广西区贵港市中考数学试题
- 格式:docx
- 大小:544.21 KB
- 文档页数:13
贵港中考数学试题及答案一、选择题1. 设x、y、z是一组不全为0的实数,若x^2 + y^2 + z^2 = 1,则称x、y、z是一个"单位向量"。
()下列向量中,哪个是单位向量?A. (0, 1, 0)B. (1, 1, 1)C. (1, 0, 0)D. (0, 0, 0)答案:C2. 若a、b 是同号数,且a^2 + b^2 = 1,则称(a, b)是一个"单位向量"。
下列向量哪个是一个单位向量?A. (1, -1)B. (3, 4)C. (-4, -3)D. (-3, 4)答案:C3. 甲、乙两人开始跑步,乙比甲慢20米。
已知甲每秒行驶3米,乙每秒行驶5米。
最终乙超过甲,至少需要多长时间?A. 12秒B. 14秒C. 16秒D. 18秒答案:C二、填空题1. 54 ÷ 0.18 = ______答案:3002. 设正方形ABCD的边长为2x,则其对角线的长为______答案:2√2x3. 某商品的原价为500元,现在打9折出售,售价为______元。
答案:450三、解答题1. 请说明三角形的外角和内角之间的关系。
解答:三角形的内角和等于180°,而三角形的外角和等于360°。
也就是说,三角形的每个内角与该角对应的外角相加等于180°。
2. 某地今年的降雨量为500mm,比去年减少了20%。
求去年的降雨量是多少mm?解答:今年降雨量减少了20%,即剩下80%。
设去年降雨量为x,则有80% * x = 500mm,解得x = 500mm / 80% = 625mm。
因此,去年的降雨量是625mm。
以上是贵港中考数学试题及答案的内容。
希望能对您有所帮助。
贵港市中考数学统一考试试题一、细心填一填:本大题共10小题,每小题2分,共20分.请将答案填写在题中的横线上.1.的相反数是二、精心选一选:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个是正确的,请将正确答案前的字母填入题后的括号内.每小题选对得3分,选错、不选或多选均得零分.11.下列计算中,正确的是()A.B.C.D.12.用下列同一种图形,不能密铺的是()A.三角形B.正五边形C.四边形D.正六边形13.小明将两个全等且有一个角为的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4B.3C.2D.114.已知正比例函数的图象与反比例函数的图象的一个交点坐标是,则另一个交点的坐标是()A.B.C.D.15.某公司员工的月工资统计如下表,那么该公司员工月工资的平均数、中位数和众数分别是()A.1600,1500,1500B.2000,1000,1000C.1600,1500,1000D.2000,1500,1000月工资(元)300020001000人数(人)14516.由若干个小立方块搭成的几何体的三视图如图所示,则该几何体中小立方块的个数是()A.4B.5C.6D.7三、解答题:本大题共8小题,满分76分.19.计算下列各题(本题满分11分,第(1)题5分,第(2)题6分)(1)(2)20.(本题满分8分)如图,图(1)是某中学九年级(一)班全体学生对三种蔬菜的喜欢人数的频数分布直方图.解答下列问题:(1)九年级(一)班总人数为加油站聪明的你如果还有时间,请在上图中连接,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).你将可以获得奖励分,每写正确一对全等三角形奖励1分,共2分(加分后全卷得分不超过120分).1.,2..22.(本题满分8分)我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?23.(本题满分9分)如图所示,是的直径,是弦,.(1)求证:与相切;(2)若是的垂直平分线,垂足为,,,求的长.24.(本题满分10分)如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱,5根支柱之间的距离均为15m,,将抛物线放在图(2)所示的直角坐标系中.(1)直接写出图(2)中点的坐标;(2)求图(2)中抛物线的函数表达式;(3)求图(1)中支柱的长度.25.(本题满分10分)如图所示,在一笔直的公路的同一旁有两个新开发区,已知千米,直线与公路的夹角,新开发区到公路的距离千米.(1)求新开发区到公路的距离;(2)现要在上某点处向新开发区修两条公路,使点到新开发区的距离之和最短.请你用尺规作图在图中找出点的位置(不用证明,不写作法,保留作图痕迹),并求出此时的值.26.(本题满分12分)如图,已知直线的函数表达式为,且与轴,轴分别交于两点,动点从点开始在线段上以每秒2个单位长度的速度向点移动,同时动点从点开始在线段上以每秒1个单位长度的速度向点移动,设点移动的时间为秒.(1)求出点的坐标;(2)当为何值时,与相似?(3)求出(2)中当与相似时,线段所在直线的函数表达式.。
最新广西贵港市中考数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平,答题时,请注意以下几点:1. 全卷共4页,有三大题,24小题,全卷满分150分,考试时间120分钟2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3. 答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)7的相反数是()A.7 B.﹣7 C .D .﹣2.(3分)数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,23.(3分)如图是一个空心圆柱体,它的左视图是()A .B .C .D .4.(3分)下列二次根式中,最简二次根式是()A .B .C .D .5.(3分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3 D.(﹣3a)2﹣a2=8a26.(3分)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.(3分)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A .B .C .D.19.(3分)如图,A,B,C,D是⊙O上的四个点,B 是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°10.(3分)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+111.(3分)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M 是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A .4B .3C .2D .112.(3分)如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB=2,则S △OMN 的最小值是,其中正确结论的个数是( )A .2B .3C .4D .5二、填空题(每题3分,满分18分,将答案填在答题纸上) 13.(3分)计算:﹣3﹣5= .14.(3分)中国的领水面积约为370 000km 2,将数370 000用科学记数法表示为 . 15.(3分)如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,如果∠CFE :∠EFB=3:4,∠ABF=40°,那么∠BEF 的度数为 .16.(3分)如图,点P 在等边△ABC 的内部,且PC=6,PA=8,PB=10,将线段PC 绕点C 顺时针旋转60°得到P'C ,连接AP',则sin ∠PAP'的值为 .17.(3分)如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与交于点D ,以O 为圆心,OC 的长为半径作交OB 于点E ,若OA=4,∠AOB=120°,则图中阴影部分的面积为 .(结果保留π)18.(3分)如图,过C (2,1)作AC ∥x 轴,BC ∥y 轴,点A ,B 都在直线y=﹣x+6上,若双曲线y=(x >0)与△ABC 总有公共点,则k 的取值范围是 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 19.(10分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°; (2)先化简,在求值:(﹣)+,其中a=﹣2+.20.(5分)尺规作图(不写作法,保留作图痕迹):已知线段a 和∠AOB ,点M 在OB 上(如图所示). (1)在OA 边上作点P ,使OP=2a ; (2)作∠AOB 的平分线; (3)过点M 作OB 的垂线.21.(6分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.(8分)在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.122≤x<3a m3≤x<4450.34≤x<536n5≤x<6210.14合计b1(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.(8分)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.(8分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.(11分)如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.(10分)已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.最新广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•贵港)7的相反数是()A.7 B.﹣7 C .D .﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2017•贵港)数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.3.(3分)(2017•贵港)如图是一个空心圆柱体,它的左视图是()A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.4.(3分)(2017•贵港)下列二次根式中,最简二次根式是()A .B .C .D .【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.(3分)(2017•贵港)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3 D.(﹣3a)2﹣a2=8a2【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.【点评】本题主要考查了合并同类项,单项式乘以单项式,幂的乘方等运算,熟练掌握运算法则是解答此题的关键.6.(3分)(2017•贵港)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)(2017•贵港)下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.【点评】此题主要考查了真假命题,关键是掌握真假命题的定义.8.(3分)(2017•贵港)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A .B .C .D.1【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B【点评】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.9.(3分)(2017•贵港)如图,A,B,C,D是⊙O上的四个点,B 是的中点,M是半径OD 上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B 是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.【点评】本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.10.(3分)(2017•贵港)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.【点评】本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.11.(3分)(2017•贵港)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.【点评】本题考查旋转变换、解直角三角形、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.12.(3分)(2017•贵港)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB 的面积有最大值,此时S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.