北航理论力学 习题课(动力学3章)
- 格式:ppt
- 大小:880.00 KB
- 文档页数:15
第一章 1.1解:)(k s m 84.259m k R 22328315∙===-RT p ρ=36m kg 63.5063032.5984105RT P =⨯⨯==ρ 气瓶中氧气的重量为354.938.915.0506.63G =⨯⨯==vg ρ1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r.距底面为h 处的速度为0u kn u +=当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k =则摩擦应力τ为hwr u dn du u ==τ上圆盘半径为r 处的微元对中心的转矩为θθτdrd hwr u r rdrd h wr u r dA d 3=⋅=⋅=T则⎰⎰==T 2D 0332032D u drd hr uωπθωπ1.4解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=Ta T Pa P 5.2588MKN43.26Ta T pa p 2588.5=⎪⎭⎫ ⎝⎛=密度为2588.5Ta T a ⎪⎭⎫⎝⎛=ρρmkg4127.0Ta T a 2588.5=⎪⎭⎫⎝⎛=∴ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ第二章2-2解流线的微分方程为yx v dyv dx =将v x 和v y 的表达式代入得ydy x dx yx 2dyx y 2dx 22==, 将上式积分得y 2-x 2=c.将(1.7)点代入得c=7因此过点(1.7)的流线方程为y 2-x 2=482-3解:将y 2+2xy=常数两边微分 2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1) 将曲线的微分方程yx V dyV dy =代入上式得 yVx+(x+y )V y =0 由22y 2xy 2x V ++=得 V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x =+±=,2-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xv cos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==()()⎪⎭⎫⎝⎛--∂∂+-∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθsin r 1sin V cos V cos sin V cos V r x v v x r r v x v r r x x xθθθθθθθθθθθθθsin cos V sin V sin V cos V r 1cos sin r V cos r V r r r ⎪⎭⎫⎝⎛-∂∂--∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂=θθθθθθθθθθθθθθcos sin V r1sin V r 1sin V r 1cos sin V r 1cos sin r V cos r V 22r r 2r +∂∂++∂∂-∂∂-∂∂=()()θθθθθθθθθcos r1cos V sin V sin cos V sin V r y v v V y r V V V V r r y x y xy +∂∂++∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθθcos r1sin V cos V cos V sin V sin cos r V sin r V r r r ⎪⎭⎫ ⎝⎛-∂∂++∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂=θθθθθθθθθθθθθcos sin V r1cos V r 1cos V r 1cos sin v V r 1cos sin r V sin r V 22r r 2r -∂∂++∂∂+∂∂+∂∂=zV V V r 1r V z V y V x V div zr r z y x ∂∂+⎪⎭⎫ ⎝⎛∂∂++∂∂=∂∂+∂∂+∂∂=∴θυθ2-6解:(1)siny x 3x V 2x -=∂∂ siny x 3y V 2y =∂∂ 0y V x V y x =∂∂+∂∂∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ siny x 3y V 2y =∂∂ 0siny x 6yVx V 2y x ≠=∂∂+∂∂ ∴此流动不满足质量守恒定律(3)V x =2rsin rxy 2=θ V y =-2rsin 2ry 22-=θ33r y 2x V x =∂∂ 332y r 2y y x 4y V +-=∂∂ 0ryx 4y V x V 32y x ≠-=∂∂+∂∂∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分.