微波电路与系统(21)负阻二极管振荡器(稻谷书店)
- 格式:ppt
- 大小:2.60 MB
- 文档页数:34
第 21 卷 第 12 期2023 年 12 月Vol.21,No.12Dec.,2023太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information Technology交叉耦合混沌信号源电路建模与设计陈文兰,崇毓华,张德智(中国电子科技集团公司第三十八研究所,安徽合肥230088)摘要:提出一种交叉耦合结构混沌信号源电路,通过建立非线性混沌模型证明交叉耦合电路满足混沌振荡的条件。
将电路拆分成2个互补的两级混沌电路,基于左右两边互补特性分析了交叉耦合混沌电路稳定性提升的机制。
通过改变输出端口阻抗,对混沌吸引子和输出信号频谱进行仿真和测试,结果表明:交叉耦合混沌电路维持稳定混沌状态的输出端口阻抗由常规混沌电路的500 Ω以上降为80 Ω以下,稳定性提升6倍以上;输出混沌信号频谱分三段覆盖1.5~11.4 GHz频段,较常规电路提升50%以上。
关键词:交叉耦合结构;混沌电路;非线性模型;稳定性中图分类号:TN402 文献标志码:A doi:10.11805/TKYDA2021441Circuit model and design of cross-coupled chaotic signal generatorCHEN Wenlan,CHONG Yuhua,ZHANG Dezhi(The 38th Research Institute of China Electronics Technology Group Corporation,Hefei Anhui 230088,China)AbstractAbstract::A cross-coupled chaotic signal generator circuit is presented. Chaotic oscillation conditions of the cross-coupled circuit are proved through establishing nonlinear chaotic model. Thestability enhancing mechanism of left-and-right complementary property is analyzed by splitting thecross-coupled circuit into two complementary two-stage chaotic circuits. The chaotic attractor andoutput spectrum are simulated and tested by tuning the port impedance. Results show that, the stablechaotic output impedance of the cross-coupled chaotic circuit is below 80 Ω, the stability is enhanced by6 times than that of the conventional circuit with 500 Ωoutput impedance. The output chaotic signalspectrum is divided into three bands covering 1.5~11.4 GHz, which is enhanced by 50% than that of theconventional circuit.KeywordsKeywords::cross-coupled structure;chaotic circuit;nonlinear model;stability混沌信号作为发射载频,具有超宽带、类噪声等特点,在混沌保密通信、雷达抗干扰及干扰压制等领域具有广阔的应用前景[1-2]。
负阻元件的设计与应用实验【摘要】在电路理论中,负阻元件在电子电路中主要用来产生振荡,其特性曲线都是严重非线性的。
负阻元件典型的应用是间歇振荡,在缺乏高效供电时尤其有用。
负阻振荡器结构简单、体积小、成本低,所以在一些需要初始触发时经常使用。
【关键词】负阻元件;二极管;运算放大器;负阻抗;负阻抗变换器;振荡器负阻元件在电子电路中主要用来产生振荡,其特性曲线都是严重非线性的。
负阻元件大都为两端器件,做振荡器时可代替多端有源器件,如三极管等。
负阻元件典型的应用是间歇振荡,在缺乏高效供电时尤其有用。
负阻振荡器结构简单、体积小、成本低。