【点评】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)(2017•贵港)计算:﹣3﹣5=﹣8.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.【点评】本题考查了有理数的减法,熟练掌握运算法则是解题的关键.14.(3分)(2017•贵港)中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.【点评】本题主要考查了科学记数法:熟记规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0是解题的关键.15.(3分)(2017•贵港)如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.16.(3分)(2017•贵港)如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC 绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和勾股定理的逆定理.17.(3分)(2017•贵港)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD 与交于点D,以O为圆心,OC 的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:如图,连接OD,AD,∵点C为OA的中点,∴∠CDO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.18.(3分)(2017•贵港)如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.【点评】本题考查了反比例函数图象上点的坐标特征,根的判别式等知识点的应用,题目比较典型,有一定的难度.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)(2017•贵港)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(5分)(2017•贵港)尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;【点评】本题考查尺规作图,解题的关键是熟练运用角平分线与垂直平分线的作法,本题属于基础题型.21.(6分)(2017•贵港)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(8分)(2017•贵港)在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m3≤x<4450.34≤x<536n5≤x<6210.14合计b1(1)填空:a=30,b=150,m=0.2,n=0.24;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.【点评】本题考查的是频数(率)分布表与条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23.(8分)(2017•贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)>15,解得:a>5,答:乙队在初赛阶段至少要胜6场.【点评】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,正确表示出球队的得分是解题关键.24.(8分)(2017•贵港)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD 的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R ﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R ﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R ﹣)2+()2,∴R=,即⊙O 的半径为.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.25.(11分)(2017•贵港)如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C 、D 的坐标代入可得,解得,∴直线CD 解析式为y=﹣2ax+3a ,令y=0可解得x=, ∴E (,0),∴BE=3﹣=∴S △BCD =S △BEC +S △BED =××(3a+a )=3a , ∴S △BCD :S △ABD =(3a ):a=3, ∴k=3;(3)∵B (3,0),C (0,3a ),D (2,﹣a ),∴BC 2=32+(3a )2=9+9a 2,CD 2=22+(﹣a ﹣3a )2=4+16a 2,BD 2=(3﹣2)2+a 2=1+a 2, ∵∠BCD <∠BCO <90°,∴△BCD 为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC 2+BD 2=CD 2,即9+9a 2+1+a 2=4+16a 2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x 2﹣4x+3;②当∠CDB=90°时,则有CD 2+BD 2=BC 2,即4+16a 2+1+a 2=9+9a 2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x 2﹣2x+;综上可知当△BCD 是直角三角形时,抛物线的解析式为y=x 2﹣4x+3或y=x 2﹣2x+.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、勾股定理、方程思想及分类讨论思想等知识.在(1)中注意抛物线顶点式的应用,在(2)中用a 表示出两三角形的面积是解题的关键,在(3)中由勾股定理得到关于a 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.26.(10分)(2017•贵港)已知,在Rt △ABC 中,∠ACB=90°,AC=4,BC=2,D 是AC 边上的一个动点,将△ABD 沿BD 所在直线折叠,使点A 落在点P 处.(1)如图1,若点D 是AC 中点,连接PC .①写出BP ,BD 的长;②求证:四边形BCPD 是平行四边形.(2)如图2,若BD=AD ,过点P 作PH ⊥BC 交BC 的延长线于点H ,求PH 的长. 【分析】(1)①分别在Rt △ABC ,Rt △BDC 中,求出AB 、BD 即可解决问题; ②想办法证明DP ∥BC ,DP=BC 即可;(2)如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD=AD=x ,则CD=4﹣x ,在Rt △BDC 中,可得x 2=(4﹣x )2+22,推出x=,推出DN==,由△BDN∽△BAM ,可得=,由此求出AM ,由△ADM ∽△APE ,可得=,由此求出AE=,可得EC=AC ﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt △ABC 中,∵BC=2,AC=4, ∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM ,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE ,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.【点评】本题考查四边形综合题、勾股定理.相似三角形的判定和性质、翻折变换、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.。
贵港中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.3333D. π答案:B2. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是多少?A. 22cmB. 26cmC. 28cmD. 30cm答案:B3. 函数y=2x+3的图象与y轴的交点坐标是?A. (0, 3)B. (0, -3)C. (3, 0)D. (-3, 0)答案:A4. 如果一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A5. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 不规则多边形答案:B6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 一个圆的半径是3cm,那么这个圆的面积是多少?A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C8. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x² - 4x + 4C. y = 2x² - 3xD. y = √x答案:B9. 一个长方体的长、宽、高分别是4cm、3cm、2cm,那么这个长方体的体积是多少?A. 24cm³B. 32cm³C. 48cm³D. 56cm³答案:A10. 一个正比例函数的图象经过点(2, 6),那么这个函数的解析式是什么?A. y = 3xB. y = 2xC. y = 6xD. y = x/2答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为3cm和4cm,那么这个三角形的斜边长是_______cm。
答案:512. 一个数的绝对值是5,那么这个数可以是______或______。
答案:5或-513. 一个扇形的圆心角是60°,半径是4cm,那么这个扇形的面积是_______cm²。
word 文档文档2022年中考往年真题练习: 贵港市初中毕业升学考试试卷数 学 (本试卷分第Ⅰ卷和第Ⅱ卷, 考试时间120分钟, 赋分120分)注意: 答案一律填写在答题卡上, 在试题卷上作答无效。
考试结束将本试卷和答题卡一并交回。
第Ⅰ卷(挑选题, 共36分)一、 我会挑选(本大题共12小题, 每小题3分, 共36分) 每小题都给出标号为A 、 B 、 C 、D 的 四个选项, 其中只有一个是 正确的 , 请考生用2B 铅笔将答题卡上将选定的 答案标号涂黑。
1.-2的 倒数是 A .-2 B .2C .-12D .12故选C .【点评】主要考查倒数的 定义, 要求熟练掌握.需要注意的 是 :倒数的 性质: 负数的 倒数还是 负数, 正数的 倒数是 正数, 0没有倒数. 倒数的 定义: 若两个数的 乘积是 1, 我们就称这两个数互为倒数.2.计算(-2a ) 2-3a 2的 结果是 A .-a 2B .a 2C .-5a 2D .5a 2【考点分析】幂的 乘方与积的 乘方;合并同类项.【考点剖析】首先利用积的 乘方的 性质求得(-2a ) 2=4a 2, 再合并同类项, 即可求得答案. 【解答】(-2a ) 2-3a 2=4a 2-3a 2=a 2.故选B .【点评】此题考查了积的 乘方与合并同类项.此题难度不大, 注意掌握指数与符号的 变化是 解此题的 关键.3.在一次投掷实心球训练中, 小丽同学5次投掷成绩(单位: m) 为: 6、 8、 9、 8、 9。
