3.4-1生活中的优化问题举例
- 格式:doc
- 大小:71.50 KB
- 文档页数:4
§3.4生活中的优化问题举例学习目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高、用料最省等问题就是数学中的最大、最小值问题.(√) 2.解决应用问题的关键是建立数学模型.(√)类型一几何中的最值问题例1请你设计一个包装盒如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S 最大,则x 应取何值?(2)若广告商要求包装盒容积V 最大,则x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 几何类型的优化问题 题点 几何体体积的最值问题解 (1)由题意知包装盒的底面边长为2x cm , 高为2(30-x )cm,0<x <30,所以包装盒侧面积为S =42x ×2(30-x ) =8x (30-x )≤8×⎝⎛⎭⎪⎫x +30-x 22=8×225,当且仅当x =30-x ,即x =15时,等号成立, 所以若广告商要求包装盒侧面积S 最大,则x =15. (2)包装盒容积V =2x 2·2(30-x ) =-22x 3+602x 2(0<x <30),所以V ′=-62x 2+1202x =-62x (x -20). 令V ′>0,得0<x <20; 令V ′<0,得20<x <30.所以当x =20时,包装盒容积V 取得最大值,此时包装盒的底面边长为202cm ,高为102cm ,包装盒的高与底面边长的比值为1∶2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.特别注意:在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域. 跟踪训练1 已知圆柱的表面积为定值S ,当圆柱的容积V 最小时,圆柱的高h 的值为________.考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案]6πS 3π[解析] 设圆柱的底面半径为r ,则S 圆柱底=2πr 2, S 圆柱侧=2πrh ,∴圆柱的表面积S =2πr 2+2πrh , ∴h =S -2πr 22πr.又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最小. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最小时, 圆柱的高h 为6πS 3π. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加销售额-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入) 考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)设投入t (百万元)的广告费后增加的收益为f (t )(百万元),则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3),∴当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),又设由此获得的收益是g (x )(百万元),则g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),∴g ′(x )=-x 2+4,令g ′(x )=0,解得x =-2(舍去)或x =2.又当0<x <2时,g ′(x )>0;当2<x ≤3时,g ′(x )<0,∴当x =2时,g (x )取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有: (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量 y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 命题角度2 用料(费用)最省问题例3 某网球中心欲建连成片的网球场数块,用128万元购买土地10000平方米,该中心每块球场的建设面积为1000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题解 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041000x =1280x (元),因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来表示, 所以每平方米的综合费用为g (x )=f (x )+1280x =800+160ln x +1280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时, g ′(x )<0,当x >8时,g ′(x )>0,所以当x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.反思与感悟 费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. 跟踪训练3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题 解 (1)设需新建n 个桥墩,则(n +1)x =m , 即n =mx-1,所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256. (2)由(1)知,f ′(x )=-256m x 2+1212mx -=m 2x 232512x ⎛⎫- ⎪⎝⎭.令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数, 所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( ) A .公司已经亏损 B .公司的盈利在增加 C .公司的盈利在逐渐减少D .公司有时盈利有时亏损 考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] C[解析] 因为f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在逐渐减少.2.已知某厂家生产某种产品的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+36x +126,则使该生产厂家获取最大年利润的年产量为( )A .11万件B .9万件C .7万件D .6万件考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] D[解析] 由y ′=-x 2+36=0, 解得x =6或x =-6(舍去). 