有观察和比较物体长度的经验。
但学生对线段的概念和特点还不够清晰,对线段大小的比较方法还不够熟悉。
因此,在教学过程中,教师需要结合学生的实际情况,通过具体的操作活动,引导学生理解和掌握线段的大小比较方法。
三. 教学目标1.知识与技能:让学生掌握比较线段大小的方法,能够用工具尺子和直尺测量线段的长度,并能够比较两条线段的长度。
2.过程与方法:通过观察、操作、交流等活动,培养学生的观察能力、操作能力和表达能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:让学生掌握比较线段大小的方法,能够用工具尺子和直尺测量线段的长度,并能够比较两条线段的长度。
2.难点:让学生能够灵活运用比较线段大小的方法,解决实际问题。
五. 教学方法1.情境教学法:通过生活情境,引导学生观察和操作,激发学生的学习兴趣。
2.直观演示法:通过实物演示,让学生直观地理解线段的概念和特点。
3.合作交流法:引导学生分组合作,培养学生的合作意识和交流能力。
4.实践操作法:让学生亲自动手操作,提高学生的动手能力和实践能力。
六. 教学准备1.准备不同长度的线段,用于教学演示和练习。
2.准备尺子和直尺,供学生测量线段长度。
3.准备黑板和粉笔,用于板书。
4.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过创设情境,引出线段的概念,让学生观察和描述不同长度的线段。
小班比较线条长短的教案教案名称,以小班比较线条长短。
一、教学目标。
1. 知识目标,让学生了解线条的概念,能够观察和比较线条的长短。
2. 能力目标,培养学生的观察力和比较能力,提高学生的细致性和思维能力。
3. 情感目标,培养学生的合作意识,让他们在小组中相互合作,共同完成任务。
二、教学重点与难点。
1. 教学重点,让学生掌握线条的概念,能够观察和比较线条的长短。
2. 教学难点,引导学生进行线条的比较,培养他们的观察和思维能力。
三、教学准备。
1. 教学材料,准备一些不同长度的线条,可以是纸条、绳子或者其他材料制成的线条。
2. 教学环境,保证教室内的整洁和安静,让学生能够集中注意力进行观察和比较。
3. 教学辅助,可以准备一些图片或者视频,让学生观察线条的长短。
四、教学过程。
1. 导入活动,教师可以用一些简单的游戏或者故事引导学生进入学习状态,让他们对线条产生兴趣。
2. 理论学习,教师向学生介绍线条的概念,让他们了解线条的特点和作用。
3. 观察比较,教师让学生观察准备好的线条,然后进行比较,看看哪根线条更长,哪根线条更短。
4. 小组讨论,教师将学生分成小组,让他们在小组内讨论线条的长短,并且找出最长和最短的线条。
5. 汇报分享,每个小组派出一名代表,向全班汇报他们小组的讨论结果,并且展示最长和最短的线条。
6. 总结反思,教师带领学生总结本节课的学习内容,让他们思考线条的比较过程中有哪些发现和收获。
五、教学延伸。
1. 线条的应用,教师可以向学生介绍线条在生活中的应用,比如建筑、艺术和设计等领域。
2. 观察比较的拓展,教师可以让学生观察比较其他物体的特点,比如大小、形状等,培养他们的观察和比较能力。
六、教学反思。
本节课通过观察比较线条的长短,让学生在实践中掌握了线条的概念,培养了他们的观察和比较能力。
同时,小组讨论和汇报分享的形式也促进了学生之间的合作和交流。
在以后的教学中,可以通过更多的实践活动和拓展延伸,进一步提高学生的综合能力和创造力。
比较线段的长短【教学目标】:1.了解比较线段的几种方法;2.尺规作图作一条线段等于已知线段以及线段的和差;3. 理解线段的中点的概念。
4.学习使用几何工具,发展几何图形意识和探究意识。
5.体验动手操作、自主学习能力、合作交流,激发学生积极性和主动性。