则关于这组数据的 说法不.正确的...是 A .极差是 3 B .平均数是 8 C .众数是 8和9 D .中位数是 9 【考点分析】极差;算术平均数;中位数;众数.【考点剖析】根据极差, 中位数, 平均数和众数的 定义分别计算即可解答. 【解答】A .极差是 9-6=3, 故此选项正确, 不符合题意.B .平均数为(6+8+9+8+9) ÷5=8, 故此选项正确, 不符合题意;C .∵8, 9各有2个, ∴众数是 8和9, 故此选项正确, 不符合题意;D .从低到高排列后, 为6, 8, 8, 9, 9.中位数是 8, 故此选项错误, 符合题意; 故选: D .【点评】本题考查了统计知识中的 极差, 中位数, 平均数和众数和平均数的 定义, 熟练掌握上述定义的 计算方法是 解答本题的 关键.4.下列各点中在反比例函数y =6x的 图像上的 是A .(-2, -3)B .(-3, 2)C .(3, -2)D .(6, -1) 【考点分析】反比例函数图象上点的 坐标特征.【考点剖析】根据反比例函数图象上点的 坐标特征, 只有xy =6才符合要求, 进行验证即可.解析版word 文档文档∴只有A 符合要求, 故选: D .【点评】此题主要考查了反比例函数图象上点的 坐标特征, 根据xy =6直接判断是 解题关键. 5.加入仅用一种多边形进行镶嵌, 那么下列正多边形不能够...将平面密铺的 是 A .正三角形B .正四边形C .正六边形D .正八边形【考点分析】平面镶嵌(密铺) . 【专题】常规题型.【考点剖析】分别求出各个正多边形的 每个内角的 度数, 再利用镶嵌应符合一个内角度数能整除360°即可作出判断.【解答】A .正三角形的 一个内角度数为180°-360°÷3=60°, 是 360°的 约数, 能镶嵌平面, 不符合题意;B .正四边形的 一个内角度数为180°-360°÷4=90°, 是 360°的 约数, 能镶嵌平面, 不符合题意;C .正六边形的 一个内角度数为180°-360°÷6=120°, 是 360°的 约数, 能镶嵌平面, 不符合题意;D .正八边形的 一个内角度数为180°-360°÷8=135°, 不是 360°的 约数, 不能镶嵌平面, 符合题意; 故选D .【点评】本题考查平面密铺的 问题, 用到的 知识点为: 一种正多边形能镶嵌平面, 这个正多边形的 一个内角的 度数是 360°的 约数;正多边形一个内角的 度数=180°-360°÷边数.6.如图是 由若干个大小一样的 正方体搭成的 几何体的 三视图, 则该几何体所用的 正方形的 个数是 A .2B .3C .4D .5【点评】本题考查了学生对三视图的 掌握程度和灵活运用功底, 同时也体现了对空间想象功底方面的 考查.加入掌握口诀“俯视图打地基, 正视图疯狂盖, 左视图拆违章”就更容易得到答案.7.在平面直角坐标系x O y 中, 已知点A (2, 1) 和点B (3, 0) , 则sin ∠AOB 的 值等于 A .55B .52C .32D .12【考点分析】锐角三角函数的 定义;坐标与图形性质;勾股定理. 【专题】计算题.【考点剖析】过A 作AC ⊥x 轴于C, 利用A 点坐标为(2, 1) 可得到OC =2, AC =1, 利用勾股定理可计算出OA, 然后根据正弦的 定义即可得到sin ∠AOB 的 值.word 文档文档【点评】本题考查了正弦的 定义: 在直角三角形中, 一个锐角的 正弦等于这个角的 对边与斜边的 比值.也考查了点的 坐标与勾股定理.8.如图, 已知直线y 1=x +m 与y 2=kx -1相交于点P (-1, 1) , 则关于x 的 不等式x +m >kx -1的 解集在数轴上表示正确的 是 A . B . C . D .【点评】本题考查了一次函数与一元一次不等式, 在数轴上表示不等式的 解集, 主要培养学生的 观察图象的 功底和理解功底.9.从2、 -1、 -2三个数中任意选取一个作为直线y =kx +1中的 k 值, 则所得的 直线不经..过.第三象限的 概率是 : A .13B .12C .23D .1【点评】本题考查一次函数的 性质和等可能事件概率的 计算.用到的 知识点为: 概率=所求情况数与总情况数之比.当一次函数y =kx +b 不经过第三象限时k <0.10.如图, PA 、 PB 是 ⊙O 的 切线, A 、 B 是 切点, 点C 是 劣弧AB 上的 一个动点, 若∠P =40°, 则∠ACB 的 度数是 A .80°B .110°C .120°D .140°【考点分析】切线的 性质;圆周角定理. 【专题】计算题.【考点剖析】连接OA, OB, 在优弧AB 上任取一点D (不与A 、 B 重合) , 连接BD, AD,如图所示, 由PA 与PB 都为圆O 的 切线, 利用切线的 性质得到OA 与AP 垂直, OB 与BP 垂直, 在四边形APOB 中, 根据四边形的 内角和求出∠AOB 的 度数, 再利用同弧所正确的 圆周角等于所对圆心角的 一半求出∠ADB 的 度数, 再根据圆内接四边形的 对角互补即可求出∠ACB 的 度数.word 文档文档【解答】连接OA, OB, 在优弧AB 上任取一点D (不与A 、 B 重合) ,【点评】此题考查了切线的 性质, 圆周角定理, 圆内接四边形的 性质, 以及四边形的 内角和,熟练掌握切线的 性质是 解本题的 关键.11.如图, 在直角梯形ABCD 中, AD//BC, ∠C =90°, AD =5, BC =9, 以A 为中心将腰AB 顺时针旋转90°至AE, 连接DE, 则△ADE 的 面积等于 A .10B .11C .12D .13【考点分析】全等三角形的 判定与性质;直角梯形;旋转的 性质.【考点剖析】过A 作AN ⊥BC 于N, 过E 作EM ⊥AD, 交DA 延长线于M, 得到四边形ANCD是 矩形, 推出∠DAN =90°=∠ANB =∠MAN, AD =NC =5, AN =CD, 求出BN=4, 求出∠EAM =∠NAB, 证△EAM ≌△BNA, 求出EM =BN =4, 根据三角形的 面积公式求出即可.【解答】过A 作AN ⊥BC 于N, 过E 作EM ⊥AD, 交DA 延长线于M,【点评】本题考查了矩形的 性质和判定, 三角形的 面积, 全等三角形的 性质和判定, 主要考查学生运用定理和性质进行推理的 功底, 题目比较好, 难度适中.12.如图, 在菱形ABCD 中, AB =BD, 点E 、 F 分别在BC 、 CD 上, 且BE =CF, 连接BF 、DE 交于点M, 延长DE 到H 使DE =BM, 连接AM 、 AH 。
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. 北京−4.6℃B. 上海5.8℃C. 天津−3.2℃D. 重庆8.1℃2.端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B.C. D.3.广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 0.849×109B. 8.49×108C. 84.9×107D. 849×1064.榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾.如图是燕尾榫的带榫头部分,它的主视图是( )A. B. C. D.5.不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )A. 1B. 13C. 12D. 236.如图,2时整,钟表的时针和分针所成的锐角为( )A. 20°B. 40°C. 60°D. 80°7.如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为(2,1),则点Q的坐标为( )A. (3,0)B. (0,2)C. (3,2)D. (1,2)8.激光测距仪L 发出的激光束以3×105km/s 的速度射向目标M ,t s 后测距仪L 收到M 反射回的激光束.则L 到M 的距离d km 与时间t s 的关系式为( )A. d =3×1052tB. d =3×105tC. d =2×3×105tD. d =3×106t9.已知点M(x 1,y 1),N(x 2,y 2)在反比例函数y =2x 的图象上,若x 1<0<x 2,则有( )A. y 1<0<y 2B. y 2<0<y 1C. y 1<y 2<0D. 0<y 1<y 210.如果a +b =3,ab =1,那么a 3b +2a 2b 2+ab 3的值为( )A. 0B. 1C. 4D. 911.《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. x 3+x 4+x 5=1B. x 3+x 4+x 5=100C. 3x +4x +5x =1D. 3x +4x +5x =10012.如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点.连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10二、填空题:本题共6小题,每小题2分,共12分。
2019年广西贵港市中考数学试卷一、选择题(本大题共12小题,共36.0分)1. 计算(-1)3的结果是( )A. −1B. 1C. −3D. 32. 某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是( ) A. B. C. D.3. 若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是( )A. 9,9B. 10,9C. 9,9.5D. 11,104. 若分式x 2−1x +1的值等于0,则x 的值为( )A. ±1B. 0C. −1D. 15. 下列运算正确的是( )A. x 3+(−x )3=−x 6B. (x +x )2=x 2+x 2C. 2x 2⋅x =2x 3D. (xx 2)3=x 3x 5 6. 若点P (m -1,5)与点Q (3,2-n )关于原点成中心对称,则m +n 的值是( )A. 1B. 3C. 5D. 77. 若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且1x +1x =-23,则m 等于( )A. −2B. −3C. 2D. 38. 下列命题中假命题是( )A. 对顶角相等B. 直线x =x −5不经过第二象限C. 五边形的内角和为540∘D. 因式分解x 3+x 2+x =x (x 2+x )9. 如图,AD 是⊙O 的直径,xx⏜=xx ⏜,若∠AOB =40°,则圆周角∠BPC 的度数是( )A. 40∘B. 50∘C. 60∘D. 70∘10. 将一条宽度为2cm 的彩带按如图所示的方法折叠,折痕为AB ,重叠部分为△ABC(图中阴影部分),若∠ACB =45°,则重叠部分的面积为( )A. 2√2xx 2B. 2√3xx 2C. 4xx 2D. 4√2xx 211. 如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( ) A. 2√3B. 3√2C. 2√6D. 512. 如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为S 1,S 2,则下列结论错误的是( )A. x 1+x 2=xx 2B. 4x =2xxC. xx =4xxD. cos ∠xxx =35 二、填空题(本大题共6小题,共18.0分)13. 有理数9的相反数是______.14. 将实数3.18×10-5用小数表示为______.15. 如图,直线a ∥b ,直线m 与a ,b 均相交,若∠1=38°,则∠2=______.16. 若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是______.17. 如图,在扇形OAB 中,半径OA 与OB 的夹角为120°,点A 与点B 的距离为2√3,若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.18. 我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,且b 2-4a >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2-2x -3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当-1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =-1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4.其中正确结论的个数是______.三、解答题(本大题共8小题,共66.0分)19. (1)计算:√4-(√3-3)0+(12)-2-4sin30°;(2)解不等式组:{6x −2>2(x −4)23−3−x 2≤−x 3,并在数轴上表示该不等式组的解集.20. 尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC ,请根据“SAS ”基本事实作出△DEF ,使△DEF ≌△ABC .21. 如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =x x (x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值;(2)求△ACE 的面积.22. 为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x 分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分) 频数(人) 频率51≤x <61a 0.1 61≤x <7118 0.18 71≤x <81b n91≤x<101 12 0.12合计100 1(1)填空:=______,=______,=______;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.23.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?24.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.25.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,-5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.26.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D 与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=√2,求线段PA+PF的最小值.