理论力学之静力学习题答案 北航
- 格式:doc
- 大小:237.00 KB
- 文档页数:18
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
【1】 梁AB 一端为固定端支座,另一端无约束,这样的梁称为悬臂梁。
它承受均布荷载q 和一集中力P 的作用,如图4-9(a )所示。
已知P =10kN , q =2kN/m ,l =4m ,︒=45α,梁的自重不计,求支座A 的反力。
【解】:取梁AB 为研究对象,其受力图如图4-9(b )所示。
支座反力的指向是假定的,梁上所受的荷载和支座反力组成平面一般力系。
在计算中可将线荷载q 用作用其中心的集中力2qlQ =来代替。
选取坐标系,列平衡方程。
)(kN 07.7707.010cos 0cos - 0A A →=⨯====∑ααP X P X X)(kN 07.11707.010242sin 2 0sin 2 0A A ↑=⨯+⨯=+==--=∑ααP ql Y P qlY Y )( m kN 28.404707.0108423sin 83 0sin 422ql 022A A ⋅=⨯⨯+⨯⨯=⋅+==⋅-⎪⎭⎫⎝⎛+-=∑l P ql m l P l l m M A αα力系既然平衡,则力系中各力在任一轴上的投影代数和必然等于零,力系中各力对任一点之矩的代数和也必然为零。
因此,我们可以列出其它的平衡方程,用来校核计算有无错误。
校核028.40407.114424242A A B =+⨯-⨯⨯=+⋅-⨯=∑m l Y l ql M 可见,Y A 和m A 计算无误。
【2】 钢筋混凝土刚架,所受荷载及支承情况如图4-12(a )所示。
已知kN 20 m,kN 2 kN,10 kN/m,4=⋅===Q m P q ,试求支座处的反力。
【解】:取刚架为研究对象,画其受力图如图4-12(b )所示,图中各支座反力指向都是假设的。
本题有一个力偶荷载,由于力偶在任一轴上投影为零,故写投影方程时不必考虑力偶,由于力偶对平面内任一点的矩都等于力偶矩,故写力矩方程时,可直接将力偶矩m 列入。
设坐标系如图4-12(b )所示,列三个平衡方程)(kN 3446106 06 0A A ←-=⨯--=--==++=∑q P X q P X X)(kN 296418220310461834 036346 0B B A ↑=⨯++⨯+⨯=+++==⨯--⨯-⨯-⨯=∑q m Q P Y q m Q P Y M)(kN 92920 00B A B A ↓-=-=-==-+=∑Y Q Y Q Y Y Y校核3462203102)9(6)34(6363266 C=⨯⨯+-⨯+⨯+-⨯--⨯=⨯+-++-=∑qmQPYXMAA说明计算无误。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
静力学第一章习题答案1-3 试画出图示各结构中构件AB 的受力图 1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a 1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:点有:362F 解法分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 2BC F F = 对C 1F F BC =解以上两式可得:2163.1F F =静力学第二章习题答案2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正): 其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== x F CD F ABA ,C 两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。
对BC 杆有: 0=∑M030sin 20=-⋅⋅M C B F B对AB 杆有: A B F F = 对OA 杆有: 0=∑M01=⋅-A O F M A求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。
理论力学之静力学习题答案北航(总27页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除静力学(MADE BY 水水)1-3 试画出图示各结构中构件AB 的受力图F AxF A yF B(a)(a)F AF BF BF DF DF BxF ByF BxF CF BF CF By1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5aF AxF A yF DF ByF AF BxF BF AF AxF A y F DyT EF CxF C yN’F BF DF A N F AF BF D1-5b1-8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F 对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==F 2F BC F ABB45oy xF CD C60o F 130oF BCxy45030解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