常用的双向触发二极管,其特性曲线就有典型的负阻区,所以在一些需要初始触发时经常使用。
一、负阻元件负阻元件是一种电阻值为负值的元件,目前还没有研制出这种元件,只是理论推测应该存这样一种二端电路元件。
下面从电路变量的约束关系给出具体推测过程。
元件的基本变量如端电压U,端电流i和与此相关的变量如元件两端电荷q及其中磁通&,在理想电路元件中,R、L、C元件已为我们所熟悉,从变量约束关系的完备性及对称性推断,还应存在一种理想电路元件,在变量q与&之间建立起一种约束关系,即f(q、&、t)=O。
这就是“负阻元件”目前人们预它将是发现和应用得最迟的一种基本二端元件。
1.基本特性负阻特性也称为负微分电阻特性,是指一些电路或电子元件在某特定的电流增加时,电压反而减少的特性。
一般的电阻在电流增加时,电压也会增加,负阻特性恰好与电阻的特性相反。
电压随电流变化的情形可以用微分电阻(differential resistance)r表示:r=dV/dI没有一个单一的电子元件,可以在所有工作范围都呈现负阻特性,不过有些二极管(例如隧道二极管(英语:tunnel diode))在特定工作范围下会有负阻特性。
用共振隧道二极管(英语:resonant-tunneling diode)说明其负阻特性。
微波固态电路习题集+答案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微波固态电路习题集(81题)第一章、微波晶体管电路(1)微波晶体管的主要发展方向包括哪几个方面(p1)A(2)为提高小信号和小功率硅微波双极晶体管的性能,一般在结构设计和工艺上采用哪些措施为什么硅微波双极晶体管的特征频率不可能很高(p3)(3)双极晶体管噪声主要来源有哪些(p4-p5)(4)请写出MESFET特征频率fT 与直流跨导gmo和栅源电容Cgs的近似表达式。
说明MESFET的特征频率fT 与直流跨导gmo和栅源电容Cgs关系如何减小MESFET的栅长与特征频率有何关系(p9)A(5) MESFET噪声主要来源有哪些其最小噪声系数与频率有何关系 (p10-p11)A(6) MESFET噪声系数与直流工作点有何关系 (p11)A(7)何谓半导体的异质结(p11)A(8)你能说出HEMT和HBT的中文意思吗(p12-p14)A(9) HEMT和HBT的显著优点有哪些(p11、p15)(10)微波晶体管放大器主要性能参量有哪些(p17)11)请写出线性两端口网络S参数的表达式,并简述晶体管S参数的物理意义。
(P18)(12)晶体管正向和反向传输系数不等的物理意义是什么(p18)(13)微波放大器工作是否稳定的判据是什么如何判断(p21)(14)微波放大器输入/输出端口绝对稳定的充要条件是什么(p25)(15)请写出有源二端口网络噪声系数一般表达式,并说明表达式中各项的物理意义.(p27)A(16)低噪声放大器设计中最佳噪声匹配和最大功率增益匹配有何不同最佳噪声匹配时对传输功率有何影响(p31,p35)A(17)宽带放大器主要电路形式通常有哪些(p38)(18)微波功率放大器设计中,MESFET哪些特性参数与输出功率密切相关(p44)(19)简述放大器1dB压缩点输入和输出功率及三阶交调系数的定义.(p44-p45)(20)介质谐振器稳频FET振荡器一般可分哪两种类型各有何特点(p54)(21)介质谐振器在反馈式介质稳频FET振荡器电路和反射型共源介质稳频FET 振荡器电路中分别等效为何种电路(22)列表比较双极晶体管,MESFET,HEMT和HBT的参数。
第 21 卷 第 5 期2023 年 5 月Vol.21,No.5May,2023太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information Technology共振隧穿二极管THz辐射源研究进展彭雨欣,孟雄,孟得运(江苏大学物理与电子工程学院,江苏镇江212000)摘要:太赫兹技术被称为“改变未来世界十大技术之一”,对基础科学研究、国民经济发展和国防建设具有重要意义,尤其在未来6G通信方面举足轻重。
太赫兹波源是整个太赫兹技术研究的基础,也是太赫兹应用系统的核心部件。
近年来,共振隧穿二极管(RTD)型太赫兹波源因体积小,质量轻,易于集成,室温工作,功耗低等特点受到广泛关注,为太赫兹波推广应用开辟了新的途径。
通过文献分析,本文从器件材料技术、主要工艺及器件性能等方面对InP基与GaN基RTD太赫兹振荡器的发展进行评述,并探讨了InP基与GaN基RTD太赫兹振荡器件的研究方向。