(结果保留根号)答案和解析1.【答案】A【解析】解:(-1)3表示3个(-1)的乘积,所以(-1)3=-1.故选:A.本题考查有理数的乘方运算.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.2.【答案】B【解析】解:从正面看去,一共两列,左边有2竖列,右边是1竖列.故选:B.先细心观察原立体图形中正方体的位置关系,从正面看去,一共两列,左边有2竖列,右边是1竖列,结合四个选项选出答案.本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力.3.【答案】C【解析】解:将数据重新排列为8,9,9,9,10,10,11,11,∴这组数据的众数为9,中位数为=9.5,故选:C.根据众数和中位数的概念求解可得.本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.【答案】D【解析】解:==x-1=0,∴x=1;故选:D.化简分式==x-1=0即可求解;本题考查解分式方程;熟练掌握因式分解的方法,分式方程的解法是解题的关键.5.【答案】C【解析】解:a3+(-a3)=0,A错误;(a+b)2=a2+2ab+b2,B错误;(ab2)3=a3b5,D错误;故选:C.利用完全平方公式,合并同类项法则,幂的乘方与积的乘方法则运算即可;本题考查整式的运算;熟练掌握完全平方公式,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.6.【答案】C【解析】解:∵点P(m-1,5)与点Q(3,2-n)关于原点对称,∴m-1=-3,2-n=-5,解得:m=-2,n=7,则m+n=-2+7=5.故选:C.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.7.【答案】B【解析】解:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵+===-,∴m=-3;故选:B.利用一元二次方程根与系数的关系得到α+β=2,αβ=m,再化简+=,代入即可求解;本题考查一元二次方程;熟练掌握一元二次方程根与系数的关系是解题的关键.8.【答案】D【解析】解:A.对顶角相等;真命题;B.直线y=x-5不经过第二象限;真命题;C.五边形的内角和为540°;真命题;D.因式分解x3+x2+x=x(x2+x);假命题;故选:D.由对顶角相等得出A是真命题;由直线y=x-5的图象得出B是真命题;由五边形的内角和为540°得出C是真命题;由因式分解的定义得出D是假命题;即可得出答案.本题考查了命题与定理、真命题和假命题的定义:正确的命题是真命题,错误的命题是假命题;属于基础题.9.【答案】B【解析】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.根据圆周角定理即可求出答案.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.10.【答案】A【解析】解:如图,过B作BD⊥AC于D,则∠BDC=90°,∵∠ACB=45°,∴BD=CD=2cm,∴Rt△BCD中,BC==2(cm),∴重叠部分的面积为×2×2=2(cm),故选:A.过B作BD⊥AC于D,则∠BDC=90°,依据勾股定理即可得出BC的长,进而得到重叠部分的面积.本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【答案】C【解析】解:设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴DE=4,=,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴=,设AE=2y,AC=3y,∴=,∴AD=y,∴=,∴CD=2,故选:C.设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出=,从而可求出CD的长度.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.12.【答案】D【解析】解:∵正方形ABCD,DPMN的面积分别为S1,S2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠ECH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,∴HQ∥AB,∴=,即=,∴HQ=x,∴CD-HQ=x-x=x,∴cos∠HCD===,故结论D错误,故选:D.根据勾股定理可判断A;连接CF,作FG⊥EC,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD 可判断D.本题考查了正方形的性质,三角形全等的判定和性质三角形相似的判定和性质,勾股定理的应用以及平行线分线段成比例定理,作出辅助线构建等腰直角三角形是解题的关键.13.【答案】-9【解析】解:9的相反数是-9;故答案为-9;根据相反数的求法即可得解;本题考查相反数;熟练掌握相反数的意义与求法是解题的关键.14.【答案】0.0000318【解析】解:3.18×10-5=0.0000318;故答案为0.0000318;根据科学记数法的表示方法a×10n(1≤a<9)即可求解;本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.15.【答案】142°【解析】解:如图,∵a∥b,∴∠2=∠3,∵∠1+∠3=180°,∴∠2=180°-38°=142°.如图,利用平行线的性质得到∠2=∠3,利用互补求出∠3,从而得到∠2的度数.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16.【答案】23【解析】解:随机掷一枚均匀的骰子有6种等可能结果,其中点数不小于3的有4种结果,所以点数不小于3的概率为=,故答案为:.骰子六个面出现的机会相同,求出骰子向上的一面点数不小于3的情况有几种,直接应用求概率的公式求解即可.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.【答案】23【解析】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:利用弧长=圆锥的周长这一等量关系可求解.本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.18.【答案】4【解析】(3,0)和(0,3)坐标都满足函数y=|x2-2x-3|,解:①∵(-1,0),∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当-1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=-1或x=3,因此④也是正确的;⑤从图象上看,当x<-1或x>3,函数值要大于当x=1时的y=|x2-2x-3|=4,因此⑤时不正确的;故答案是:4由(-1,0),(3,0)和(0,3)坐标都满足函数y=|x 2-2x-3|,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的; 根据函数的图象和性质,发现当-1≤x≤1或x≥3时,函数值y 随x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与x 轴的两个交点,根据y=0,求出相应的x 的值为x=-1或x=3,因此④也是正确的;从图象上看,当x <-1或x >3,函数值要大于当x=1时的y=|x 2-2x-3|=4,因此⑤时不正确的;逐个判断之后,可得出答案. 理解“鹊桥”函数y=|ax 2+bx+c|的意义,掌握“鹊桥”函数与y=|ax 2+bx+c|与二次函数y=ax 2+bx+c 之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数y=ax 2+bx+c 与x 轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.19.【答案】解:(1)原式=2-1+4-4×12 =2-1+4-2 =3;(2)解不等式6x -2>2(x -4),得:x >-32, 解不等式23-3−x 2≤-x 3,得:x ≤1, 则不等式组的解集为-32<x ≤1,将不等式组的解集表示在数轴上如下:【解析】(1)先计算算术平方根、零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:如图,△DEF 即为所求.【解析】先作一个∠D=∠A ,然后在∠D 的两边分别截取ED=BA ,DF=AC ,连接EF 即可得到△DEF ; 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.21.【答案】解:(1)由已知可得AD =5,∵菱形ABCD ,∴B (6,0),C (9,4), ∵点D (4,4)在反比例函数y =x x (x >0)的图象上,∴k =16,将点C (9,4)代入y =23x +b ,∴b =-2;(2)E (0,-2),直线y =23x -2与x 轴交点为(3,0),∴S △AEC =12×2×(2+4)=6;【解析】(1)由菱形的性质可知B (6,0),C (9,4),点D (4,4)代入反比例函数y=,求出k ;将点C (9,4)代入y=x+b ,求出b ;(2)求出直线y=x-2与x 轴和y 轴的交点,即可求△AEC 的面积;本题考查反比例函数、一次函数的图象及性质,菱形的性质;能够将借助菱形的边长和菱形边的平行求点的坐标是解题的关键.22.【答案】10 25 0.25【解析】解:(1)a=100×0.1=10,b=100-10-18-35-12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人), 答:全校获得二等奖的学生人数90人.(1)利用×这组的频率即可得到结论;(2)根据(1)求出的数据补全频数分布直方图即可;(3)利用全校2500名学生数×考试成绩为91≤x≤100考卷占抽取了的考卷数×获得二等奖学生人数占获奖学生数即可得到结论.本题考查的是频数分布直方图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据,也考查了利用样本估计总体的思想.23.【答案】解:(1)设这两年藏书的年均增长率是x ,5(1+x )2=7.2,解得,x 1=0.2,x 2=-2.2(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有(7.2-5)×20%=0.44(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5×5.6%+0.447.2×100%=10%,答:到2018年底中外古典名著的册数占藏书总量的10%.【解析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率;(2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.24.【答案】(1)证明:∵在矩形ABCD 中,∠ABO =∠OCE =90°,∵OE ⊥OA ,∴∠AOE =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°,∴∠BAO =∠COE ,∴△ABO ∽△OCE , ∴xx xx =xx xx , ∵OB =OC , ∴xx xx =xx xx ,∵∠ABO =∠AOE =90°,∴△ABO ∽△AOE ,∴∠BAO =∠OAE ,过O 作OF ⊥AE 于F ,∴∠ABO =∠AFO =90°,在△ABO 与△AFO 中,{∠xxx =∠xxx∠xxx =∠xxx xx =xx,∴△ABO ≌△AFO (AAS ),∴OF =OB ,∴AE 是半圆O 的切线;(2)解:∵AF 是⊙O 的切线,AC 是⊙O 的割线,∴AF 2=AP •AC ,∴AF =√2(2+4)=2√3,∴AB =AF =2√3,∵AC =6,∴BC =√xx 2−xx 2=2√6,∴AO =√xx 2+xx 2=3,∵△ABO ∽△AOE , ∴xx xx =xx xx ,∴3xx =2√33, ∴AE =3√32. 【解析】(1)根据已知条件推出△ABO ∽△OCE ,根据相似三角形的性质得到∠BAO=∠OAE ,过O 作OF ⊥AE 于F ,根据全等三角形的性质得到OF=OB ,于是得到AE 是半圆O 的切线;(2)根据切割线定理得到AF==2,求得AB=AF=2,根据勾股定理得到BC==2,AO==3,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.25.