微波电路与系统课程介绍
- 格式:pptx
- 大小:324.95 KB
- 文档页数:12
重庆大学本科学生课程设计指导教师评定成绩表说明:1、学院、专业、年级均填全称。
2、本表除评语、成绩和签名外均可采用计算机打印。
重庆大学本科学生课程设计任务书2、本表除签名外均可采用计算机打印。
本表不够,可另附页,但应在页脚添加页码。
摘要本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。
在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。
第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。
在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。
同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。
对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。
设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。
二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。
具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。
最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。
为了达到所要求的增益,采用两级放大。
微波通信概述微波无线通信是以空间电磁波为载体传送信息的一种通信方式,构建微波无线通信时不需要用线缆连接发信端和收信端。
因而在航空航天通信、海运和个人移动通信以及军事通信等方面,微波无线通信是其它通信方式所不可替代的。
微波通信是一种先进的通信方式,它利用微波(载频)来携带信息,通过电波空间同时传送若干相互无关的信息,并且还能再生中继。
由于微波具有频率高、频带宽、信息量大的特点,因此被广泛地应用于各种通信业务中。
如微波多路通信,微波接力通信,散射通信,移动通信和卫星通信等。
同时,用微波各波段的不同特点可实现特殊用途的通信,具体如下:A. S-Ku波段的微波适于进行以地面为基地的通信;B. 毫米波适用于空间与空间之间的通信;C. 毫米波段的60GHz频段的电波大气衰减大,适用于近距离的保密通信;D.90GHz频段的电波在大气中衰减很小,是一个无线电窗口频段,适用于地—空和远距离通信。
E.对于很长距离的通信L波段更适合。
微波通信的主要特点根据所传输基带信号的不同,微波通信又分为两种制式。
用于传输频分多路——调频(FDM-FM)基带信号的系统称作模拟微波通信系统。
用于传输数字基带信号的系统称作数字微波通信系统。
后者又进一步的分为PDH微波和SDH微波通信两种通信体制。
SDH微波通信系统是未来微波通信系统发展的主要方向,利用调制和复用技术,一条微波线路可以传送大量的信息。
这是微波通信的一个主要优点,例如,一个标准的4GHz微波载波,带宽约为10%~20%,可以传送几万条电话信道或几十万条电视信道。
微波通信系统的组成微波通信传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支.但不论哪种组合形式,主要是有由微波终端站、中继站和分路站等组成的。
如图所示:终端站中继站再生中继站终端站微波微带电路系统实验设计平台一、适用范围本设计平台主要面向各大中专院校微波通信工程、电子工程、通信工程等专业开设的《微波技术》、《微波电路》、《天线原理》、等课程的实验教学及课程设计、毕业设计而研制的最新产品。
微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
《微波技术与天线》课程教学中理论性与工程应用性的结合探讨摘要:“微波技术与天线”是一门既强调理论性又强调工程性的课程,而传统教学时常常忽略理论性和工程性的结合,通过在教学过程中介绍微波与天线的最新应用,教学实践中应注重培养学生的工程思维和工程意识,将工程观点贯彻于各个教学环节中,提高分析工程问题、解决工程问题的能力。
关键词:教学教改工程思维工程意识随着信息时代的到来,作为信息主要载体的高频电磁波——微波不仅在卫星通信、计算机通信、移动通信、射频识别等领域得到了广泛的应用,而且深入到了各行各业,甚至在人们的日常生活也扮演着角色,因此在教授“微波技术与天线”课程中,不但需要把理论知识传授给学生,还要在教学过程中增强工程应用性。
1 课程有强的理论性和强的工程应用性“微波技术与天线”课程主要涉及微波技术、天线与电波传播和微波应用系统等方面内容,该课程既有强的理论性又有强的工程应用性。