得xdydy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+= 由(1)(2)得方程3x r ky v ±= 3yr kx v = 25x r kxy 3x V =∂∂∴25y r kxy 3y V ±∂∂ 0y Vx V y x =∂∂+∂∂∴此流动满足质量守恒方程2—7解:0x Vz V 0r yz 23r yz 23z V y V z x 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0yV x V x y =∂∂-∂∂ ∴该流场无旋()()()2322222223222z y x z y x z y x d 21zy xzdzydy xdx dz v dy v dx v d ++++⋅=++++=++=Φ c zy x 1222+++-=Φ∴2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ021v ;021v ;021v z y x =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y V x V x V z V z V x V x x z x y z (2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; 位该流线无旋,存在速度∴ (3)azdz 2aydy ax dx dz v dy v dx v d z y x -+=++=ϕc az ay 21ax 21222+-+=∴ϕ2—9解:曲线x 2y=-4.()04y x y x f 2=+=, 切向单位向量22422422y2x 2y2x yx 4x x y 2yx 4x x f f fx f f fy +-+=+-+=v t ⋅∇=⋅=∇=ϕϕ切向速度分量 把x=2.y=-1代入得()()x 2x y x 2x j yi x 2+-+--=∂∂+∂∂=∇=ϕϕϕ 2121y x 4x 2xy y x 4x x 2242242+=⎪⎪⎭⎫ ⎝⎛+-+= 23t v v t -=⋅= j 23i 23j 21i 2123t v v t t --=⎪⎭⎫⎝⎛+-==2—14解:v=180hkm =50s m根据伯努利方程22V 21V 21p ρρρ+=+∞∞ pa p =∞驻点处v=0.表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60s m 处得表示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ第三章3—1解:根据叠加原理.流动的流函数为()xyarctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x y x y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπ θθππθππsin 2r x y arctg 2y -⋅=⎪⎭⎫ ⎝⎛-=∞∞V V Q 或即 在半无限体上.垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ 当0sin =θ 0v v min y y ==2-tg -=θπθmax y y v v =用迭代法求解2-tg -=θπθ得 取最小值时,y 1v 2183.1139760315.1 ==θ 取最大值时,y 2v 7817.2463071538.4 ==θ由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Qθπθθθππ-cos sin v r cos 2v y x x 2v v 22x +=+=++=∞∞∞Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ6891514.0v v 724611.0v x y 2=-==∞,时,θθ 合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q.根据叠加原理.流动的函数为 xa 3-y arctg 2a x y arctg 2a x y arctg 2πθπθπθϕ+++-=两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ()()()⎥⎥⎦⎤⎢⎢⎣⎡++++++-=222222y a 3-y x a3-y y a x y y a x y 2v πθ对于驻点.0v v y x ==.解得a 33y 0x ==A A ,3—4解:设点源的强度为Q.点涡的强度为T.