微波电路与系统(等效电路)
- 格式:ppt
- 大小:711.50 KB
- 文档页数:12
微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
射频天线的等效电路
射频天线的等效电路是指将射频天线系统中的各个部分用一组等效的电路元件来表示,以便于分析、设计和优化天线性能。
射频天线的等效电路主要包括以下几个部分:
1. 辐射电阻(Rrad):辐射电阻表示天线辐射能量的能力,它与天线的长度、形状和材质等因素有关。
2. 串联谐振电路(L和C):天线系统中通常存在多个谐振电路,它们影响着天线的频率响应和匹配性能。
串联谐振电路由电感(L)和电容(C)组成,它们共同决定了谐振频率。
3. 并联谐振电路(L和C):并联谐振电路同样由电感(L)和电容(C)组成,但它们的影响因素和串联谐振电路相反。
并联谐振电路主要影响天线的带宽和阻抗匹配。
4. 输入阻抗(Zin):输入阻抗表示天线系统对输入信号的阻抗匹配程度。
它受到天线结构、馈线长度和材质等因素的影响。
5. 输出阻抗(Zout):输出阻抗表示天线系统对外部负载的阻抗匹配程度。
一般情况下,天线系统希望输出阻抗越低,匹配性能越好。
6. 反射系数(S11和S21):反射系数表示天线系统对输入信号的反射程度。
通过测量反射系数,可以了解天线系统的匹配性能和性能优劣。
在实际应用中,射频天线的等效电路可以通过计算机辅助设计(CAD)软件(如
Ansys HFSS、CST等)进行仿真和优化,以达到设计要求。
通过等效电路法,设计师可以更方便地分析和调整天线系统的性能,缩短设计周期,降低设计成本。
微波技术习题思考题1.1 什么是微波?微波有什么特点?1.2 试举出在日常生活中微波应用的例子。
1.3 微波波段是怎样划分的?1.4 简述微波技术未来的发展状况。
2.1何谓分布参数?何谓均匀无损耗传输线?2.2 传输线长度为10cm,当信号频率为9375MHz时,此传输线属长线还是短线?2.3传输线长度为10cm,当信号频率为150KHz时,此传输线属长线还是短线?2.4传输线特性阻抗的定义是什么?输入阻抗的定义是什么?2.5什么是反射系数、驻波系数和行波系数?2.6传输线有哪几种工作状态?相应的条件是什么?有什么特点?3.1何谓矩形波导?矩形波导传输哪些模式?3.2何谓圆波导?圆波导传输哪些模式??3.3矩形波导单模传输的条件是什么?3.4何谓带状线?带状线传输哪些模式?3.5何谓微带线?微带线传输哪些模式?3.6 何谓截止波长?何谓简并模?工作波长大于或小于截止波长,电磁波的特性有何不同?3.7 矩形波导TE10模的场分布有何特点?3.8何谓同轴线?传输哪些模式?3.9为什么波导具有高通滤波器的特性?3.10 TE波、TM波的特点是什么?3.11何谓波的色散?3.12任何定义波导的波阻抗?分别写出TE波、TM波波阻抗与TEM波波阻抗之间的关系式。
4.1为什么微波网络方法是研究微波电路的重要手段?4.2微波网络与低频网络相比有哪些异同?4.3网络参考面选择的要求有什么?4.4表征微波网络的参量有哪几种?分别说明它们的意义、特性及其相互间的关系?4.5二端口微波网络的主要工作特性参量有哪些?4.6微波网络工作特性参量与网络参量有何关系?4.7常用的微波网络有哪些?对应的网络特性参量是什么?4.8微波网络的信号流图是什么?简要概述信号流图化简法则有哪些?5.1试述旋转式移相器的工作原理,并说明其特点。
5.2试分别叙述矩形波导中的接触式和抗流式接头的特点。
5.3试从物理概念上定性地说明:阶梯式阻抗变换器为何能使传输线得到较好的匹配。
第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。
1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。
1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
什么是s参数?s参数的含义?关键字:什么是s参数微波网络法广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。
微波网络理论在低频网络理论的基础上发展起来,低频电路分析是微波电路分析的一个特殊情况。
微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。
微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。
一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集中参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流的困难性,而且在微波频率测量电压和电流也存在实际困难。
因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。
与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。
S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。
阻抗和导纳矩阵反映了端口的总电压和电流的关系,而散射矩阵是反映端口的入射电压波和反射电压波的关系。
散射参量可以直接用网络分析仪测量得到,可以用网络分析技术来计算。
只要知道网络的散射参量,就可以将它变换成其它矩阵参量。
下面以二端口网络为例说明各个S参数的含义,如图所示。
二端口网络有四个S 参数,Sij代表的意思是能量从j口注入,在i口测得的能量,如S11定义为从 Port1口反射的能量与输入能量比值的平方根,也经常被简化为等效反射电压和等效入射电压的比值,各参数的物理含义和特殊网络的特性如下:S11:端口2匹配时,端口1的反射系数;S22:端口1匹配时,端口2的反射系数;S12:端口1匹配时,端口2到端口1的反向传输系数;S21:端口2匹配时,端口1到端口2的正向传输系数;对于互易网络,有:S12=S21;对于对称网络,有:S11=S22 对于无耗网络,有:(S11)2+(S12)2=1 ;S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,S21越大传输的效率越高,一般建议S21>0.7,即-3dB。
波导缝隙等效电路1. 简介波导是一种传输电磁波的结构,常用于微波和光纤通信领域。
在波导中,由于波导壁上存在缝隙或孔洞,会引入额外的电感和电容,影响波导的传输特性。
为了更好地理解和分析这种影响,我们需要将波导缝隙建模为等效电路。
2. 波导缝隙建模原理当电磁波通过波导中的缝隙时,会发生能量耦合和反射现象。
为了简化分析,我们可以将波导缝隙建模为一个等效电路。
在建模过程中,主要考虑以下两个因素:2.1 缝隙电感由于缝隙存在磁场不连续性,会形成一个环形感应电流。
这个环形感应电流产生的磁场可以用一个等效的电感表示。
根据麦克斯韦方程组和安培定律,可以推导出该等效电感与缝隙结构、材料特性以及工作频率之间的关系。
2.2 缝隙电容当电磁波通过缝隙时,在缝隙两侧会形成电场分布。
这个电场分布可以用一个等效的电容表示。
根据高斯定律和电容的定义,可以推导出该等效电容与缝隙结构、材料特性以及工作频率之间的关系。
3. 波导缝隙等效电路模型基于以上原理,我们可以将波导缝隙建模为一个等效电路。
常用的波导缝隙等效电路模型包括串联模型和并联模型。
3.1 串联模型串联模型将波导缝隙的电感和电容连接在一起,形成一个串联网络。
该网络可以方便地进行分析和计算。
3.2 并联模型并联模型将波导缝隙的电感和电容并联在一起,形成一个并联网络。
该网络也可以方便地进行分析和计算。
4. 波导缝隙等效电路参数提取为了建立准确的波导缝隙等效电路模型,需要提取相关参数。
常用的参数包括:4.1 缝隙宽度缝隙宽度是影响波导传输特性的重要参数。
可以通过光学显微镜或扫描电子显微镜等工具直接测量得到。
4.2 缝隙长度缝隙长度也是一个重要的参数,可以通过测量或者模拟仿真得到。
4.3 缝隙材料特性缝隙材料的电磁特性对波导传输特性有很大影响。
常用的材料包括金属、半导体等,其特性可以通过实验测量或者理论计算得到。
4.4 工作频率工作频率是波导缝隙等效电路模型中的关键参数,决定了波导在不同频段下的传输特性。