【教学重点】: 比较线段的方法,尺规作图作出线段的和差【教学难点】: 正确使用尺、规作图和中点的理解.【教学过程】:一.创设情境,引出课题欣赏音乐大师“刘欢“的歌曲《心中的太阳》,引出课题二.师生互动,了解新知欣赏姚明与曾志伟比身高的滑稽画面导出比较线段的方法问题1.派两名同学比身高.导出比较线段的方法?总结:比较线段长短的方法:问题2:将两个同学的身高比作两条线段导出尺规作图的方法:三.合作探究,突破重点请各组长带领各小组成员合作探究,完成以下练习:1.已知线段a,请画一线段AC使它等于已知线段a; (作图工具:用没有刻度的直尺和圆规)(先画图再填空)解: 画图:作法:(1).画射线(2).用量出已知线段的长度.(3).在上截取一条线段等于已知线段a.则线段为所求作的线段小结:请用三个字概括出尺规作图的步骤是:1( ) 2( ) 3( )2如图,已知两条线段a,b,(a>b)请画一条线段,(作图工具:用没有刻度的直尺和圆规)(1)使它等于a+b(不必写作法)(2)使它等于a-b(不必写作法)(1)(2)3.已知线段a,请画一线段使它等于2a .(不必写作法)(作图工具:用没有刻度的直尺和圆规)4.给你一根绳子不借任何工具你怎样找出中点?(1)由此得出中点的定义是:(2) 观察中点的特征是:①中点的位置在②数量关系: .(3)若M是线段AB的中点,则AM= = ;或AB= 2 = 2若AM= = ;则M是线段AB 的。
四.当堂检测,及时反馈1. 如图下列说法,不能判断点C是线段AB的中点的是( )A、AC=CBB、AB=2ACC、 AC+CB=ABD、CB= AB2. 已知线段a,b求作:一条线段,使它等于2a-b.BM1212123.两根木条一根长80cm 另一根长60cm ,把它们一端重合放在同一直线上,此时两根木条中点的距离是( )A 10 cmB .70 cm 或10 cmC .20cmD .20cm 或70cm画图说明:五.总结归纳,知识梳理你有什么收获?六.课后练习,巩固提升 1.点E 在线段CD 上,下面等式:①C E =D E ;②D E = CD ;③CD=2CE ;④CD= DE .其中能表示E 是 CD 的中点的有( )1212A.1个 B.2个 C.3个 D.4个2.如图 AB=6cm,点C是AB的中点,点D是CB的中点,则AD=__ cm3.已知线段AB=8cm,在直线AB上画线段BC,使BC=2cm,.求AC的长。
初中数学【线段长短的比较】教案教学设计教学目标:1、掌握比较线段长短的方法,会比较线段的长短。
2、会作一条线段等于已知线段的几倍;会作两条线段的和与差。
3、掌握线段中点的概念。
4、会度量线段的长度;会画指定长度的线段。
培养学生动手能力以及良好的空间观念。
教学重点:1、比较线段长短的方法 2、按要求画出线段教学难点:按要求画出线段教学过程:一、复习1、线段的概念,学生动手画出(1)直线AB。
(2)射线OA。
(3)线段CD。
2、提出问题:能否量出直线、射线、线段的长度?二、讲解P40动脑筋1、怎样比较两个学生的身高?得出为什么要站在一起,脚底要在一个平面上?2、怎样比较两座大山的高低?只要量出它们的高度。
3、通过实例,引导学生发现线段大小的比较方法教师设计以下过程由学生完成。
由此引导学生发现线段大小比较的两种比较方法:重叠比较法将两条线段的各一个端点对齐,看另一个端点的位置。
教师为学生演示,步骤有三:(1)将线段AB的端点A与CD的端点C重合。
(2)线段AB沿着线段CD的方向落下。
(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记作AB=CD。
若端点B落在D上,则得到线段AB小于线段CD,可以记作AB<CD。
若端点B落在D外,则得到线段AB 大于线段CD,可以记作AB>CD.C D C D C D└─────┘└─────┴─┘└─────┴──┘A B A B A B数量比较法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.可以用推理的写法,培养学生的推理能力。