根据叠加原理得合成流动的位函数为Q ππθϕ2lnr 2Γ+=πθϕπθϕθ2r 1r 12r 1r r Γ=∂∂==∂∂=V V ; 速度与极半径的夹角为Qarctg arctg r Γ==V V θθ3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctg V ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ ()()⎥⎦⎤⎢⎣⎡+--++=∂∂-=∞2222y y v y a x yy a x y a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v零流线方程为0ay y aarctg a y y x aarctgy =--++∞∞V V 对上式进行改变.得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时.数值求解得a 03065.1y ±=3—9解:根据叠加原理.得合成流动的流函数为a y y arctg 2a y y arctg 2y v -++-=∞ππϕQ Q速度分量为()()2222x y a x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q()()2222y y a x ax 2y a x a x 2v +-+++++-=ππQ Q由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ 过驻点的流线方程为ay yarctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay yarctg a y y arctg y v 2--+=∞Q π 222a y x ay2a y y arctg a y y arctg tan y v 2tan -+=⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛∴∞Qπ 容易看出y=0满足上面方程当0y ≠时.包含驻点的流线方程可写为⎪⎭⎫ ⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ 时.包含驻点的流线方程为tany y21y x 22--=-+3—10解:偶极子位于原点.正指向和负x 轴夹角为α.其流函数为 22yx x sin ycos 2+--=ααπϕM 当45=α时22y x xy 222+--=πϕM3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 222222a 4a 2sin v 4v ππθΓ+Γ=∞ 222222v a 4av 2sin 4sin 4v v ∞∞∞Γ+Γ+=⎪⎪⎭⎫ ⎝⎛ππθθ 压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC第四章4—1解:查表得标准大气的粘性系数为n kg 1078.1u 5-⨯= 65el 1023876.11078.16.030225.1u ⨯=⨯⨯⨯==-∞LV R ρ 平板上下两面所受的总得摩擦阻力为N S V L R F 789.021e 664.0222=⨯⨯=∞ρ 4—2解:沿边阶层的外边界.伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m ρρρρδδδ4—4解:(a )将2x y 21y 23v v ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得δδδδδ28039dy vv 1v v 0x x =⎪⎪⎭⎫ ⎝⎛-=⎰** 由牛顿粘性定律δτδu u 23y v u 0y x w =⎪⎪⎭⎫ ⎝⎛∂∂==下面求动量积分关系式.因为是平板附面层0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ 将上述关系式代入积分关系式.得δρδδv dxu d 14013=边界条件为x=0时.0=δ 积分上式.得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为4—6解:全部为层流时的附面层流厚度由式(4—92)得 ()01918.048.5L e ==LR L δ全部为湍流时的附面层流厚度由式(4—10)得()0817.037.0L 51e ==-L LR δ第五章5-1 一架低速飞机的平直机翼采用NACA2415翼型.问此翼型的f .f x 和c 各是多少?解:此翼型的最大弯度f =2% 最大弯度位置f x =40% 最大厚度c =15%5-2 有一个小α下的平板翼型.作为近似.将其上的涡集中在41弦点上.见图。
动力学普遍定理动力学普遍定理包括动量定理、动量矩定理和动能定理。
这三个定理从不同侧面揭示了质点系整体运动特征与其受力之间的一般规律。
基本理论一、动量定理1、 质点系的动量质点系的动量定义为:C i i m m v v p ==∑ (8-1)其中:i i m v ,分别为质点系中第i 个质点的质量及其速度,C m v ,分别为质点系的总质量和质心速度。