北航2021年第二学期理论力学复习题北航2021年第二学期理论力学复习题《理论力学》课程学习练习题及参考解答一、填空题1.在介质中上抛一质量为m的小球,已知小球所受阻力r??kv,若选择坐标轴x铅直向上,则小球的运动微分方程为_____________________。
2.质点在运动过程中,在以下条件下,各并作何种运动?①at?0,an?0(请问):;②at?0,an?0(请问):;③at?0,an?0(请问):;④at?0,an?0(请问):。
3.质量为10kg的质点,受水平力f的作用,在光滑水平面上运动,设f?3?4t(t以s 计,f以n计),初瞬间(t?0)质点位于坐标原点,且其初速度为零。
则t?3s时,质点的位移等于_______________,速度等于_______________。
4.在平面极坐标系中,质点的径向加速度为__________;纵向加速度为_______。
5.哈密顿正则方程用泊松括号则表示为,。
6.质量m?2kg的重物m,摆在长l?0.5m的细绳下端,重物受水平冲击后赢得了速度v0?5m?s?1,则此时绳子的拉力等同于。
7.平面自然坐标系中的切向加速度为,法向加速度为。
8.如果fv,则力所作的功与毫无关系,只与的边线有关。
9.在南半球地面附近自南向北的气流有朝的偏向;而北半球的河流岸冲刷较为严重。
10.未知力的表达式为fx?axy,则该力作功与路径_(填上fy??az,fz??ax。
“有关”或“毫无关系”),该力_保守力(填上“就是”或“不是”)。
11.一质量组由质量分别为m0、2m0、3m0的三个质点组成,某时刻它们的位矢和速22度分别为r1?i?j、v1?2i、r2?j?k、v2?i、r3?k、v3?i?j?k。
则该时刻质点组相对于坐标原点的动量等于,相对于座标原点的动量矩等同于_。
12.一光滑水平直管中有一质量为m的小球,直管以恒定角速度?绕通过管子一端的竖直轴转动,若某一时刻,小球zoyapvxm1到达距o点的距离为a的p点,取x轴沿管,y轴竖直向上,并垂直于管,z轴水平向前,并于管面垂直,如图所示,此时小球相对于管子的速度为v,则惯性离心力大小为,方向为,科里奥利力大小为,方向为。
1-3试画出图示各结构中构件AB的受力图1-4试画出两结构中构件ABCD勺受力图1-5试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD勺铰链B和C上分别作用有力F i和F2,机构在图示位置平衡。
试求二力F1和F2之间的关系。
解:杆AB BC CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B和C为研究对象,受力如图所示:由共点力系平衡方程,对B点有:F x 0 F2F BC COS45°0对C点有:F x 0 F BC F1COS300 0解以上二个方程可得:F12 6F 1.63F2解法2(几何法)分别选取销钉B和C为研究对象,根据汇交力系平衡条件,作用在B和C点上的力构成封闭的力多边形,如图所示。
对B点由几何关系可知:F2F BC COS450对C点由几何关系可知:F BC F1 COS300解以上两式可得:F1 1.63F22-3在图示结构中,二曲杆重不计,曲杆AB上作用有主动力偶M试求A和C 点处的约束力。
解:BC为二力杆(受力如图所示),故曲杆AB在B点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB受到主动力偶M的作用,A点和B点处的约束力必须构成一个力偶才能使曲杆AB保持平衡。
AB受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):M 0 F A 10a sin(450) M 0 F A 0.354M其中:tan -。
对BC杆有:F C F B F A 0.354M3 aA,C两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下 刚体的平衡条件,点 0,C 处的约束力方向也可确定,各杆的受力如图所示。
对1313 -6aFFi FjF 2 FiF 3- F i - —Fj2 222F RFi3Fj M A■-3 Fak F R M A V3 d a F R2Fi24d3 a F X 0 PsinFB X0 F y 0 F By P P cos0 F X 04F A X F B X 0F y 0F AyF By0 M A 0 MA F Byl 0求解以上三式可得:M 1 3N m , F ABF OF C 5N ,方向如图所示Psi nAF BxF AxBC 杆有:M 0对AB 杆有: F B F AF B BC sin300 M 2对OA 杆有:M 0 M i F AOA 0F By , MFA X,FAy, FBX, M A 0 N D aG -cos F l coscos2F y 0 N D cosG F 0N D ,arccosf 2(F (2FG)a 卡G)l ]F Ay F By P(1 COS ) M A P(1 cos )1M y O p eta n F BC cos c F BC sin eta n 0 F BC60.6N 2M x' 0 P 1 aF B c F BC S in2a 0 F B100N F y 0 F Z0F Ay,F A;z M x 0 M DE 0 F2COS4500 F20 M AO 0 F6COS45° a F COS450 COS450 a 0 F6 2 F M BH 02F4COS450 a F6COS450 a 0 F4 2F M AD 02F1 a F6COS450 a F sin450 a 0 £ 1 2 F M CD 02F1 a F3 a F sin45°a 0 F3 1F M BC 02F x 0F3 a F5 a F4COS450 a 0 F50 M 1500N cm Fy 0M O0以下几题可看一看!FA , F NA , FB , F NB ,tan3( f sif s2)FNB 0ta n 6002aM cf s2f si2 3F By 2a 0 F ByM H 0 F D y a Fa 0 F Dy FM BF DX a F 2a 0 F DX2FF y 0F AyF DyF By 0F AyF M A0 FD X a FB X 2aFB XFM BF AX 2aFD Xa0 FA XFM c 0 F D bF XF D-F M A0 F B bF XbF i F 2 (F i2Mpcos45° psin45° F 2)DF N 2 N iF i F 2f s N i f s N 2F i ,N i ,F 2,N 2, f s:s 2p D F e f 2M0 f siF By0.223, f s2 4.49 FB x N iP(i _f s2) _2( i —f ;2)f s%.223450F xF yM AT cosAC sinF N T sinF s T cos pT sin AC cosAB . sin 2FN , F s , T, fsf s 0.646a l . a几F NB a Pcos-Psi n 022 3F NA a P cos-Psin a 小 —— 02 2、3 F AF BPsi nM A 0M B 0 F x 0F A F Bf si F NAS 2F NBS24.49 i2MF D )b F ACAyD 2MF (bF 2x)F B F I F AAa b F A F 3 FxAy F i F 3 cos450F 1M2qa F yF 2aF2 Z M r ( 2qa) F x 0 FAXF 3 cos45(F AX(MaaF AyF 2 F 3si n450 P 4qa 0F AyP 4qa M A F 2 a P 2a 4qa 2a F 3S in450 '3aMM A 24qa 2 Pa M M A0 F By 2a F2a 0 F ByF Ay 2a F 2a 0 F A 『FF x 0 F AXFBx FF 32qa) F 0 F EF2 M C 0 F Bx a F By aV 2(MF AX2q x a) a F E sin450 a 0 F BxM eM BF By FF NDF 3 sin450F yM AM B0F BXM AN 13r P 3rcos60020 N i 6.93(N)F xFA XN 1 sin 60°F AX 6(N) F y 0F AyN 1cos600P 0 F Ay 12.5'(N) FN 1cos300 Tcos300 6.93(N)M A F N 2Lsin2P -cos2 M BF N LsinP Lcos F s Lcos2F S P F SFNtan100 F RC ,F RD F RC , F RD F RC , F RD2 2M A 0 F ND aI 0F ND44M A0F NC a F l 0F NC -FF NDaM O 0 F SC R F SD R 0FNCF X 0sinF — ----------- F----- FS D NCN D1 cos 1 cossin 1 costan —, f SD tanFRC,F2 221 cosF RCSDF NDF SD 0tan — 2 I FaFla cos —2PF RCsi n[180°(1800 2,sin ] ftanFl sinISD (Pa Fl )(1 cos )F yF NDP F SC sin F ND PFl ( (cosasin tan —)2f SD tanFl sin(Pa Fl )(1 cos )F B F ACFBF AC tan1 F3(F ND P) R MDF B \M E (P F NE )1RtanF NDM D M E!FRM DF NDBPL FaM AM EF yF x 4 f sP 4f sP } f s ,1 3f s }F SC%F X0 F NC costa nFl sin (Pa Fl )(1 cos )F NCsinF SC cos F SD 0FNDFSDM E 1FFNE F NE F SD tan2FNDF min{ —P,」 P,R R 3 1 F SD F NE F SE F 02P R M DF SE RF SD 3FFSDf s F ND M FM GF SE;FF SE f s F NEF max 0.362.该系统的位置可通过杆OA 与水平方向的夹角B 完全确定,有一个自由度。