关键词:共振隧穿二级管;太赫兹波源;磷化铟;氮化镓中图分类号:TN15 文献标志码:A doi:10.11805/TKYDA2022120Research progress of Resonant Tunneling Diode THz radiation sourcePENG Yuxin,MENG Xiong,MENG Deyun(School of Physics and Electronic Engineering,Jiangsu University,Zhenjiang Jiangsu 212000,China) AbstractAbstract::Terahertz technology is known as “one of the top ten technologies to change the future world”, which is of great significance to basic scientific research, national economic development andnational defense construction, especially in the future 6G communication. Terahertz source is essentialto terahertz technology research and the core component of terahertz application system. In recent years,Resonant Tunneling Diode(RTD) terahertz source has attracted extensive attention because of its smallvolume, light weight, easy integration, room temperature operation and low power consumption, whichopens up a new way for the popularization and application of terahertz. Through literature analysis, thispaper reviews the development of RTD terahertz oscillators based on InP and GaN from the aspects ofdevice material technology, main processes and device properties. At present, how to prepare high-performance, mature and stable InP and GaN based RTD terahertz oscillators has always been a researchdirection.KeywordsKeywords::Resonant Tunneling Diode;terahertz source;indium phosphide;gallium nitride 太赫兹(THz)波是指频率在0.3~30 THz(波长为1 mm~10 μm)范围内的电磁波,具有高透射性、宽频性、相干性、低能量性、瞬态性和稳定性等特点和优势,在军事、天文、通信、计算机、生物医学、安检成像等领域发挥巨大作用。
固态微波源(耿氏二极管振荡器):教学实验室常用的微波振荡器除了反射速调管振荡器外,还有耿氏(或称体效应)二极管振荡器,也称之为固态源。
耿氏二极管振荡器的核心是耿氏二极管。
耿氏二极管主要是基于n型砷化镓的导带双谷——高能谷和低能谷结构。
1963年耿氏在实验中观察到,在n型砷化镓样品的两端加上直流电压,当电压较小时样品电流随电压增高而增大;当电压V超过某一临界值V th后,随着电压的增高电流反而减小(这种随电场的增加电流下降的现象称为负阻效应);电压继续增大(V>V b)则电流趋向饱和。
这说明n型砷化镓样品具有负阻特性。
砷化镓的负阻特性可用半导体能带理论解释。
砷化镓是一种多能谷材料,其中具有最低能量的主谷和能量较高的临近子谷具有不同的性质。
当电子处于主谷时有效质量m*较小,则迁移率μ较高,当电子处于主谷时有效质量m*较大,则迁移率μ较低。
在常温且无外加电场时,大部分电子处于电子迁移率高而有效质量低的主谷,随着外加电场的增大,电子平均漂移速度也增大;当外加电场大到足够使主谷的电子能量增加至0.36eV时,部分电子转移到子谷,在那里迁移率低而有效质量较大,其结果是随着外加电压的增大,电子的平均漂移速度反而减小。