写法如下:因为量得AB=5cm,CD=5cm,所以 AB=CD(或AB<CD或AB>CD),三、度量线段的长度1、这里有一条线段,要知道它的长度,该怎么测量?教师讲解:把线段的一个端点 A对准直尺0刻度线,读出另一个端点B所对直尺的刻度就是线段的长度。
2、同学们已经会度量线段的长度,现在老师要同学们画一条3.5CM长的线段,会不会画?你准备怎样画?(相互讨论一下后交流汇报)(1)、定点<定位置>画线段(2)、找点(板书)(3)、连线3、在练习本上画一条4.5CM长的线段,巩固画线段的方法。
线段比较大小的教案线段比较大小一、教学目标:1.知道比较线段大小的方法和规则。
2.能够通过线段长度的大小进行比较。
3.能够熟练地进行线段大小的比较。
4.能够通过练习来提高对线段大小的比较能力。
二、教学重点:1.理解线段大小进行比较的基本规则。
2.掌握线段大小比较的方法。
3.练习线段大小比较,提高比较能力。
三、教学难点:1.熟练掌握线段大小较的方法及其应用。
2.通过举例进行线段大小比较。
四、教学过程:1.线段比较大小的规则先介绍线段比较大小的基本规则,即在同一条直线上,线段长度越长,线段就越大;在不同的直线上,则无从比较。
2.线段大小的比较方法(1)直接法直接法是将线段的两端点连线,然后根据距离大小进行比较。
如图,线段AB和线段CD都在同一条直线上,且AB的长度大于CD,因此可以推断出AB > CD。
(2)分段法如果线段是在一些不同的直线上,则可以通过分段法来比较线段的大小。
对直线进行切割,每个线段就成为一份。
然后可以将每个线段的长度进行比较,从而确定线段大小的排列顺序。
如图,将线段AB、BC、CD、DE和EF分段后,就可以对其长度进行比。
因此,可以得出EF > DE > CD > BC > AB。
(3)比率法如果两个线段在不同的直线上,无法直接比较其长度,那么就可以使用比率法。
比率法是将两个长度不同的线段分别缩放到相同的长度,然后比较其缩放比率的大小,从而得出线段的大小顺序。
如图AB和CD在不同的直线上,无法直接比较大小。
因此,可以通过将CD缩放(伸长)到与AB相同的长度,然后比较缩放比例的大小,确定CD < AB。
3.练习通过练习来巩固线段大小比较的基本方法和规则。
(1)比较线段大小1.比较线段AB和线段AC2.比较线段DE和线段BC3.比较线段GJ和线段HL(2)确定线段的大小排列顺序ABCDEF中各线段的长度如下图所示,请按大小从大到小的顺序排列。
注:本练习的大量练习题目将在教材中提供。
4.2.2 线段长短的比较与运算教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.2.2 线段长短的比较与运算,内容包括:运用线段的和、差、倍、分关系求线段的长度;理解“两点之间,线段最短”的线段性质,并学会运用.2.内容解析本节知识是本教材第四章的第2节内容,是学习几何知识的开端,对调动学生学习几何的积极性,以及学习以后的几何知识非常重要,必须把握好教学的进度和难度.应充分注重直观认识和操作活动,充分培养学生的几何语言表达能力.立足于学生实际,着眼于中小学的衔接,从他们的生活背景和已有经验出发,鼓励他们的积极参与、动手操作、观察归纳,让他们了解几何学习的基本的操作方法,学习结论获得的策略,对进一步去理解线段本质属性与现实生活的紧密相关都有着较为深刻的意义,也有利于学生图形意识的培养.基于以上分析,确定本节课的教学重点为:线段比较大小以及线段的性质.二、目标和目标解析1.目标(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短. 理解线段等分点的意义.(2)能够运用线段的和、差、倍、分关系求线段的长度.(3)体会文字语言、符号语言和图形语言的相互转化.(4)了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.2.