静力学(MADE BY 水水)1-3 试画出图示各结构中构件AB 的受力图F AxF A yF B(a)(a)F DF BxF By1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a1-5bF AxF A y F ByF AF BxF AF AxF A y F DxF DyWT EF CxF C yWF AxF A yF BxF B yF CxF C yF DxF DyF BxF ByT EN’F BF DF A NF AF BF D1-8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有:对C 点有:解以上二个方程可得:解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:对C 点由几何关系可知:解以上两式可得:2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲F ABF CD杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):其中:。
对BC 杆有:。
A ,C 两点约束力的方向如图所示。
2-4四连杆机构在图示位置平衡,已知OA=60cm,BC=40cm,作用在BC 上力偶的力偶矩M 2=1N ·m 。
试求作用在OA 上力偶的力偶矩大小M 1和AB 所受的力。
各杆重量不计。
解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。
对BC 杆有: 对AB 杆有: 对OA 杆有:求解以上三式可得:, ,方向如图所示。
2-6等边三角形板ABC,边长为a ,今沿其边作用大小均为F 的力,方向如图a,b 所示。
试分别求其最简简化结果。
解:2-6a F BF CF AF OO F AF B F BF C Cx F RM AF Rd y坐标如图所示,各力可表示为:,,先将力系向A点简化得(红色的):,方向如左图所示。
由于,可进一步简化为一个不过A点的力(绿色的),主矢不变,其作用线距A点的距离,位置如左图所示。
2-6b同理如右图所示,可将该力系简化为一个不过A点的力(绿色的),主矢为:其作用线距A点的距离,位置如右图所示。
简化中心的选取不同,是否影响最后的简化结果?2-13图示梁AB一端砌入墙内,在自由端装有滑轮,用以匀速吊起重物D。
设重物重为P, AB 长为l,斜绳与铅垂方向成角。
试求固定端的约束力。
法1解:整个结构处于平衡状态。
选择滑轮为研究对象,受力如图,列平衡方程(坐标一般以水平向右为x轴正向,竖直向上为y轴正向,力偶以逆时针为正):选梁AB为研究对象,受力如图,列平衡方程:求解以上五个方程,可得五个未知量分别为:(与图示方向相反)(与图示方向相同)(逆时针方向)法2解:设滑轮半径为R。
选择梁和滑轮为研究对象,受力如图,列平衡方程:求解以上三个方程,可得分别为:PBFBxFByPMAFBxFByFAxFA yMAPFAxFA yP(与图示方向相反) (与图示方向相同) (逆时针方向)2-18均质杆AB 重G ,长l ,放在宽度为a 的光滑槽内,杆的B 端作用着铅垂向下的力F ,如图所示。
试求杆平衡时对水平面的倾角。
解:选AB 杆为研究对象,受力如图所示,列平衡方程:求解以上两个方程即可求得两个未知量,其中:未知量不一定是力。
2-27如图所示,已知杆AB 长为l ,重为P ,A 端用一球铰固定于地面上,B 端用绳索CB 拉住正好靠在光滑的墙上。
图中平面AOB 与Oyz 夹角为,绳与轴Ox 的平行线夹角为,已知。
试求绳子的拉力及墙的约束力。
解:选杆AB 为研究对象,受力如下图所示。
列平衡方程:由和可求出。
平衡方程可用来校核。
思考题:对该刚体独立的平衡方程数目是几个?2-29图示正方形平板由六根不计重量的杆支撑,连接处皆为铰链。
已知力作用在平面BDEH 内,并与对角线BD 成角,OA=AD 。
试求各支撑杆所受的力。
解:杆1,2,3,4,5,6均为二力杆,受力方向沿两端点连线方向,假设各杆均受压。
选板ABCD 为研究对象,受力如图所示,该力系为空间任意力系。
采用六矩式平衡方程:(受拉)(受压) (受压)(受拉)本题也可以采用空间任意力系标准式平衡方程,但求解代数方程组非常麻烦。
类似本题的情况采用六矩式方程比较方便,适当的选择六根轴保证一个方程求解一个未知量,避免求解联立方程。
AN A N DD2-31如图所示,欲转动一置于V形槽中的棒料,需作用一力偶,力偶矩。
已知棒料重,直径。
试求棒料与V形槽之间的静摩擦因数。
解:取棒料为研究对象,受力如图所示。
列平衡方程:补充方程:五个方程,五个未知量,可得方程:解得。
当时有:即棒料左侧脱离V型槽,与题意不符,故摩擦系数。
2-33均质杆AB长40cm,其中A端靠在粗糙的铅直墙上,并用绳子CD保持平衡,如图所示。
设,平衡时角的最小值为。