在耿氏二极管两端加电压,当管内电场E略大于E T(E T为负阻效应起始电场强度)时,由于管内局部电量的不均匀涨落(通常在阴极附近),在阴极端开始生成电荷的偶极畴;偶极畴的形成使畴内电场增大而使畴外电场下降,从而进一步使畴内的电子转入高能谷,直至畴内的电子全部进入高能谷,畴不再长大。
此后,偶极畴在外电场作用下以饱和漂移速度向阳极移动直至消失。
而后整个电场重新上升,再次重复相同的过程,周而复始地产生畴的建立、移动和消失,构成电流的周期性振荡,形成一连串很窄的电流,这就是耿氏二极管的振荡原理。
耿氏二极管的工作频率主要有偶极畴的渡越时间决定。
实际应用中,一般将耿氏管装在金属谐振腔中做成振荡器,通过改变腔体内的机械调谐装置可在一定范围内改变耿氏振荡器的工作频率。
常用微波器件/部件的技术指标及其基本含义一、振荡器概述:近年来,新材料新工艺的进展为微波振荡信号的产生、放大和合成提供了很好的条件。
微波固态振荡电路是通过谐振电路与微波固态器件的相互作用,把直流能量转换为射频能量的装置。
固态振荡器工作电压低、效率高、可靠性高、寿命长、体积小、重量轻,从而在雷达、通讯、电子对抗、仪器和测量等系统中得到广泛的应用。
有人形象比喻微波振荡器是微波系统的“心脏”,可见其在微波系统中的重要地位。
通常把振荡器分为两类:稳频振荡器、自由振荡器(含压控振荡器)等。
稳频振荡器又分为晶体稳频振荡器(晶振、晶振倍频链)、高Q腔稳频振荡器(同轴腔、波导腔、介质)、锁相稳频振荡器(环路锁相、注入锁相、取样锁相、谐波混频锁相)。
同一频率和功率的不同形式的振荡器的成本相差很大,在使用时应该合理选择振荡器的类型。
主要技术指标:1、工作频率范围:指满足各项技术指标的调谐频率范围。
用起止频率或中心频率和相对带宽来表示。
2、频率精确度:振荡器工作频率偏离标称频率的程度。
3、频率稳定度:长期稳定度:指振荡器的老化和元器件的性能变化以及环境条件改变导致的频率的慢变化。
常用一定时间内频率的相对变化来表示。
短期稳定度:与长期稳定度相比,在较小的时间间隔内考察频率源的稳定程度。
常用阿伦方差来表征,以△f/f/μs(或ms)为单位。
4、相位噪声:是短期稳定度的频域表示,它可以看成是各种类型的随机噪声信号对相位的调制作用。
从频域表现来看,频谱不再是一根离散的谱线,而带有一定的宽度。
通常用距离中心频率某频率处单位带宽内噪声能量与中心频率能量的比值来表示,以-dBc/Hz@KHz(或MHz)为单位。
5、杂散抑制:指与输出频率不相干的无用频率成分与载波电平的比值,用dBc表示。
有时也成为杂波抑制。
6、谐波抑制:指与输出频率相干的邻近基波的谐波成分与载波电平的比值,用dBc表示。
7、工作电压:指使振荡器满足各项技术指标时的正常工作电压。
二极管振荡电路1. 介绍二极管振荡电路是一种基于二极管的电子电路,用于产生稳定的交流信号。
它由几个元件组成,包括二极管、电容器、电感器和电阻器。
通过合理配置这些元件,可以实现正弦波、方波或脉冲波等不同形态的振荡信号。
2. 原理二极管振荡电路的工作原理基于二极管的非线性特性。
当二极管处于正向偏置状态时,它将具有导通电阻;而在反向偏置状态下,它将具有截止电阻。
通过合理选择电容器和电感器的数值,可以在电路中形成一个正反馈回路,使得二极管在导通和截止之间切换,从而产生振荡信号。
3. 电路结构二极管振荡电路通常由以下几个基本组成部分构成:3.1 电源电源为振荡电路提供所需的电能。
它可以是直流电源或交流电源,根据具体需求进行选择。
3.2 二极管二极管是振荡电路的核心元件,它根据电流的方向和电压的极性,实现导通和截止的切换。
常用的二极管有硅二极管和锗二极管。
3.3 电容器电容器用于储存电荷,并在二极管切换时释放电荷。
它的数值决定了振荡电路的频率。
3.4 电感器电感器是由线圈或线圈组成的元件,用于储存电磁能量。
它的数值决定了振荡电路的频率。
3.5 电阻器电阻器用于限制电流的流动,并调整电路的阻抗。
它的数值决定了振荡电路的幅度和稳定性。
3.6 反馈网络反馈网络由电容器、电感器和电阻器组成,用于将一部分输出信号反馈到输入端,实现正反馈。
它的设计决定了振荡电路的稳定性和输出波形。
4. 工作过程二极管振荡电路的工作过程可以简要概括为以下几个步骤:1.初始状态:电容器充满电荷,二极管处于导通状态。
2.电容器放电:电容器开始放电,二极管进入截止状态。
3.电容器充电:电容器放电完毕后,开始重新充电,二极管进入导通状态。
4.反馈:一部分充电电流通过反馈网络返回输入端,形成正反馈。
5.重复:以上步骤循环进行,产生稳定的振荡信号。
5. 应用领域二极管振荡电路在电子工程中有广泛的应用,例如:•无线电传输:用于产生调制信号,实现广播、通信和无线电频率合成等功能。