目标解析学生能够熟练运用叠合法和度量法比较线段的大小;会表示线段的大小关系;会画一条线段等于已知线段.学生能够分别用图形和符号来表示线段之间的和差关系;能够由等分点确定数量关系,或由数量关系确定等分点,综合运用几何语言的能力有所提高.学生通过思考、探究、比较得到“两点之间,线段最短”的基本事实,并能举例说明其实际应用;理解两点的距离是指连接两点的线段的长度,而不是线段本身.三、教学问题诊断分析虽然学生在小学阶段已经学习了一些几何知识,但将对图形的认识与对数量的认识结合起来,是学生未曾深入体验过的.尤其用作图来表示线段的和、差等数量关系,是文字语言、图形语言与符号语言的综合运用,对于刚刚进入几何语言学习的学生而言,是比较困难的学习任务.学生在前一学段对两点之间,线段最短已有所体会,但学生容易将两点的距离与连接两点的线段混淆,教学中应加强对这两个概念的辨析.基于以上学情分析,确定本节课的教学难点为:运用线段的和、差、倍、分关系求线段的长度.四、教学过程设计(一)自学导航问题:老师手里的纸上有一条线段,你能在你的本上作出一条同样大小的线段来吗?尺规作图在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.作一条线段等于已知线段.则:线段AB就是所求的线段.思考:如何比较两个人的身高?怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?判断线段AB和CD的大小.(1)如图1,线段AB和CD的大小关系是AB___CD;(2)如图2,线段AB和CD的大小关系是AB___CD;(3)如图3,线段AB和CD的大小关系是AB___CD.(二)合作探究如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?(1) AB<AC(2) AC-AB=BC,AC-BC=AB,BC+AB=AC.如图,已知线段a和线段b,怎样通过作图得到a与b的和、a与b的差呢?如图,已知线段a、b,作一条线段,使它等于2a-b.解:则:线段AC=2a-b.如图,已知线段a,求作线段AB=2a.解:则:线段AB=2a.如上图,点M把线段AB分成相等的两条线段AM和BM;点M叫做线段AB的中点.AB,AB=2AM=2BM.因此可得:AM=BM=12类似地,还有线段的三等分点、四等分点等.AB,AM=MN=NB=13AB=3AM=3MN=3NBAB,AM=MN=NP=PB=14AB=4AM=4MN=4NP=4PB思考:如图,从A地到B地有四条道路,除它们之外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.估计下列图中线段AB与线段AC的大小关系,再用刻度尺或用圆规来检验你的估计.AB___AC AB___AC AB___AC(二)考点解析例1.如图①,有一张三角形的纸片,你能准确地比较线段AB与线段BC的长短吗?解法1(度量法):用刻度尺测量AB=2.0cm,BC=1.7cm,所以AB>BC.解法2(叠合法):(1)如图①,折叠纸片,使线段BC与线段AB在一条直线上,这时点C落在A,B之间,所以AB>BC.(2)如图①,利用圆规在射线BA上截取BC'=BC.因为AB>BC'所以AB>BC.【迁移应用】1.如图,比较线段a和b的长度,结果正确的是( )A.a>bB.a<bC.a=bD.无法确定2.如图,用圆规比较两条线段AB和A'B'的长短,其中正确的是( )A.AB>A'B'B.AB=A'B'C.AB<A'B'D.没有刻度尺,无法确定3.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四点处,则表示他最好成绩的点是( )A.MB.NC.PD.Q4.如图,比较这两组线段的长短.解:如图①,把图中的线段AB、线段CD放在同一条直线上,使端点A,C重合,点B与点D在点A的同侧,得点B在C,D之间,所以AB<CD.