“化场为路”方法分析均匀传输线,它是把传输线等效为分布参数电路,建立传输线方程,求出满足边界条件的电压、电流的分布,分析传输线的阻抗、反射系数及驻波比等传输特性,其结构有平行双线、同轴线、带状线和微带线。
在麦克斯韦方程基础上,求出满足边界条件的波动解,得出空间各点的电场和磁场的表达式,进而分析电磁波传输特性,波导理论介绍矩形波导、圆波导、同轴线等的物理构成及工作原理,它们的场结构在三维空间分布。
天线理论介绍各种线天线、面天线的三维结构、馈电原理、辐射方向图等[1]。
本课程多方面体现与工程应用紧密联系。
如同轴线应用在有线电视、闭路监控系统、电信企业的传输部门等;波导应用在功率较高的场合如雷达、基站等,功率分配器、隔离器、定向耦合器等应用在室内分布系统和基站等,天线的应用有手机天线、蓝牙天线、基站天线等等。
2 教学理论性和工程应用性不能很好结合教材可能由于篇幅所限,或过于陈旧,不能很好地体现微波技术与天线的实际工程应用;教学过程中过于偏重理论教学,实践教学所占比重较小,在有限的课时教学中传统方式仅仅能将基本的、重要的概念、原理、方法教授给学生,而对微波技术的发展前沿问题、最新的工程应用涉及较少;另外缺少学科建设及科研经费,造成实验室先进仪器设备相对匮乏,所开实验不能体现微波与天线的工程应用,也不能提供给学生开放式教学所必需的环境。
《微波技术》课程教学大纲一、课程基本信息课程编号:08030010课程中文名称:微波技术课程英文名称:microwave technology课程性质:专业指定选修课考核方式:考查开课专业:电子信息工程、通信工程、信息对抗技术开课学期:5总学时:40+16总学分:3.5二、课程目的和任务《微波技术》是研究微波信号的产生、放大、传输、发射、接收和测量的学科。
通过讲述传输线理论、理想导波系统理论、微波网络理论,使学生掌握传输线的工作状态和特性参量、波导的场结构和传输特性,了解常用微波元件的基本结构和工作原理,具有解决微波传输基本问题的能力。
三、教学基本要求(含素质教育与创新能力培养的要求)1.掌握传输线的基本理论和工作状态,具有分析传输线特性参量的基本能力,掌握阻抗圆图和导纳圆图的基本构成和应用,了解阻抗匹配的基本方法和原理。
2.掌握矩形波导的一般理论与传输特性,掌握矩形波导主模的场分布与相应参数,了解圆波导、同轴线、带状线和微带线等传输线的工作原理、结构特点、传输特性和分析方法。
3.掌握微波网络的基本理论,重点包括微波网络参量的基本定义、基本电路单元的参量矩阵、微波网络组合的网络参量、微波网络的工作特性参量,了解二端口微波网络参量的基本性质,具有分析二端口微波网络工作特性参量的基本能力。
4.掌握阻抗变换器、定向耦合器、微带功分器、波导匹配双T的结构特点、工作原理、分析方法及其主要用途,了解电抗元件、连接元件、衰减器和移相器、微波滤波器和微波谐振器等微波元件的结构特点和工作原理。
四、教学内容与学时分配第一章绪论(2学时)微波的概念及其特点,微波技术的发展和应用,微波技术的研究方法和基本内容。
第二章传输线理论(13学时)1.传输线方程及其求解2.传输线的特性参量3.均匀无耗传输线工作状态分析4.阻抗圆图及其应用5.传输线的阻抗匹配第三章微波传输线(9学时)1.理想导波系统的一般理论2.导波系统的传输特性3.矩形波导4.带状线5.微带线第四章微波网络(9学时)1.波导等效为平行双线2.微波元件等效为微波网络3.二端口微波网络4.基本电路单元的参量矩阵5.二端口微波网络的组合及参考面移动的影响6.二端口微波网络的工作特性参量7. 多端口微波网络第五章常用微波元件(7学时)1.阻抗变换器2.定向耦合器3.波导匹配双T4.微波滤波器第六章实验教学(16)五、教学方法及手段(含现代化教学手段)以课堂讲授为主,适当配合课堂讨论,充分使用多媒体教学;以学生自学为辅,学生可以通过网络课堂和微波网站在线学习。
第1讲内容■射频/微波的定义;■射频/微波的特点;■常规电路元件的射频特性; ■射频/微波的简史;■课程内容设置;■本课程的要求与建议;■身寸频(Radio Frequency)/微波(Microwave) ■无线电频谱中占据某一特殊频段的电磁波。
1.1 RF/MW的定义无线频谱的划分频段代号频率(GHz)波长(cm)P0. 23—1130—30L1—230—15S2—415—7. 5C4—87. 5—3. 75X8—12. 5 3. 75—2. 4Ku12. 5—18 2.4—1.67K18—26. 5 1.67—1. 13Ka26. 5—40 1. 13—0. 75毫米波40—3000. 75—0. 1亚毫米波300—30000. 1—0. 01RF/MW典型应用的频谱应用范围电视移动电话GPS全球定位系统微波炉美国UWB通信卫星通信雷达频率范围54MHz—890MHz 900MHz—1800MHz 1227MHz (军用)1575MHz (民用)2.45GHz3.1—10.6GHz C波段和Kii波霞L、S、X波段RFID 43MHz, 900MHz,2.4GHz, 5.4GHz1.2 RF/MW的特点■频率咼□通信系统中相对带宽Af/f通常为一定值,□所以频率僦高,越容易实现更大的带宽Z\f ,从而信息的容量就越大。