根据质点系的动量定义可以推出刚体系的动量:C i C i m m v v p ==∑ (8-2)其中Ci i m v ,分别为刚体系中第i 个刚体的质量及其质心速度,C m v ,分别为刚体系的总质量及其质心速度。
2、质点系的动量定理(e)R e)(d d F F p==∑i t (8-3)质点系动量随时间的变化率等于作用在质点系上外力的矢量和(外力系的主矢)。
该定理的积分形式称为冲量定理,可表示成下列形式∑∑⎰==-e)(e)(2112d i t t i t t t I F p p (8-4)3、质心运动定理(e)R e)(F F a C ==∑i m (8-5) 其中:C a ,m 分别为质点系的总质量及其质心加速度。
如果质点系是由若干个刚体构成的系统,则其质心运动定理可以表示成 (e)Re)(F F aC ==∑∑i ii m (8-6)其中:i i m C a ,分别为刚体系中第i 个刚体的质量及其质心加速度。
4、守恒情况若∑≡0e)(i F ,则==Cv p m 常矢量;若∑≡0xF ,则==Cxxmvp 常量。
二、动量矩定理 1、动量矩质点系对任意固定点O 的动量矩定义为i i i m ∑⨯=v r L O (8-7) 质点系相对动点A 的动量矩定义为ii i A m r r ~∑⨯=v r L (8-8) 图8-1 所谓质点系相对动点A 的动量矩是指:在随动点A 平移的动参考系中,若质量为i m 的质点相对这一动参考系的相对速度为i v r ,则质点系相对动点A 的动量矩为各个质点的相对动量i v r i m 对A 点之矩i i vr r ~i m ⨯(i r ~为动点A 到该质点的矢径)的矢量和。
动力学第三章部分习题解答3-3 取套筒B 为动点,OA 杆为动系 根据点的复合运动速度合成定理r e a v v v +=可得:l v v ω==e 0a 30cos ,l v v v BC B ω332a === 研究AD 杆,应用速度投影定理有:030cos D A v v =,l v D ω334=再取套筒D 为动点,BC 杆为动系,根据点的复合运动速度合成定理r D BC D v v v +=将上式在x 轴上投影有:r D BC D v v v +-=-,l v v v BC D D ω332r =+-=3-4 AB 构件(灰色物体)作平面运动, 已知A 点的速度s A O v A /0cm 4510==ωAB 的速度瞬心位于C ,应用速度瞬心法有:rad/s 23==AC v A AB ω BC v AB B ω=,设OB 杆的角速度为ω,则有rad/s 415==OB v B ω 设P 点是AB 构件上与齿轮I 的接触点, 该点的速度:CP v AB P ω=齿轮I 的角速度为:rad/s 61==r v PI ω a v e vr vA vDv rD v A vB P v CAB ωI ω3-6 AB 杆作平面运动,取A 为基点 根据基点法公式有:BA A B v v v +=将上式在AB 连线上投影,可得0,01==B O B v ω因此,041ωω==AB v A AB因为B 点作圆周运动,此时速度为零,因此只有切向加速度(方向如图)。
根据加速度基点法公式n t BA BAA B aaa a ++=将上式在AB 连线上投影,可得n060cos BA A B a a a +=-,r a B 205.2ω-=201231ωα-==B O a B B O (瞬时针)3-7 齿轮II 作平面运动,取A 为基点有nt BA BA A B a a a a ++= n t 1BA BA a a a a ++=将上式在x 投影有:n 1cos BA a a a -=-β由此求得:212n 2cos 2r a a r a BAII βω+==再将基点法公式在y 轴上投影有:2t2sin r a a II BA αβ==,由此求得22sin r a II βα=再研究齿轮II 上的圆心,取A 为基点n t n t2222A O AO A O O aaa aa++=+将上式在y 轴上投影有2sin 2t t 22βαa r a a II AO O ===, B vBAv A vAa Ba t BA an BA atBA anBA axyt2A Oa n 2AO a xyn 2O a t 2Oa由此解得:)(2sin 2121t 221r r a r r a OO O +=+=βα再将基点法公式在x 轴上投影有:n1n22A O O a a a -=- 由此解得:2cos 1n2a a a O -=β,又因为221n 212)(O O O r r a ω+= 由此可得:)(2cos 21121r r a a O O +-±=βω3-9 卷筒作平面运动,C 为速度瞬心, 其上D 点的速度为v ,卷筒的角速度为r R vDC v -==ω 角加速度为rR ar R v -=-== ωα 卷筒O 点的速度为:rR vRR v O -==ω O 点作直线运动,其加速度为 rR aRr R R v va O O -=-==研究卷筒,取O 为基点,求B 点的加速度。