如图①,把图中的线段AB、线段CD放在同一条直线上,使端点A,C重合,得点D和点B重合,所以AB=CD.例2.如图,已知线段a、b、c,其中a>b>c.(1)尺规作图:在射线AP上求作线段AB,使AB=a+cb;(2)若a=4、b=3、c=2,求AB的长.解:(1)如图,在射线AP上作线段AC=a,在AC的延长线上作线段CD=c,在线段AD上作BD=b,则AB=a+cb.(2)因为a=4,b=3,c=2,所以AB=a+cb=4+23=3.【迁移应用】1.如图,已知线段a,b,求作线段AB,使得AB=a+2b.小明给出了四个步骤:①在射线AM上截取线段AP=a;①则线段AB=a+2b;①在射线PM上截取PQ=b,QB=b;①画射线AM.你认为正确的顺序是( )A.①①①①B.①①①①C.①①①①D.①①①①2.如图,下列关系式中与图形不符合的是( )A.ADCD=ACB.ACBC=ABC.AB+BD=ADD.AC+BD=AD例3.如图,AC=6cm , BC=15cm , M 是AC 的中点,在CB 上取一点N ,使得CN=13BC ,求MN 的长.解:因为M 是AC 的中点,AC=6cm , 所以MC=12AC=12×6=3(cm)因为BC=15cm所以CN=13BC=13×15=5(cm)所以MN=MC+CN=3+5=8(cm) 【迁移应用】1.下列条件中能确定C 是线段AB 的中点的是( )A.AC=BCB.AB=BCC.AC=BC=12AB D.AC+BC=AB2.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4 cm ,则AD 的长为( ) A.2cm B.3cm C.4cm D.6cm3.如图,点C 在线段AB 的延长线上,且BC=2AB ,D 是AC 的中点,若AB=2cm ,求BD 的长.解:因为AB=2cm ,所以BC=2AB=4cm.所以AC=AB+BC=6cm.因为D是AC的中点,AC=3cm.所以AD=12所以BD=ADAB=lcm.4.如图,C,D是线段AB的三等分点,E是线段DB的中点,AB=12cm,求线段CE的长.解:因为C,D为线段AB的三等分点,×12=4(cm)所以CD=DB=13因为E是线段DB的中点,DB=2cm,所以DE=12所以CE=CD+DE=4+2=6(cm).例4.如图,小明家在B处,现在小明要去位于D处的同学家.(1)最近的路线是__________;(2)B,D两点的距离是线段______的长度.【迁移应用】1.若AB=4cm,BC=3cm,则A,C两点的距离( )A.1cmB.7cmC.1cm或7cmD.不确定2.小明捡到一片沿直线折断了的银剩下的杏叶(如图),他发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是____________________.3.如图,A,B是公路l两旁的两个村庄,若要在公路上修建一个汽车站Р,使它到A,B两个村庄的距离和最小,试在l上标出汽车站P的位置.解:如图,连接AB与直线l相交,交点即为汽车站Р的位置.例5.如图①,一只蚂蚁要沿着正方体表面从点A爬到点B,画出它爬行的最短路径(下底面不可通行).解:如图①,有4条最短路径,以A→E→B为例进行说明:如图①,将正方体的正面,右面展开,连接AB,与中间的一条边交于点E,则A→E→B即为其中一条最短路径.(其他三条类似)【迁移应用】如图,A,B,C,D为四个居民小区,现要在附近建一个购物中心.应把购物中心建在何处,才能使四个居民小区到购物中心的距离之和最小?请确定购物中心的位置,并说明理由.解:如图,连接AC ,BD 相交于点P ,点Р就是购物中心的位置. 理由:两点之间,线段最短.例6.如图,已知线段AB ,延长AB 到点C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求DB 的长.