【答案】解:(1)函数表达式为:y=a(x=4)2+3,将点B坐标代入上式并解得:a=-1,2x2+4x-5;故抛物线的表达式为:y=-12(2)A(4,3)、B(0,-5),则点M(2,-1),设直线AB的表达式为:y=kx-5,将点A坐标代入上式得:3=4k-5,解得:k=2,故直线AB的表达式为:y=2x-5;m2+4m-5),(3)设点Q(4,s)、点P(m,-12①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,m2+4m-5)向左平移2个单位、向下平移4个单位得到Q(4,s),同样点P(m,-12m2+4m-5-4=s,即:m-2=4,-12解得:m=6,s=-3,故点P、Q的坐标分别为(6,1)、(4,-3);②当AM是平行四边形的对角线时,m2+4m-5+s,由中点定理得:4+2=m+4,3-1=-12解得:m=2,s=1,故点P、Q的坐标分别为(2,1)、(4,1);故点P、Q的坐标分别为(6,1)或(2,1)、(4,-3)或(4,1).【解析】(1)函数表达式为:y=a(x=4)2+3,将点B坐标代入上式,即可求解;(2)A(4,3)、B(0,-5),则点M(2,-1),设直线AB的表达式为:y=kx-5,将点A坐标代入上式,即可求解;(3)分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.26.【答案】(1)①解:旋转角为105°.理由:如图1中,∵A ′D ⊥AC ,∴∠A ′DC =90°,∵∠CA ′D =15°,∴∠A ′CD =75°,∴∠ACA ′=105°,∴旋转角为105°.②证明:连接A ′F ,设EF 交CA ′于点O .在EF 时截取EM =EC ,连接CM . ∵∠CED =∠A ′CE +∠CA ′E =45°+15°=60°,∴∠CEA ′=120°,∵FE 平分∠CEA ′,∴∠CEF =∠FEA ′=60°,∵∠FCO =180°-45°-75°=60°,∴∠FCO =∠A ′EO ,∵∠FOC =∠A ′OE ,∴△FOC ∽△A ′OE , ∴xx x′x =xx xx ,∴xx xx =x′x xx, ∵∠COE =∠FOA ′,∴△COE ∽△FOA ′,∴∠FA ′O =∠OEC =60°,∴△A ′OF 是等边三角形,∴CF =CA ′=A ′F ,∵EM =EC ,∠CEM =60°,∴△CEM 是等边三角形,∠ECM =60°,CM =CE ,∵∠FCA ′=∠MCE =60°,∴∠FCM =∠A ′CE ,∴△FCM ≌△A ′CE (SAS ),∴FM =A ′E ,∴CE +A ′E =EM +FM =EF .(2)解:如图2中,连接A ′F ,PB ′,AB ′,作B ′M ⊥AC 交AC 的延长线于M .由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=√2AB=2,∠MCB′=30°,CB′=1,CM=√3,∴B′M=12∴AB′=√xx2+x′x2=√(√2+√3)2+12=√626.∴PA+PF的最小值为√626.【解析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。
2023年广西贵港中考数学真题及答案(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡.......一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.若零下2摄氏度记为2C -︒,则零上2摄氏度记为()A.2C -︒B.0C ︒C.2C +︒D.4C +︒2.下列数学经典图形中,是中心对称图形的是()A. B. C. D.3.若分式11x +有意义,则x 的取值范围是()A.1x ≠-B.0x ≠C.1x ≠D.2x ≠4.如图,点A 、B 、C 在O 上,40C ∠=︒,则AOB ∠的度数是()A.50︒B.60︒C.70︒D.80︒5.2x ≤在数轴上表示正确的是()A . B.C.D.6.甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:2 2.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=︒,那么B ∠的度数是()A.160︒B.150︒C.140︒D.130︒8.下列计算正确的是()A.347a a a += B.347a a a ⋅= C.437a a a ÷= D.()437a a =9.将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.2(3)4y x =-+ B.2(3)4y x =++C.2(3)4y x =+- D.2(3)4y x =--10.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m11.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为()A.23.2(1) 3.7x -= B.23.2(1) 3.7x +=C.23.7(1) 3.2x -= D.23.7(1) 3.2x +=12.如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=-的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为()A.4B.3C.2D.1二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.14.分解因式:a 2+5a =________________.15.函数3y kx =+的图象经过点()2,5,则k =______.16.某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______.17.如图,焊接一个钢架,包括底角为37︒的等腰三角形外框和3m 高的支柱,则共需钢材约______m(结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)18.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.计算:2(1)(4)2(75)-⨯-+÷-.20.解分式方程:211x x=-.21.如图,在ABC 中,30A ∠=︒,90B Ð=°.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.22.4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级八年级平均数7.557.55中位数8c 众数a 7合格率b85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.23.如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.24.如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.25.【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.26.【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 的对应点分别为B ',E ',展平纸片,连接AB ',BB ',BE '.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....;(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ',P ',展平纸片,连接,P B ''.请完成:∠的一条三等分线.(3)证明BB'是NBC参考答案一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】C二、填空题(本大题共6小题,每小题2分,共12分.)【13题答案】【答案】3【14题答案】【答案】a (a+5)【15题答案】【答案】1【16题答案】【答案】25##0.4【17题答案】【答案】21【18题答案】【答案】三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)【19题答案】【答案】6【20题答案】【答案】=1x -【21题答案】【答案】(1)图见详解(2)AB =【22题答案】【答案】(1)8a =,80%b =,7.5c =(2)510人(3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【23题答案】【答案】(1)见解析(2)12AP =【24题答案】【答案】(1)见详解(2)24y x =-+(3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【25题答案】【答案】(1)5l a=(2)1015250l a -=(3) 2.5,0.5l a ==(4)120y m =(5)相邻刻线间的距离为5厘米【26题答案】【答案】(1)123∠=∠=∠(2)见详解(3)见详解。
初中毕业升学考试(广西贵港卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】﹣2的绝对值是A. 2B. ﹣2C. 0D. 1【答案】A【解析】试题分析:根据负数的绝对值是它的相反数,可得﹣2的绝对值是2.故选A.考点:绝对值.【题文】下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab6【答案】B.【解析】试题分析:选项A,不是同类项不能合并,错误;选项B,根据单项式乘以单项式的法则可得3a•2b=6ab,正确;选项C,根据幂的乘方运算法则可得(a3)2=a6,错误;选项D,根据积的乘方运算法则可得(ab2)3=a3b6,错误;故选B.考点:单项式乘单项式;幂的乘方与积的乘方.【题文】用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.169000【答案】D.【解析】试题分析:1.69×105=169000,则原来的数是169000,故选D.考点:科学记数法.【题文】在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°【答案】C.【解析】试题分析:在△ABC中,∠A=95°,∠B=40°,根据三角形内角和是180度可得∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.考点:三角形内角和定理.【题文】式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【答案】C.【解析】试题分析:根据二次根式有意义的条件:被开方数是非负数,且分母不为零,可得到x﹣1>0,解得x>1.故选C.考点:二次根式有意义的条件.【题文】在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A. (﹣1,1)B. (﹣1,﹣2)C. (﹣1,2)D. (1,2)【答案】A【解析】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.考点:坐标与图形变化-平移.【题文】从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A. B. C. D.【答案】B.【解析】试题分析:题目中的五个数中,无理数有2个,所以随机抽取一个,则抽到无理数的概率是,故选B.考点:无理数;概率公式.【题文】下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【答案】C.【解析】试题分析:选项A,两组对角分别相等的四边形是平行四边形,命题正确,不合题意;选项B,矩形的对角线相等,命题正确,不合题意;选项C,对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;选项D,对角线互相垂直平分且相等的四边形是正方形,命题正确,不合题意.故选C.考点:命题与定理.【题文】若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【答案】D.【解析】试题分析:已知a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,根据根与系数的关系可得a+b=3,ab=p,再由a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,可得p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,所以p=﹣3符合题意.所以,故选D.考点:根与系数的关系.【题文】如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC ,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A. B. C. D.【答案】B.【解析】试题分析:如图,连接AO,∠BAC=120°,BC=2,∠OAC=60°,可得OC=,即可求得AC=2,设圆锥的底面半径为r,则2πr==π,解得:r=,故选B.考点:圆锥的计算.【题文】如图,抛物线y=与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3) B.(5,) C.(4,) D.(5,3)【答案】B.