第三章理想不可压缩流体平面位流3-1 设有直匀流V ∞以正X 轴方向流过位于原点的点源,点源的强度为Q ,试求半无限体表面上最大垂直分速度max v 的位置及速度值,并证明,在该点处合速度的大小正好等于直匀流速度V ∞。
解:根据叠加原理,流函数为arctg 22Q Q y V y V y xψθππ∞∞=+=+(1) 利用流函数表达式(1),可以写出合速度场中的速度分量为222222Q x u V y x y Q y v x x y ψπψπ∞∂⎧==+⎪∂+⎪⎨∂⎪=-=⎪∂+⎩(2) 由(2)式可以确定流场中驻点A (即0A A u v ==的点)位置为20AAQ x V y π∞⎧=-⎪⎨⎪=⎩(3) 过驻点A 的流线,即为半无限体的表面,其方程为()sin 2Qy r V θπθπ∞==-(4) 半无限体表面上的垂直分速度为222sin sin 22-V Q y Q v x y r θθπππθ∞===+(5)由()222sin 2sin cos sin 0---V V V dv d d d θθθθθθπθπθπθ∞∞∞⎛⎫==+=⎪⎝⎭(6) 可得sin 0tg 2θθπθ=⎧⎪⎨=-⎪-⎩(7) 当0sin =θ时,θπ=,2sin 0-V v θπθ∞==当2-tg -=θπθ时,22sin 2sin sin2-tg V V v V θθθπθθ∞∞∞==-=-,即 1 1.9760315113.2183θ==,sin20.724611v V V θ∞∞=-= 2 4.3071538246.7817θ==,sin20.724611v V V θ∞∞=-=-所以,半无限体表面上最大的垂直分速度为max 0.724611v V ∞=(8)该点的位置为1.9760315113.2183θ==,()2Qy V πθπ∞=-(9) 在半无限体表面的水平速度分量为()22sin cos cos 22V Q x Q u V V V x y r θθθπππθ∞∞∞∞=+=+=++-(10) 在该点处的水平速度分量为()sin cos 0.689158V u V V θθπθ∞∞∞=+=-(11)则该点处的合速度为V V ∞==(12)3-2令(),G x y 是二维拉普拉斯方程的解,请证明(),G x y 可以代表二维无粘不可压缩流动的位函数或流函数。
第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。
3.2 答物体上各质点所受重力的合力作用点即为物体的重心。
当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。
事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。
答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。
3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。
分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故()()iii ii i O F O O r F r M ⨯'-'=⨯'=∑∑'()∑∑⨯'-⨯'=ii ii i F O O F r ∑⨯'+=ii o F O O M即o o M M ≠'主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。
习 题3-1 台阶形鼓轮装在水平轴上,小头重量为2Q ,大头重量为1Q ,半径分别为2r 和1r ,分别挂一重物,物体A 重为2P ,物体重B 为1P ,且12P P >。
如3-1题图所示,求鼓轮的角加速度。
解:本题有明显的转轴o ,因而可以用角动量定理求解。
系统只有一个转轴,求运动而不求内力,所以取质心为研究对象。
因重力12,P P对轴o 的力矩不为零,可得:01122()L PQ PQ k =-质心系的动量距为:21202OQ OP OP k J J J J =+++2212121212211()22Q Q p p r r v v r k g g g gωωω=+++ 另外还有运动学补充方程:1122v r v r ωω==所以22220112211221(22)2J Q r Q r Pr P r k gω=+++应用角动量定理由 0i d J L dt =∑得 222211*********(22)2d Q r Q r Pr P r Pr g dtω+++=+11Pr 又 d dt ωε= 则有 11222222112211222()22Pr P r g Q r Q r Pr P r ε-=⋅+++答案:()12112222221122122d d 22Pr -P r g t Q r +Q r +Pr +P r ω=。
3-2 如图所示,两根等长等重的均匀细杆AC 和BC ,在C 点用光滑铰链连接,铅直放在光滑水平面上,设两杆由初速度为零开始运动。