解:因为D 为AC 的中点,DC=3cm , 所以AC=2DC=2×3=6(cm). 因为BC=12AB ,所以BC=13AC=13×6=2(cm) 所以DB=DCBC=32=1(cm). 【迁移应用】1.如图,已知线段AB=3cm ,延长线段AB 到点C ,使BC=2AB ,延长线段BA 到点D ,使AD①AC=4①3,M 是BD 的中点.求线段AM 的长.解:因为AB=3cm ,BC=2AB , 所以BC=6cm , 所以AC=AB+BC=9cm. 因为AD:AC=4①3, 所以AD=43AC=12cm ,因为M 是BD 的中点, 所以BM=12BD=152cm ,所以AM=BMAB=1523=92(cm).例7.如图,已知C ,D 两点将线段AB 分为三部分,且AC:CD:DB=2:3:4.若M 为AB 的中点,N 为BD 的中点,且MN=5,求AB 的长.解:因为AC:CD:DB=2①3①4, 所以设AC=2x ,CD=3x ,DB=4x. 所以AB=AC+CD+DB=2x+3x+4x=9x. 因为M 为AB 的中点,N 为BD 的中点, 所以BM=12AB=92x ,BN=12BD=2x.因为MN=BMBN=5, 所以92x2x=5,解得x=2. 所以AB=9×2=18. 【迁移应用】1.如图,B 和C 为线段AD 上两点,AB①BC:CD=3①1①6,M 是AD 的中点.若MC=2,则AD 的长为________.2.如图,点C ,D 在线段AB 上,且满足CD=14AD=16BC ,E ,F 分别为线段AC ,BD 的中点.如果EF=5cm ,求线段AB 的长度.解:设CD=xcm. 因为 CD=14AD=16BC ,因为E ,F 分别为线段AC ,BD 的中点,所以EC=12AC=12(ADCD)=1.5xcm , DF=12BD=12(BCCD)=2.5xcm.因为EF=EC+CD+DF=5cm , 所以1.5x+x+2.5x=5, 所以x=1.所以AB=AD+BCCD=4x+6xx=9x=9(cm).例8.在直线l 上有四点A ,B ,C ,D ,已知AB=24,AC=6,D 是BC 的中点,求线段AD 的长. 解:分两种情况讨论:①如图①,当点C 在线段AB 的反向延长线上时,得 BC=AB+AC=24+6=30.由D 是BC 的中点,得CD=12BC=15.以AD=CDAC=9.①如图①,当点C 在线段AB 上时,得 BC=ABAC=246=18.由D 是BC 的中点,得CD=12BC=9.所以AD=CD+AC=15.综上所述,线段AD 的长为9或15.【迁移应用】1.如图,C 为线段AD 上的一点,B 为CD 的中点,且AD=9,CD=4.若点E 在直线AD 上,且EA=1,则BE 的长为( )A.4B.6或8C.6D.82.A ,B ,C 是直线l 上的点,线段BC 的长为4,M ,N 分别为线段AB ,BC 的中点,MN 的长为3,则线段AB 的长为__________.例9.如图,点C 在线段AB 上,M ,N 分别是AC ,BC 的中点. (1)若AC=9cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任意一点,AC+CB=acm ,其他条件不变,求线段MN 的长.解:(1)因为M ,N 分别是AC ,BC 的中点, 所以MC=12AC ,CN=12BC.因为AC=9cm ,CB=6cm ,所以MN=MC+CN=12AC+12BC=12(AC+BC)=12×(9+6)=7.5(cm). (2)因为M ,N 分别是AC ,BC 的中点, 所以MC=12AC ,CN=12BC.因为AC+CB=a cm ,所以MN=MC+CN=12(AC+CB)=12a cm. 【迁移应用】如图,D 为线段BC 的中点,E 为线段AC 的中点.若ED=9,求线段AB 的长度.解:因为D 是线段BC 的中点, 所以CD=BD.因为E 为线段AC 的中点, 所以AE=CE.所以AB=AC+BC=2EC+2CD=2ED=2×9=18.五、教学反思。