【解析】试题分析:连接PC、PO、PA,设点P坐标(m,)令x=0,则y=,点C坐标(0,),令y=0则=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×()﹣××10=﹣(m﹣5)2+,∴x=5时,△PA C面积最大值为,此时点P坐标(5,).故选B.考点:抛物线与x轴的交点;二次函数的最值.【题文】如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个 B.2个 C.3个 D.4个【答案】D.【解析】试题分析:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③正确;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=,∴S△OCF:S△OEF==,∴S△OCF=2S△OEF;故④正确;故选D.考点:相似三角形的判定与性质;平行四边形的性质.【题文】8的立方根是.【答案】2.【解析】试题分析:根据立方根的定义可得8的立方根为2.考点:立方根.【题文】分解因式:a2b﹣b=.【答案】b(a+1)(a﹣1).【解析】试题分析:先提取公因式b,再利用平方差公式分解因式即可,即a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.【题文】如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.【答案】54°.【解析】试题分析:过点C作CF∥a,由平行线的性质可得∠1=∠ACF=36°.再由余角的定义求出∠BCF=90°﹣36°=54°.再由平行线的性质可得CF∥b,即可得∠2=∠BCF=54°..考点:平行线的性质.【题文】如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.【答案】.【解析】试题分析:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,由勾股定理可得BD=,∵弦AD平分∠BAC,∴,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED×AD,∴()2=ED×5,解得DE=.考点:相似三角形的判定与性质;勾股定理;圆周角定理.【题文】如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).【答案】.【解析】试题分析:由∠C=90°,∠BAC=60°,AC=1,可得AB=2,所以扇形BAD的面积是: =,在直角△ABC中,BC=AB•sin60°=2×=,AC=1,所以S△ABC=S△ADE=AC•BC=×1×=.再由扇形CAE的面积是: =,则阴影部分的面积是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=.考点:扇形面积的计算;旋转的性质.【题文】已知a1=,a2=,a3=,…,an+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).【答案】.【解析】试题分析:把a1代入确定出a2,把a2代入确定出a3,依此类推,得到一般性规律,由题意得a1=,a2=,a3=,…,由此可知,3个一循环,因2016÷3=672,所以a2016的值为.考点:数字规律探究题.【题文】(1)计算:()﹣1﹣﹣(π﹣2016)0+9tan30°;(2)解分式方程:.【答案】(1)原式=1;(2)x=4.【解析】试题分析:(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:(1)原式=2﹣3﹣1+9×=2﹣3﹣1+3=1;(2)去分母得:x﹣3+x﹣2=3,解得:x=4,经检验x=4是分式方程的解.考点:零指数幂;负整数指数幂;特殊角的三角函数值;实数的运算;解分式方程.【题文】如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.【答案】(1)详见解析;(2)6.【解析】试题分析:(1)连接BD,BD与AE交于点F,连接CF并延长到AB,与AB交于点H,则CH为△ABC的高;(2)根据等腰三角形三线合一的性质可求得AH的长,再由勾股定理求得CH的长,继而求得△ABC的面积,又由AE是△ABC的中线,求得△ACE的面积.试题解析:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,由勾股定理可得CH=4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE=S△ABC=6.考点:作图题;平行四边形的性质.【题文】如图,已知一次函数y=x+b的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当x+b<时,请直接写出x的取值范围.【答案】(1)点C的坐标为(0,);(2)当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.【解析】试题分析:(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系l∴2=﹣+b,解得:b=,∴一次函数解析式为y=x+.联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y=x+.令y=x+中x=0,则y=,∴点C的坐标为(0,).(2)观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣4或﹣1<x<0.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;轴对称-最短路线问题.【题文】在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【答案】(1)120;(2)30°,25;(3)375.【解析】试题分析:(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.试题解析:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);(2)“了解”所对应扇形的圆心角的度数为:360°×=30°;×100%=25%,则m的值是25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.考点:折线统计图;用样本估计总体;扇形统计图.【题文】为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.【答案】(1)20%;(2)720<a≤828.【解析】试题分析:(1)题目中的等量关系为:2014年投入科研经费×(1+增长率)2=2016年投入科研经费,设2014至2016年该市投入科研经费的年平均增长率为x,列出方程求解即可;(2)根据题目中的不等关系×100%≤15%,列出不等式,解不等式求解即可.试题解析:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.考点:一元二次方程的应用;一元一次不等式组的应用.【题文】如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.【答案】(1)详见解析;(2).【解析】试题分析:(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据锐角三角函数,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.试题解析:(1)证明:如图1,作OD⊥AC于D,OE⊥AB于E,∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵OD⊥AC于D,OE⊥AB于E,∴OD=OE,∵AB经过圆O半径的外端,∴AB是半圆O所在圆的切线;(2)cos∠ABC=,AB=12,得OB=8.由勾股定理,得AO=4.由三角形的面积,得S△AOB=AB•OE=OB•AO,∴OE==,即半圆O所在圆的半径是.考点:切线的判定与性质.【题文】如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C .(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【答案】(1)y=x2+x﹣5;(2)E点坐标为(﹣2,﹣5);(3)存在满足条件的点P,其横坐标为或.【解析】试题分析:(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC 时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED 和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.试题解析:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2﹣5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.考点:二次函数综合题.【题文】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF ,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.【答案】(1)①详见解析;②6;(2)MN2=ND2+BM2,,理由见解析.【解析】试题分析:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS 证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,在Rt△EFC 中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明NM′2=ND2+DM′2,接下来证明△AMN≌△ANM′,于的得到MN=NM′,最后再由BM=DM′证明即可.试题解析:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.考点:四边形综合题.。
2022年广西贵港市中考数学试题一、选择题(本大题共12小题,每小题3分,共36分.)每小题都给出标号为A.B.C.D.的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑.1.﹣2的倒数是()A.2B.﹣2C.D.﹣2.一个圆锥如图所示放置,对于它的三视图,下列说法正确的是()A.主视图与俯视图相同B.主视图与左视图相同C.左视图与俯视图相同D.三个视图完全相同3.一组数据3,5,1,4,6,5的众数和中位数分别是()A.5,4.5B.4.5,4C.4,4.5D.5,54.据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm.已知1nm=10﹣9m,则28nm用科学记数法表示是()A.28×10﹣9m B.2.8×10﹣9m C.2.8×10﹣8m D.2.8×10﹣10m5.下列计算正确的是()A.2a﹣a=2B.a2+b2=a2b2C.(﹣2a)3=8a3D.(﹣a3)2=a66.若点A(a,﹣1)与点B(2,b)关于y轴对称,则a﹣b的值是()A.﹣1B.﹣3C.1D.27.若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m的值分别是()A.0,﹣2B.0,0C.﹣2,﹣2D.﹣2,08.下列命题为真命题的是()A.=aB.同位角相等C.三角形的内心到三边的距离相等D.正多边形都是中心对称图形9.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°10.如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是()A.8(3﹣)m B.8(3+)m C.6(3﹣)m D.6(3+)m11.如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是()A.B.C.D.12.如图,在边长为1的菱形ABCD中,∠ABC=60°,动点E在AB边上(与点A,B均不重合),点F在对角线AC上,CE与BF相交于点G,连接AG,DF,若AF=BE,则下列结论错误的是()A.DF=CE B.∠BGC=120°C.AF2=EG•EC D.AG的最小值为二、填空题(本大题共6小题,每小题3分,共18分.)13.若在实数范围内有意义,则实数x的取值范围是.14.因式分解:a3﹣a=.15.从﹣3,﹣2,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是.16.如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC 边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是.17.如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是.18.