试求C 点着地时的速度。
解: 系统在水平方向上受力为零,角动量守恒有2211222h mv m ω+⨯2(I )=2g其中 002/2vv l l ω==0v 为C 点着地时A 点速度002c v v v ===答案:c v =3-3 半径为a ,质量为M 的薄圆片,绕垂直于圆片并通过圆心的竖直轴以匀角速度ω转动,求绕此轴的角动量。
3-2题图3-1题图解 由题意作图 如图所示由某一质点组对某个固定轴的动量矩1ni i i i J r m v==⨯∑20adm rd dr rdr d πρθρθ==⎰⎰其中2Ma ρπ=故 223001()2a J r dmv d r dr Ma πθρωω=⨯==⎰⎰⎰⎰答案:212J Ma ω=3-4 一半径为r ,重量为P 的水平台,以初角速度0ω绕一通过中心o 的铅直轴旋转;一重量为Q 的人A 沿半径B o 行走,在开始时,A 在平台中心。
北航2021年第二学期理论力学复习题北航2021年第二学期理论力学复习题《理论力学》课程学习练习题及参考解答一、填空题1.在介质中上抛一质量为m的小球,已知小球所受阻力r??kv,若选择坐标轴x铅直向上,则小球的运动微分方程为_____________________。
2.质点在运动过程中,在以下条件下,各并作何种运动?①at?0,an?0(请问):;②at?0,an?0(请问):;③at?0,an?0(请问):;④at?0,an?0(请问):。
3.质量为10kg的质点,受水平力f的作用,在光滑水平面上运动,设f?3?4t(t以s 计,f以n计),初瞬间(t?0)质点位于坐标原点,且其初速度为零。
则t?3s时,质点的位移等于_______________,速度等于_______________。
4.在平面极坐标系中,质点的径向加速度为__________;纵向加速度为_______。
5.哈密顿正则方程用泊松括号则表示为,。
6.质量m?2kg的重物m,摆在长l?0.5m的细绳下端,重物受水平冲击后赢得了速度v0?5m?s?1,则此时绳子的拉力等同于。
7.平面自然坐标系中的切向加速度为,法向加速度为。
8.如果fv,则力所作的功与毫无关系,只与的边线有关。
9.在南半球地面附近自南向北的气流有朝的偏向;而北半球的河流岸冲刷较为严重。
10.未知力的表达式为fx?axy,则该力作功与路径_(填上fy??az,fz??ax。
“有关”或“毫无关系”),该力_保守力(填上“就是”或“不是”)。
11.一质量组由质量分别为m0、2m0、3m0的三个质点组成,某时刻它们的位矢和速22度分别为r1?i?j、v1?2i、r2?j?k、v2?i、r3?k、v3?i?j?k。
则该时刻质点组相对于坐标原点的动量等于,相对于座标原点的动量矩等同于_。
12.一光滑水平直管中有一质量为m的小球,直管以恒定角速度?绕通过管子一端的竖直轴转动,若某一时刻,小球zoyapvxm1到达距o点的距离为a的p点,取x轴沿管,y轴竖直向上,并垂直于管,z轴水平向前,并于管面垂直,如图所示,此时小球相对于管子的速度为v,则惯性离心力大小为,方向为,科里奥利力大小为,方向为。
第三章 非惯性参考系不识庐山真面目,只缘身在此山中。
地球的多姿多彩,宇宙的繁荣,也许在这里可以略见一斑。
春光无限,请君且放千里目,别忘了矢量语言在此将大放益彩。
【要点分析与总结】1 相对运动t r r r '=+t t dr dr dr dr dr r dt dt dt dt dtυω'''==+=++⨯ t r υυω''=++⨯()t dv dv d v r a dt dt dtω''+⨯==+222**22()t d r d r d dr r v r dt dt dt dtωωωω'''''=++⨯+⨯+⨯+⨯()2t a a r r v ωωωω''''=++⨯+⨯⨯+⨯t c a a a '=++〈析〉仅此三式便可以使“第心说”与“日心说”归于一家。
(1) 平动非惯性系 (0ω=)t a a a '=+ 即:()t ma F ma '=+-(2) 旋转非惯性系 (0t t a υ==)()2a a r r ωωωωυ''''=+⨯+⨯⨯+⨯2 地球自转的效应(以地心为参考点)2mr F mg m r ω=--⨯写成分量形式为:2sin 2(sin cos )2cos x y z mx F m y my F m x z mz F mg m y ωλωλλωλ⎧=+⎪=-+⎨⎪=-+⎩ 〈析〉坐标系选取物质在地面上一定点O 为坐标原点,x 轴指向南方,y 轴指向东方,铅直方向为 z 轴方向。
2mr F mg m r ω=--⨯ 为旋转非惯性系 ()2F mg mr m r m r m r ωωωω-=+⨯+⨯⨯+⨯在 ,rR ωω条件下忽略 m r ω⨯与 ()m r ωω⨯⨯所得。
正因如此,地球上的物体运动均受着地球自转而带来的科氏力 2m r ω-⨯的作用,也正是它导致了气旋,反气旋,热带风暴,信风,河岸右侧冲刷严重,自由落体,傅科摆等多姿多彩的自然现象。
第三篇动力学一、选择题(每题2分,共20分)1。