试求均质杆与墙之间的静摩擦因数。
解:当时,取杆AB为研究对象,受力如图所示。
列平衡方程:附加方程:四个方程,四个未知量,可求得。
2-35在粗糙的斜面上放着一个均质棱柱体,A,B为支点,如图所示。
若,A和B于斜面间的静摩擦因数分别为和,试求物体平衡时斜面与水平面所形成的最大倾角。
解:选棱柱体为研究对象,受力如图所示。
假设棱柱边长为a,重为P,列平衡方程如果棱柱不滑动,则满足补充方程时处于极限平衡状态。
解以上五个方程,可求解五个未知量,其中:(1)当物体不翻倒时,则:(2)即斜面倾角必须同时满足(1)式和(2)式,棱柱才能保持平衡。
3-10AB,AC和DE三杆连接如图所示。
杆DE上有一插销H套在杆AC的导槽内。
试求在水平杆DE的一端有一铅垂力作用时,杆AB所受的力。
设,杆重不计。
解:假设杆AB,DE长为2a。
取整体为研究对象,受力如右图所示,列平衡方程:取杆DE为研究对象,受力如图所示,列平衡方程:取杆AB为研究对象,受力如图所示,列平衡方程:(与假设方向相反)(与假设方向相反)(与假设方向相反)FCxFCyFBxFByFDxFDyFHyFBxFByFDy FDxFAxFAy3-12和四杆连接如图所示。
在水平杆AB 上作用有铅垂向下的力。
接触面和各铰链均为光滑的,杆重不计,试求证不论力的位置如何,杆AC 总是受到大小等于的压力。
解:取整体为研究对象,受力如图所示,列平衡方程:取杆AB 为研究对象,受力如图所示,列平衡方程:杆AB 为二力杆,假设其受压。
取杆AB 和AD 构成的组合体为研究对象,受力如图所示, 列平衡方程:解得,命题得证。
注意:销钉A 和C 联接三个物体。
3-14两块相同的长方板由铰链C 彼此相连接,且由铰链A 及B 固定,如图所示,在每一平板内都作用一力偶矩为的力偶。
如,忽略板重,试求铰链支座A 及B 的约束力。
解:取整体为研究对象,由于平衡条件可知该力系对任一点之矩为零, 因此有:即必过A 点,同理可得必过B 点。
也就是和是大小相等, 方向相反且共线的一对力,如图所示。
取板AC 为研究对象,受力如图所示,列平衡方程:解得: (方向如图所示)3-20如图所示结构由横梁和三根支承杆组成,载荷及尺寸如图所示。
试求A 处的约束力及杆1,2,3所受的力。
解:F C xF C y F DF ABxF AByF BF ACBF Cx F CyP F AxF AyN1支撑杆1,2,3为二力杆,假设各杆均受压。
选梁BC 为研究对象,受力如图所示。
其中均布载荷可以向梁的中点简化为一个集中力,大小为2qa ,作用在BC 杆中点。
列平衡方程:(受压) 选支撑杆销钉D 为研究对象,受力如右图所示。
列平衡方程:(受压)(受拉)选梁AB 和BC为研究对象,受力如图所示。
列平衡方程: (与假设方向相反)(逆时针)3-21二层三铰拱由和四部分组成,彼此间用铰链连接,所受载荷如图所示。
试求支座的约束力。
解:选整体为研究对象,受力如右图所示。
列平衡方程:(1)由题可知杆DG 为二力杆,选GE 为研究对象,作用于其上的力汇交于点G , 受力如图所示,画出力的三角形,由几何关系可得:。
取CEB 为研究对象,受力如图所示。
列平衡方程:代入公式(1)可得:3-24均质杆AB 可绕水平轴A 转动,并搁在半径为的光滑圆柱上,圆柱放在光滑的水平面上,用不可伸长的绳子AC 拉在销钉A 上,杆重16N ,。
试求绳的拉力和杆AB 对销钉A 的作用力。
F ByF FF AxF AyF 3F 2M A F Ax F Ay F BxF ByF E F GF F Cy F CxF EF ByF Bx解:取杆AB 为研究对象,设杆重为P ,受力如图所示。
列平衡方程:取圆柱C 为研究对象,受力如图所示。
列平衡方程:注意:由于绳子也拴在销钉上,因此以整体为研究对象求得的A 处的约束力不是杆AB 对销钉的作用力。
3-27均质杆AB 和BC 完全相同,A 和B 为铰链连接,C 端靠在粗糙的墙上,如图所示。
设静摩擦因数。
试求平衡时角的范围。
解:取整体为研究对象,设杆长为L ,重为P ,受力如图所示。
列平衡方程:(1)取杆BC 为研究对象,受力如图所示。
列平衡方程:(2)补充方程:,将(1)式和(2)式代入有:,即。
3-30如图所示机构中,已知两轮半径量,各重,杆AC 和BC 重量不计。
轮与地面间的静摩擦因数,滚动摩擦系数。
今在BC 杆中点加一垂直力。
试求:平衡时的最大值; 当时,两轮在D 和E 点所受到的滑动摩擦力和滚动摩擦力偶矩。
解:取整体为研究对象,受力如图所示,列平衡方程:由题可知,杆AC 为二力杆。
作用在杆BC 上的力有主动力,以及B 和C 处的约束力和,由三力平衡汇交,可确定约束力和的方向如图所示,其中:,杆AC 受压。
F Ax F AyF N F s PP F BxF By F N F sPF NDF NEF SD F SEM EM DBF AC取轮A 为研究对象,受力如图所示,设的作用线与水平面交于F 点,列平衡方程:取轮B 为研究对象,受力如图所示,设的作用线与水平面交于G 点,列平衡方程:解以上六个方程,可得: , ,, 若结构保持平衡,则必须同时满足:,,,即:, 因此平衡时的最大值,此时: ,3-35试用简捷的方法计算图中所示桁架1,2,3杆的内力。