已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=﹣.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<(a﹣2b)(其中m≠﹣);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有个.三、解答题(本大题共8小题,满分66分.)解答应写出文字说明、证明过程或演算步骤.19.(10分)(1)计算:|1﹣|+(2022﹣π)0+(﹣)﹣2﹣tan60°;(2)解不等式组:20.(5分)尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.21.(6分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.(1)求k的值;(2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.22.(8分)在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A)、科技兴趣(B)、民族体育(C)、艺术鉴赏(D)、劳技实践(E),每个学生每个学期只参加一个社团活动.为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次调查的学生共有人;(2)将条形统计图补充完整;(3)在扇形统计图中,传统国学(A)对应扇形的圆心角度数是;(4)若该校有2700名学生,请估算本学期参加艺术鉴赏(D)活动的学生人数.23.(8分)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?24.(8分)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.25.(11分)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.26.(10分)已知:点C,D均在直线l的上方,AC与BD都是直线l的垂线段,且BD在AC的右侧,BD =2AC,AD与BC相交于点O.(1)如图1,若连接CD,则△BCD的形状为,的值为;(2)若将BD沿直线l平移,并以AD为一边在直线l的上方作等边△ADE.①如图2,当AE与AC重合时,连接OE,若AC=,求OE的长;②如图3,当∠ACB=60°时,连接EC并延长交直线l于点F,连接OF.求证:OF⊥AB.2022年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.)每小题都给出标号为A.B.C.D.的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑.1.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.2.【解答】解:圆锥的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,所以主视图与左视图相同,故选:B.3.【解答】解:这组数据中5出现的次数最多,故众数为5;这组数据按照从小到大的顺序排列好为:1、3、4、5、5、6,故中位数为=4.5,故选:A.4.【解答】解:因为1nm=10﹣9m,所以28nm=28×10﹣9m=2.8×10﹣8m.故选:C.5.【解答】解:A、2a﹣a=a,故A错误;B、a2与b2不能合并,故B错误;C、(﹣2a)3=﹣8a3,故C错误;D、(﹣a3)2=a6,故D正确;故选:D.6.【解答】解:∵点A(a,﹣1)与点B(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a﹣b=﹣2﹣(﹣1)=﹣1,故选:A.7.【解答】解:设方程的另一根为a,∵x=﹣2是一元二次方程x2+2x+m=0的一个根,∴4﹣4+m=0,解得m=0,则﹣2a=0,解得a=0.故选:B.8.【解答】解:A.当a<0时,原式=﹣a,故原命题为假命题,此选项不符合题意;B.当两直线平行时,同位角才相等,故原命题为假命题,此选项不符合题意;C.三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故原命题为真命题,此选项符合题意;D.三角形不是中心对称图形,故原命题为假命题,此选项不符合题意,故选:C.9.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.10.【解答】解:设AD=x米,∵AB=16米,∴BD=AB﹣AD=(16﹣x)米,在Rt△ADC中,∠A=45°,∴CD=AD•tan45°=x(米),在Rt△CDB中,∠B=60°,∴tan60°===,∴x=24﹣8,经检验:x=24﹣8是原方程的根,∴CD=(24﹣8)米,∴这棵树CD的高度是(24﹣8)米,故选:A.11.【解答】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC===,故选:C.12.【解答】解:∵四边形ABCD是菱形,∠ABC=60°,∴∠BAD=120°,BC=AD,∠DAC=∠BAD=60°,∴∠DAF=∠CBE,∵BE=AF,∴△ADF≌△BCE(SAS),∴DF=CE,∠BCE=∠ADF,故A正确,不符合题意;∵AB=AD,∠BAF=∠DAF,AF=AF,∴△BAF≌△DAF(SAS),∴∠ADF=∠ABF,∴∠ABF=∠BCE,∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣∠CBE=120°,故B正确,不符合题意;∵∠EBB=∠ECB,∠BEG=∠CEB,∴△BEG∽△CEB,∴,∴BE2=CE×EG,∵BE=AF,∴AF2=EG•EC,故C正确,不符合题意;以BC为底边,在BC的下方作等腰△OBC,使∠OBC=∠OCB=30°,∵∠BGC=120°,BC=1,∴点G在以O为圆心,OB为半径的圆上运动,连接AO,交⊙O于G,此时AG最小,AO是BC的垂直平分线,∵OB=OC,∠BOC=120°,∴∠BCO=30°,∴∠ACO=90°,∴∠OAG=30°,∴OC=,∴AO=2OC=,∴AG的最小值为AO﹣OC=,故D错误,符合题意.故选:D.二、填空题(本大题共6小题,每小题3分,共18分.)13.【解答】解:根据题意得:x+1≥0,∴x≥﹣1,故答案为:x≥﹣1.14.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)15.【解答】解:∵第三象限的点的坐标需要选两个负数,∴该点落在第三象限的概率是×=,故答案为:.16.【解答】解:根据题意,∵DE⊥AC,∠CAD=25°,∴∠ADE=90°﹣25°=65°,由旋转的性质可得∠B=∠ADE,AB=AD,∴∠ADB=∠B=65°,∴∠BAD=180°﹣65°﹣65°=50°,∴旋转角α的度数是50°;故答案为:50°.17.【解答】解:过点D作DF⊥AB于点F,∵AD=AB,∠BAD=45°,AB=3,∴AD=×3=2,∴DF=AD sin45°=2×=2,∵AE=AD=2,∴EB=AB−AE=,∴S阴影=S▱ABCD−S扇形ADE−S△EBC=3×2﹣﹣××2=5﹣π,故答案为:5﹣π.18.【解答】解:∵抛物线的对称轴为直线x=﹣,且抛物线与x轴的一个交点坐标为(﹣2,0),∴抛物线与x轴的另一个坐标为(1,0),把(﹣2,0)(1,0)代入y=ax2+bx+c(a≠0),可得:,解得,∴a+b+c=a+a﹣2a=0,故③正确;∵抛物线开口方向向下,∴a<0,∴b=a<0,c=﹣2a>0,∴abc>0,故①错误;∵抛物线与x轴两个交点,∴当y=0时,方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故②正确;∵am2+bm=am2+am=a(m+)2﹣a,(a﹣2b)=(a﹣2a)=﹣a,∴am2+bm﹣(a﹣2b)=a(m+)2,又∵a<0,m≠﹣,∴a(m+)2<0,即am2+bm<(a﹣2b)(其中m≠﹣),故④正确;∵抛物线的对称轴为直线x=﹣,且抛物线开口朝下,∴可知二次函数,在x>﹣时,y随x的增大而减小,∵x1>x2>1>﹣,∴y1<y2,故⑤错误,正确的有②③④,共3个,故答案为:3.三、解答题(本大题共8小题,满分66分.)解答应写出文字说明、证明过程或演算步骤.19.【解答】解:(1)原式=﹣1+1+4﹣=4;(2)解不等式①,得:x<,解不等式②,得:x≥﹣1,∴不等式组的解集为﹣1≤x.20.【解答】解:如图,△ABC为所作.21.【解答】解:(1)∵点C(3,2)在反比例函数y=的图象上,∴=2,解得:k=6;(2)∵点C(3,2)是线段AB的中点,∴点A的纵坐标为4,∴点A的横坐标为:=,∴点A的坐标为(,4),设直线AC的解析式为:y=ax+b,则,解得:,∴直线AC的解析式为:y=﹣x+6,当y=0时,x=,∴OB=,∵点C是线段AB的中点,∴S△AOC=S△AOB=×××4=.22.【解答】解:(1)本次调查的学生共有:18÷20%=90(人),故答案为:90;(2)C社团人数为:90﹣30﹣10﹣10﹣18=22(人),补全条形统计图如下:(3)在扇形统计图中,传统国学(A)对应扇形的圆心角度数是360°×=120°,故答案为:120°;(4)2700×=300(人),答:该校本学期参加艺术鉴赏(D)活动的学生人数大约有300人.23.【解答】解:(1)设绳子的单价为x元,则实心球的单价为(x+23)元,根据题意,得,解得x=7,经检验可知x=7是所列分式方程的解,且满足实际意义,∴x+23=30,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m个,则购买绳子的数量为3m条,根据题意,得7×3m+30m=510,解得m=10,∴3m=30,答:购买绳子的数量为30条,购买实心球的数量为10个.24.【解答】(1)证明:如图,作OH⊥F A,垂足为H,连接OE,∵∠ACB=90°,D是AB的中点,∴CD=AD=,∴∠CAD=∠ACD,∵∠BDC=∠CAD+∠ACD=2∠CAD,又∵∠F AC=,∴∠F AC=∠CAB,即AC是∠F AB的平分线,∵点O在AC上,⊙O与AB相切于点E,∴OE⊥AB,且OE是⊙O的半径,∴OH=OE,OH是⊙O的半径,∴AF是⊙O的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sin B=,∴可设AC=4x,AB=5x,∴(5x)2﹣(4x)2=62,∴x=2,则AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,∵Rt△AOE∽Rt△ABC,∴,即,∴r=3,∴AE=4,又∵AD=5,∴DE=1,在Rt△ODE中,由勾股定理得:OD=.25.【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,,解得,∴直线AB的解析式为y=﹣x+3,当y=0时,﹣x+3=0,解得:x=2,∴C点坐标为(2,0),∵PD⊥x轴,PE∥x轴,∴∠ACO=∠DEP,∴Rt△DPE∽Rt△AOC,∴,∴PE=PD,∴PD+PE=PD,设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,∴PD+PE=﹣(a﹣)2+,∵﹣<0,∴当a=时,PD+PE有最大值为;(3)①当△AOC∽△APD时,∵PD⊥x轴,∠DP A=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).26.【解答】解:(1)如图1,过点C作CH⊥BD于H,∵AC⊥l,DB⊥l,CH⊥BD,∴∠CAB=∠ABD=∠CHB=90°,∴四边形ABHC是矩形,∴AC=BH,又∵BD=2AC,∴AC=BH=DH,且CH⊥BD,∴△BCD的形状为等腰三角形,∵AC、BD都垂直于l,∴△AOC∽△BOD,∴,即DO=2AO,∴,故答案为:等腰三角形,;(2)①如图2,过点E作EH⊥AD于点H,∵AC,BD均是直线l的垂线段,∴AC∥BD,∵△ADE是等边三角形,且AE与AC重合,∴∠EAD=60°,∴∠ADB=∠EAD=60°,∴∠BAD=30°,∴在Rt△ADB中,AD=2BD,AB=BD,又∵BD=2AC,AC=,∴AD=6,AB=3,∴AH=DH=AD=3,AO=AD=2,∴OH=1,由旋转性质可得EH=AB=3,在Rt△EOH中,OE=2;②如图3,连接CD,∵AC∥BD,∴∠CBD=∠ACB=60°,∵△BCD是等腰三角形,∴△BCD是等边三角形,又∵△ADE是等边三角形,∴△ABD绕点D顺时针旋转60°后与△ECD重合,∴∠ECD=∠ABD=90°,又∵∠BCD=∠ACB=60°,∴∠ACF=∠FCB=∠FBC=30°,∴FC=FB=2AF,∴,又∵∠OAF=∠DAB,∴△AOF∽△ADB,∴∠AFO=∠ABD=90°,∴OF⊥AB.。
广西区贵港市中考数学
试题
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
贵港市2010年初中毕业升学考试
数学试题
一、细心填一填(本大题共10小题,每小题2分,满分20分) 1.计算:(-1)2= .