当0<x <6时,y ′>0; 当x >6时,y ′<0, ∴在x =6时y 取最大值.3.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的最大体积为( ) A .2m 3 B .3m 3 C .4m 3D .5m 3 考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案] B[解析] 设长方体的宽为x (m),则长为2x (m),高为h =18-12x 4=92-3x (m)⎝⎛⎭⎫0<x <32,故长方体的体积为V (x )=2x 2⎝⎛⎭⎫92-3x=9x 2-6x 3⎝⎛⎭⎫0<x <32, 从而V ′(x )=18x -18x 2=18x (1-x ),令V ′(x )=0,解得x =1或x =0(舍去).当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值,从而最大体积V =V (1)=9×12-6×13=3(m 3).4.容积为256的方底无盖水箱,它的高为________时最省材料.考点 函数类型的优化问题题点 利用导数解决费用最省问题[答案] 4[解析] 设水箱高为h ,底面边长为a ,则a 2h =256,其表面积为S =a 2+4ah =a 2+4a ·256a 2=a 2+210a. 令S ′=2a -210a 2=0,得a =8. 当0<a <8时,S ′<0;当a >8时,S ′>0,故当a =8时,S 最小,此时h =2882=4. 5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知当商品单价降低2元时,每星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数;(2)如何定价才能使一个星期的商品销售利润最大?考点 函数类型的优化问题题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则每星期多卖的商品数为kx 2.若记商品在一个星期的获利为f (x ),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9072,x∈[0,21].(2)由(1)得f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当x=12时,f(x)取得极大值.因为f(0)=9072,f(12)=11664.所以当定价为30-12=18(元)时,才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求函数的导函数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数[解析]式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.。
人教新课标版(A )高二选修1-1 3.4 生活中的优化问题举例同步练习题【基础演练】题型一:有关最值问题的实际应用 解实际应用问题要注意以下几点:①设变量列出函数关系式;②确定自变量的实际定义域;③唯一的极值点即为最值点,请根据以上知识解决以下1~4题1. 如图3-4-1,在边长为cm 60的正方形铁皮四角除去边长相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?2. 以长为10的线段AB 为直径作半圆,则它的内接矩形面积的最大值为 A. 10 B. 15 C. 25 D. 503. 某工厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为__________。
4. 某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为()0x 1x 1x 3Q ≥++=,已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元,若每件焦价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和。
(1)试将利润y (万元)表示为年广告费x (万元)的函数,如果年广告费投入100万元,企业是亏损还是盈利? (2)当年广告费投入多少万元时,企业年利润最大?题型二:有关导数求极(最)值的综合应用 利用导数求函数极(最)值,涉及高中数学的各方面,尤其函数最为明显,请根据以上知识解决以下5~7题。
5. ()a x 3x 2x f y 23+-==的极大值为6,那么a 等于A. 6B. 0C. 5D. 16. 已知函数()qx px x x f 23++=的图象与x 轴切于非原点的一点,且4y =极小值,那么=p __________,q=__________。
7. (2006·四川)已知函数()1ax 3x x f 3-+=,()()5ax x f x g --'=,其中()x f '是()x f 的导函数。
3.4 生活中的优化问题举例学习目标:解决一些综合问题 重点:实际问题的应用 难点:实际问题的应用 教材助读:导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。
再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.合作探究展示点评例1:工厂生产某种产品,次品率p 与日产量x (万件)间的关系为p =⎩⎨⎧16-x,0<x ≤c ,23,x >c ,(c 为常数,且0<c <6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元. (1)将日盈利额y (万元)表示为日产量x (万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=次品数产品总数×100%)例2:经济学上规定,对于某经济函数y =f (x ),称xf ′(x )f (x )为该经济函数的弹性,它表示经济变量x 变动1%时,经济变量y 相应变动的百分比.现有一个企业生产一种商品,年产x 件的总成本为c +dx ,年需求量g (p )是价格p 的函数,即g (p )=a -bp (a ,b ,c ,d >0).求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性的绝对值为1时的价格;(3)若企业将价格定为p =a4b ,求此时需求对价格的弹性,并说明它的实际意义.例3:张明准备购买一套住房,最初准备选择购房一年后一次性付清房款,且付款时需加付年利率为4.8%的利息.