人教版数学七年级上册《比较线段的大小》教学设计1一. 教材分析人教版数学七年级上册《比较线段的大小》是学生在学习了平面图形的性质、线段的性质等知识的基础上进行的一节内容。
本节课主要让学生掌握比较线段大小的方法,培养学生的观察能力、操作能力和推理能力。
教材通过实例引入,让学生在实际操作中感受比较线段大小的方法,进而总结出比较线段大小的规律。
二. 学情分析七年级的学生已经具备了一定的几何知识,对平面图形、线段的性质有一定的了解。
但学生在比较线段大小方面,可能还停留在直观感觉的阶段,缺乏系统的比较方法。
因此,在教学过程中,教师需要引导学生从实际操作中发现规律,总结出比较线段大小的方法。
三. 教学目标1.知识与技能:让学生掌握比较线段大小的方法,能运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:比较线段大小的方法。
2.难点:如何引导学生从实际操作中发现规律,总结出比较线段大小的方法。
五. 教学方法1.情境教学法:通过实例引入,让学生在实际操作中感受比较线段大小的方法。
2.启发式教学法:引导学生思考,鼓励学生提出自己的观点和看法。
3.合作学习法:分组讨论,培养学生的团队协作精神。
六. 教学准备1.教学用具:黑板、粉笔、直尺、三角板、多媒体设备等。
2.教学素材:实例图片、线段模型等。
3.教学设计:教案、PPT等。
七. 教学过程1.导入(5分钟)利用实例引入,展示两组线段,让学生观察并比较它们的大小。
引导学生思考:如何准确、快速地比较线段的大小?2.呈现(10分钟)通过PPT展示线段的性质,引导学生回顾已学的知识。
然后,呈现比较线段大小的方法,让学生初步了解并感知比较线段大小的规律。
3.操练(10分钟)分组讨论,让学生实际操作,比较给定的线段大小。
鼓励学生提出自己的观点和看法,培养学生的观察能力和操作能力。
第四章几何图形初步4.2 直线、射线、线段:比较线段的大小一、教材分析:本节课是人教版七年级上册第四章《几何图形初步》——《 4.2直线、射线、线段》第2课时,学生在初步认识了直线、射线和线段的定义、几何表示方法和直线的基本性质的基础上进一步学习线段的相关知识点,是今后学习几何知识的基础,因此本节课都起着不容忽视的作用。
二、学情分析:本节课的授课对象是七年级学生,他们的思维已经开始具备符号性和逻辑性,但还是不能完全离开具体事物的支持。
七年级学生活泼好动,充满好奇心,模仿能力较强,具备了一定的学习能力,同时他们爱发表意见,希望得到老师和同学的关注。
在教学中应借助生活中的例子,通过具体问题的指引,让学生进行动手操作等,引发学生的兴趣,充分体现学生学习的主体性,以使最终能完成教学目标。
学生此前虽初步认识了线段、射线与直线,但他们对正确使用几何语言表示线段中点,掌握形与数量关系,利用线段的和、差关系求线段的长短,存在困难,因此需要教师的引导。
三、教学三维目标:(一)知识与技能:1.通过现实情境感受线段大小的比较,掌握比较线段大小的方法(借助直尺、圆规等工具比较两条线段的长短)2.通过动手操作,会用尺规作图画一条线段等于已知线段,并能画出不同要求的线段3.理解和掌握线段的和、差,并利用线段的和、差求线段的长度4.理解线段中点、三等分点、四等分点的定义,并掌握相关的形与数量关系(二)过程与方法:通过对知识的建构,初步培养学生观察、类比、归纳以及几何语言和文字语言互相转化的能力,培养学生抽象概括的能力。
(三)情感态度与价值观:在图形的基础上发展数学语言,体会研究几何的意义四、教学重点:1.线段长短比较2.会用尺规作图画一条线段等于已知线段,并能画出不同要求的线段,掌握线段的和、差3.线段中点的形与数量关系五、教学难点:1.会用尺规作图画出不同要求的线段2.利用线段的和、差求线段的长度3.线段中点的表示方法及运用六、教学方法与手段:以启发式教学为主的教法以及自主探究、合作学习的学法。