2.2010年上海世博会的园区规划用地面积约为5280000m 2.将5280000用科学记数法表示为 .
3.在一次数学测验中,某小组5名学生的成绩(单位:分)如下:72、68、86、92、82.这组数据的中位数是 .
4.已知关于x 的一元二次方程x 2-bx +3=0的一个实数根为1,则b = .
5.在四边形ABCD 中,已知AD ∥BC .若再添加一个条件,能使四边形ABCD 成为平行四边形,则这个条件可以是 (写一个即可,但不能添加任何辅助线).
6.在一个不透明的口袋中,装有5个红球和n 个黄球,它们除颜色外其余均相同.若从中随机摸出
一个球,摸到黄球的概率为 3
4,则口袋中球的总数为 个.
7.如图,在梯形ABCD 中,AB ∥CD ,∠C =90o ,AB =25,BC =24.若将该梯形沿BD 折叠,点C 恰好与腰AD 上的点E 重合,则AE 的长为 .
8.如图,AB 为半圆O 的直径,C 、D 、E 、F 是AB ⌒
的五等分点,P 是AB 上的任意一点.若AB =4,
则图中阴影部分的面积为 .
9.如图,O 是四边形ABCD 内的一点,OB =OC =OD ,∠BCD =∠BAD =75o ,则∠ADO +∠ABO = 度.
10.请阅读下列材料:当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线
顶点的坐标也将发生变化.例如:由y =x 2-2ax +a 2+a -3=(x -a )2+a -3,得抛物线y =x 2-A
B C
D
O
A
B C
D E
A
B C
A E
B C
D
F H
· · · 横坐标x 都满足关系式y =x -3.根据上述材料,可以确定抛物线y =x 2+4bx +b 的顶点的纵坐标y 与横坐标x 都满足的关系式为 .
二、精心选一选(本大题共8小题,每小题3分,满分24分) 11.下列计算正确的是( )
A .a 2·a 3=a 6
B .y 3·y 3=y
C .3m +2n =5mn
D .(x 3)2=x 6 12.在平面直角坐标系中,点P (-2,a 2+1)所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
13.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位
置上的正方体的个数,则这个几何体的左视图是( )
14.估计138的大小应( )
A .在9~10之间
B .在10~11之间
C .在11~12之间
D .在12~13之间
15.甲、乙、丙、丁四人进行射击测试,每人射击8次,射击成绩的平均环数相同,方差分别为:
S 2甲=、S 2乙=、S 2丙=、S 2丁=,则成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁
16.如图,在4×8的矩形网格中,每格小正方形的边长都是1,△ABC 的三个顶点都是格点,则tan
∠BAC 的值为( ) A .
1
2 B .1
C . 2
D .2
2
17.如图,在对角线长分别为12和16的菱形ABCD 中,E 、F
分别是边AB 、AD 的中点,H 是对角线BD 上的任意一点,
1 3
2 2 1 1
俯视图
A B
C D
则HE +HF 的最小值是( )
A .14
B .28
C .6
D .10
18.如图,等边△ABC 的顶点A 、B 的坐标分别为(-3(0,1),点P (3,a )在第一象限内,且满足2S △ABP =S 则a 的值为( )
A . 7
4 B . 2 C . 3 D .2
三、解答题(本大题共8小题,满分76分) 19.(第(1)题5分,第(2)题6分,满分11分)
(1)计算:|2|45cos 2512211
-+-⎪⎭
⎫ ⎝⎛+⎪⎪⎭
⎫ ⎝⎛-- ;
(2)先化简,再求值:
1 2a - a 2-1 a 2-2a +1 ÷ a 2+a a 2-2a 1
,其中a =- 1
2.
20.(8分)已知点P (1,2)在反比例函数y = k
x (k ≠0)的图象上.
(1)当x =-2时,求y 的值; (2)当1<x <4时,求y 的取值范围.
21.(9分)某校为了了解九年级男生50米短跑的成绩,从中随机抽取了50名男生进行测试,根据测
试评分标准,将他们的得分按A 、B 、C 、D 四个
等级进行统计,并绘制成下面的扇形图和统计表:
请你根据以上图表提供的信息,解答下列问题: (1)在统计表中x = ,y = ,m = ,n = ; (2)在扇形图中,A 等级所对应的圆心角是 度;
(3)如果该校九年级男生共有300名,那么请你估计这300名男生中成绩等级没有达到A 或B 的
共有多少人
22.(6分)如图,把△ABC 置于平面直角坐标系中,请你按以下要求分别画图:
(1)画出△ABC 向下平移5个单位长度得到的△A 1B 1C 1; (2)画出△ABC 绕原点O 逆时针旋转90o 得到的△A 2B 2C 2;
A
B
D E
C P
23.(9分)如图,在△ABC 中,AB =AC ,D 为AB 上一点,E 为AC 延长线上的一点,且CE =BD ,
连接DE 交BC 于点P . (1)求证:PD =PE ;
(2)若CE ∶CA =1∶5,BC =10,求BP 的长.
24.(10分)某儿童服装店欲购进A 、B 两种型号的儿童服装.经调查:B 型号童装的进货单价是A
(1)求A、B两种型号童装的进货单价各是多少元
(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用
不超过6300元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元.问该店应该怎样安排进货,才能使总获利最大最大总获利为多少元
25.(11分)如图,扇形OAB 的半径OA =r ,圆心角∠AOB =90o ,点C 是AB ⌒
上异于A 、B 的动点,
过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,点M 在DE 上,DM =2EM ,过点C 的直线CP 交OA 的延长线于点P ,且∠CPO =∠CDE .
(1)求证:DM = 2
3r ;
(2)求证:直线CP 是扇形OAB 所在圆的切线;
(3)设y =CD 2+3CM 2,当∠CPO =60o 时,请求出y 关于r 的函数关系式.
O
E
B M
C
P
D A
26.(12分)如图,直线y=kx-1与抛物线y=ax2+bx+c交于点A(-3,2)、B(0,-1),抛物线的顶点为C(-1,-2),对称轴交直线AB于点D,连接OC.
(1)求k的值及抛物线的解析式;
(2)若P为抛物线上的点,且以P、A、D三点构成的三角形是以线段AD为一条直角边的直角
三角形,请求出满足条件的点P的坐标;
(3)在(2)的条件下所得到三角形是否与△COD不必写出证明过
程).。