这时正好某商业银行推出一种年利率低于4.8%的一年定期贷款业务,贷款量与利率的平方成正比,比例系数为k (k >0),因此,他打算申请这种贷款在购房时付清房款.(1)若贷款的利率为x ,x ∈(0,0.048),写出贷款量g (x )及他应支付的利息h (x ); (2)贷款利息为多少时,张明获利最大? 当堂检测1.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .3002.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( )A .4B .8C .43D .833.某工厂需要建一个面积为512m 2的矩形堆料场,一边可以利用原有的墙壁,则要使砌墙所用材料最省,则堆料场的长和宽各为( )A .16m,16mB .32m,16mC .32m,8mD .16m,8m4.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.0486,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486),若使银行获得最大效益,则x 的取值为( )A .0.0162B .0.0324C .0.0243D .0.04865.做一个容积为256的方底无盖水箱,它的高为________时最省料.6.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(200-x )件,要使利润最大每件定价为________元.7.某厂生产某种产品的固定成本(固定投入)为2 500元,已知每生产x件这样的产品需要再增加可变成本C(x)=200x+136x3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?8.用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?——★ 参 考 答 案 ★——:合作探究展示点评例1:解:(1)当x >c 时,p =23,y =(1-23)·x ·3-23·x ·32=0;当0<x ≤c 时,p =16-x,∴y =(1-16-x )·x ·3-16-x ·x ·32=3(9x -9x 2)2(6-x ).∴日盈利额y (万元)与日产量x (万件)的函数关系为 y =⎩⎪⎨⎪⎧3(9x -2x 2)2(6-x ),0<x ≤c ,0,x >c ,(c 为常数,且0<c <6).(2)由(1)知,当x >c 时,日盈利额为0. 当0<x ≤c 时, ∵y =3(9x -2x 2)2(6-x ),∴y ′=32·(9-4x )(6-x )+9x -2x 2(6-x )2=3(x -3)(x -9)(6-x )2,令y ′=0,得x =3或x =9(舍去). ∴①当0<c <3时,y ′>0, ∴y 在区间(0,c ]上单调递增, ∴y 最大值=f (c )=3(9c -2c 2)2(6-c ).②当3≤c <6时,在(0,3)上,y ′>0,在(3,c )上,y ′<0, ∴y 在(0,3)上单调递增,在(3,c )上单调递减. ∴y 最大值=f (3)=92.综上,若0<c <3,则当日产量为c 万件时,日盈利额最大; 若3≤c <6,则当日产量为3万件时,日盈利额最大.例2:解:(1)由题意可知此时年利润l =f (x )=px -(c +dx )=a -xb x -(c +dx ).f ′(x )=-2b x +ab -d ,令f ′(x )=0,得x =12(a -bd ).当x <12(a -bd )时,f ′(x )>0;当x >12(a -bd )时,f ′(x )<0,所以x =12(a -bd )为极大值点,即最大值点.故x =12(a -bd )时,l 取得最大值14b (a -bd )2-c .(2)g (p )=a -bp ,则需求对价格的弹性为: p ·g ′(p )g (p )=p ·(a -bp )′a -bp =-bp a -bp . 令|-bp a -bp|=1,得p =a2b .(3)若p =a 4b ,则-bp a -bp=-13.它表示价格定为p =a4b 时,价格上升1%时,需求量相应会减少0.333%.例3:解:(1)由题意可知贷款量g (x )=kx 2,应支付利息h (x )=x ·g (x )=kx 3. (2)张明的获利为两种付款方式之间应付的利息差,设张明获利为y ,则 y =0.048·kx 2-kx 3, y ′=k ·0.096x -3kx 2,令y ′=0,解得x =0或x =0.032. 当x ∈(0,0.032)时,y ′>0, 当x ∈(0.032,0.048)时,y ′<0.故当x =0.032时,y 在x ∈(0,0.048)内取得极大值,即最大值,故贷款利率为3.2%时,张明获利最大. 当堂检测1.[答案]D[解析]由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390.由P ′(x )=0,得x =300.当0≤x ≤300时,p ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大,故选D . 2.[答案]C[解析]V =13×2x 22·y =x 2y 3=3x 2-x 33(0<x <3),V ′=6x -3x 23=2x -x 2=x (2-x ).令V ′=0,得x =2或x =0(舍去). ∴x =2时,V 最大为43.3.[答案]B[解析]如图所示,设场地一边长为x m , 则另一边长为512xm.因此新墙总长度L =2x +512x (x >0),L ′=2-512x 2.令L ′=0,得x =16或x =-16(舍去). ∵L 在(0,+∞)上只有一个极值点, ∴x =16必是最小值点. ∵x =16,∴512x=32.故当堆料场的宽为16m ,长为32m 时,可使砌墙所用的材料最省. 4.[答案]B[解析]依题意,存款量是kx 2,银行支付的利息是kx 3,贷款的收益是0.0486kx 2, 其中x ∈(0,0.0486).所以银行的收益是y =0.0486kx 2-kx 3(0<x <0.0486), 则y ′=0.0972kx -3kx 2.令y ′=0,得x =0.0324或x =0(舍去). 当0<x <0.0324时,y ′>0; 当0.0324<x <0.0486时,y ′<0.所以当x =0.0324时,y 取得最大值,即 当存款利率为0.0324时,银行获得最大收益. 5.[答案]4[解析]设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x 2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则当高h =25664=4时S 取得最小值.6.