□例如,对于1%的相对带宽,600MHz频率下宽带为6MHz (—个电視频道的带宽),而60GHz频率下带宽为600MHz (100个电视频道!)。
□因此,RF/MW的一个最广泛应用就是无线通信。
微波接力通讯Tran$m^$KXi Trar^rrt?$$ion蜂窝电话系统波长短■天线与RF电路的特性是与其电尺寸1/入相关的。
在保持特性不变的前提下,波长入越短 ,天线和电路的尺寸I就越小,因此,波长短有利于电路的小型化。
■目标的雷达散射截面(RCS )也与目标的电尺寸成正比z因此在目标尺寸一定的情况下,波长越小,RCS就磁大。
《射频与微波电路》教学大纲一、课程信息课程名称:射频与微波电路课程类别:素质选修课/专业基础课课程性质:选修/必修计划学时:64计划学分,4先修课程:无选用教材:《射频与微波电路》,李兆龙,王贵主编,2023年,电子工业出版社教材。
适用专业:本课程适合作为通信、电子信息类专业的课程,也适合相关工程技术人员参考。
课程负责人:二、课程简介本课程以传输线理论为钥匙,试图打开射频与微波电路“场”与“路”相互交织的大门,通过深入剖析具有高度学习价值的经典射频与微波电路,促使学生快速掌握射频与微波无源电路和有源电路的基本设计原理、方法,以及一定的使用经验,使得不具备高深电磁理论的学生也能在短期内掌握这一不遵循摩尔定律的电路设计艺术。
三、课程教学要求求与相关教学要求的具体描述。
“关联程度”栏中字母表示二者关联程度。
关联程度按高关联、中关联、低关联三档分别表示为“H”或“1”.”课程教学要求”及“关联程度”中的空白栏表示该课程与所对应的专业毕业要求条目不相关。
四、课程教学内容五、考核要求及成绩评定六、学生学习建议(-)学习方法建议1.依据专业教学标准,结合岗位技能职业标准,通过案例展开学习,将每个项目分成多个任务,系统化地学习。
2.通过每个项目最后搭配的习题,巩固知识点。
3.了解行业企业技术标准,注重学习新技术、新工艺和新方法,根据教材中穿插设置的智能终端产品应用相关实例,对己有技术持续进行更新。
4.通过开展课堂讨论、实践活动,增强的团队协作能力,学会如何与他人合作、沟通、协调等等。
(-)学生课外阅读参考资料《射频与微波电路》,李兆龙,王贵主编,2023年,电子工业出版社教材。
七、课程改革与建设本课程坚持的理念是着重培养学生分析问题和解决问题的能力,而不是单纯的知识点的积累。
对于人的成长,重要的是对知识理解的积累,而不仅仅是知识库容的扩大。
所以,本课程不追求大而全的包含射频与微波电路学科的全部知识点,而是侧重深度分析和应用具有极高学习价值的射频与微波典型电路及结构,从而达到提高学生分析问题与解决问题能力的教学目标。
南邮电磁场与微波技术课表南邮电磁场与微波技术课表引言:南京邮电大学电磁场与微波技术是一门涉及电磁学和微波技术的专业课程。
通过学习这门课程,我们可以深入了解电磁学的基本原理以及其在微波通信和无线电通信领域的应用。
本文将对南邮电磁场与微波技术的课表进行全面评估,帮助读者了解该课程的深度和广度。
一、南邮电磁场与微波技术课程概览1.1 课程名称:电磁场与微波技术1.2 课程学时:32学时1.3 课程学分:2学分1.4 课程教师:XXX教授二、课程内容与学习计划2.1 第一讲:电磁场基础在电磁场基础这一讲中,我们将学习电场和磁场的基本概念、电磁场方程以及麦克斯韦方程组的推导。
通过了解电磁场的基础知识,我们可以更好地理解电磁波的传播和微波技术的应用。
2.2 第二讲:传输线理论传输线理论是电磁场与微波技术的核心内容之一。
在这一讲中,我们将学习传输线的基本参数,如特性阻抗、传输常数和电压驻波比等。
我们还将深入探讨传输线的传输特性和匹配技术,以及在通信系统中的应用。
2.3 第三讲:微波波导微波波导是一种特殊的传输线结构,广泛应用于微波通信和雷达系统中。
本讲将介绍各种常见的微波波导结构,如矩形波导、同轴波导和光纤等。
我们还将学习波导的模场特性和特殊模式的传输,以及波导传输线的特殊应用。
2.4 第四讲:微波网络理论微波网络理论是研究微波通信系统和射频电路设计的重要内容。
本讲将介绍S参数矩阵理论、单元参数以及网络传输特性等。
通过学习微波网络理论,我们可以更好地设计和优化微波通信系统的性能。
2.5 第五讲:微波器件与天线微波器件和天线是微波通信系统中不可或缺的组成部分。
在这一讲中,我们将学习常见的微波器件,如功率放大器、混频器和射频开关等。
我们还将了解天线的基本原理和类型,以及天线在通信系统中的应用。
2.6 总结与回顾电磁场与微波技术课程的总结与回顾将对课程的深度和广度进行整体梳理。
我们将回顾所学的电磁场基础知识、传输线理论、微波波导、微波网络理论以及微波器件和天线等内容,并对其在通信领域的应用进行深入探讨。