在铅直面内得一块圆板上刻有三道直槽AO,BO,CO,三个质量相等得小球M1,M2,M3在重力作用下自静止开始同时从A,B,C三点分别沿各槽运动,不计摩擦,则________到达O 点、(A)M1小球先; (B)M2小球先; (C)M3小球先; (D)三球同时。
题1 题2 题32、质量分别为m1=m,m2=2m得两个小球M1,M2用长为L而重量不计得刚杆相连。
现将M1置于光滑水平面上,且M1M2与水平面成角。
则当无初速释放,M2球落地时,M1球移动得水平距离为____________。
(A);ﻩﻩ(B);ﻩﻩ(C);ﻩﻩ(D)0。
3、质量为m,长为b得匀质杆OA,以匀角速度ω绕O轴转动。
图示位置时,杆得动量及对O 轴得动量矩得大小为________。
(A),; (B),;(C),;ﻩ(D),。
4.在_____情况下,跨过滑轮得绳子两边张力相等,即F1=F2(不计轴承处摩擦)。
(A)滑轮保持静止或以匀速转动或滑轮质量不计;(B)滑轮保持静止或滑轮质量沿轮缘均匀分布;(C)滑轮保持静止或滑轮质量均匀分布;(D)滑轮质量均匀分布。
题4 题55.均质杆长L,重P,均质圆盘直径D=L,亦重P,均放置在铅垂平面内,并可绕O轴转动。
初始时杆轴线与圆盘直径均处于水平位置,而后无初速释放,则在达到图示位置瞬时,杆得角速度ω1________圆盘得角速度ω2。
(A)大于;ﻩ(B)小于; (C)等于;ﻩ(D)小于或等于。
6.均质杆AB,长L,质量m,沿墙面下滑,已知A端速度,B端高度h,AB对过杆端A,质心C,瞬心I得水平轴得转动惯量分别为JA,J C,J I,则图示瞬时杆得动能为__________、(A); (B); (C);(D)题6题7 题87.已知均质杆长L,质量为m,端点B得速度为,则AB杆得动能为___________。
(A);ﻩﻩ(B);ﻩ(C); (D)8、质量为m1得均质杆OA,一端铰接在质量为m2得均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动。
动力学(MADE BY 水水)1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lk lk l y v ====θθθ938cos sin 2232lk lk y a =-==θθ1-6证明:质点做曲线运动,所以质点的加速度为:n t a a a +=,设质点的速度为v ,由图可知:a a v v yn cos ==θ,所以: yv va a n =将c v y =,ρ2n v a =代入上式可得 ρc v a 3=证毕 1-7证明:因为n 2a v =ρ,v a a v a ⨯==θsin n 所以:va ⨯=3v ρ 证毕1-10xoy解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s-= ,x x s s 22=由此解得:xsv x 0-= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得:2002v v s x x x=-=+ (b)将(a)式代入(b)式可得:3220220xlv x x v x a x -=-== (负号说明滑块A 的加速度向上)取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的运动微分方程:N F F ym F mg xm +-=-=θθsin cos其中:2222sin ,cos l x l lx x +=+=θθ0,3220=-=yx l v x将其代入直角坐标形式的运动微分方程可得:23220)(1)(x lxl v g m F ++=1-11o vo vF N Fg myθ解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即:θcos A B v v = (a ) 因为x R x 22cos -=θ (b )将上式代入(a )式得到A 点速度的大小为:22R x xRv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得:222222)(x R R x xω=-将上式两边对时间求导可得:x x R x x R x xx 2232222)(2ω=--将上式消去x2后,可求得: 22242)(R x xR x--=ω (d)由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的 运动微分方程:mg F F ym F xm N -+=-=θθsin cos其中:x R x xR22cos ,sin -==θθ, 0,)(22242=--=y R x x R x ω将其代入直角坐标形式的运动微分方程可得2525)(,)(225222242R x x R m mg F R x x R m F N --=-=ωω1-13解:动点:套筒A ;动系:OC 杆;定系:机座;运动分析:绝对运动:直线运动;相对运动:直线运动;牵连运动:定轴转动。