[答案]85[解析]设每件商品定价x 元,依题意可得利润为L =x (200-x )-30x =-x 2+170x (0<x <200). L ′=-2x +170,令-2x +170=0,解得x =1702=85.因为在(0,200)内L 只有一个极值,所以以每件85元出售时利润最大. 7.解:设该厂生产x 件这种产品利润为L (x ) 则L (x )=500x -2 500-C (x ) =500x -2 500-⎝⎛⎭⎫200x +136x 3 =300x -136x 3-2 500(x ∈N )令L ′(x )=300-112x 2=0,得x =60(件)又当0≤x <60时,L ′(x )>0 x >60时,L ′(x )<0所以x =60是L (x )的极大值点,也是最大值点. 所以当x =60时,L (x )=9 500元.答:要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.8.解:设水箱底边长为x cm ,则水箱高为h =60-x2(cm).水箱容积V =V (x )=60x 2-x 32(0<x <120)(cm 3). V ′(x )=120x -32x 2.令V ′(x )=0得,x =0(舍)或x =80.当x 在(0,120)内变化时,导数V ′(x )的正负如下表:因此在x =80(x )的最大值. 将x =80代入V (x ),得最大容积 V =802×60-8032=128 000(cm 3). 答:水箱底边长取80cm 时,容积最大,最大容积为128 000cm 3.。
3.4-1 生活中的优化问题举例
【学习目标】
1、求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值应予舍去;
2、理解0)(/
x f 仅解到一个根时,若能判断函数的最大(小)值在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。
【学习过程】
模块一 教材助读
1、 生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常
称为
2、用导数解决优化问题的实质是
3、导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1)与几何有关的最值问题;
2)与物理学有关的最值问题;
3)与利润及其成本有关的最值问题;
4)效率最值问题。
利用导数解决优化问题的基本思路:
模块二 优化问题举例
例1、海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。
现让你设计
一张如图所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两
边各空2dm,左、右两边各空1dm 。
如何设计海报的尺寸,才能使四周
空心面积最小?
分析:先建立目标函数,然后利用导数求最值.
小结 利用导数解优化问题的步骤:
【思考】在课本例1中,“16x =是函数()S x 的极小值点,也是最小值点。
”为什么?是否还有别的解法?
结论:在实际问题中,由于()'f x =0常常只有一个根,因此若能判断该函数的最大(小)值在x 的变化区间内部得到,则这个根处的极大(小)值就是所求函数的最大(小)值。
例2、 饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 2
0.8r π分,
其中 r 是瓶子的半径,单位是厘米。
已知每出售1 mL 的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
分析:先建立目标函数,转化为函数的最值问题,然后利用导数求最值.
D E
A
B C
模块三 课后作业
1、以长为20的线段AB 为直径作圆,则它的内接矩形的面积的最大值为( )
A 、15
B 、25
C 、50
D 、200
2、某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.152
x 和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )
A 、45.606
B 、45.6
C 、45.56
D 、45.51
3、路灯距地平面为8 m,一个身高为1.6 m 的人以84 m/min
的速率在地面上行走,从路灯在地平面上射影点C ,沿某直
线离开路灯,则人影长度的变化速率为( )/m s A 、72 B 、720 C 、2120 D 、21 4、将8分解为两个非负数之和,使其立方之和为最小,则分法为( ) A 、2和6 B 、4和4 C 、3和5 D 、以上都不对
5、某箱子的容积与底面边长的关系为V (x )=x 2⎝⎛
⎭⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为( )
A 、30
B 、40
C 、50
D 、以上都不正确
6、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为
A 、6
B 、8
C 、10
D 、12 ( )
7、内接于半径为R 的球且体积最大的圆锥的高为( )
A 、R
B 、2R
C 、43R
D 、34R
8、要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )
A 、
33cm B 、1033cm C 、1633cm D 、2033cm
9、圆柱形金属饮料罐的容积一定时,为了使所用材料最省,它的高与底半径应为( )
A 、h =2R
B 、h =R
C 、h =2R
D 、h =2R
10、以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )
A 、10
B 、15
C 、25
D 、50
11、设圆柱的体积为V ,那么其表面积最小时,底面半径为( )
A 、3V
B 、3V π
C 、34V
D 、23V 2π
12、若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大为( )
A 、2πr 2
B 、πr 2
C 、4πr 2
D 、12πr 2
12、把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.
14、将长为l 的铁丝剪成2段,各围成长与宽之比为2:1及3:2的矩形,则面积之和的最小值为________.
15、做一个容积为256的方底无盖水箱,它的高为________时最省料.
16、做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为________.
【课后反思】。