大变形运动学与连续介质力学
- 格式:pdf
- 大小:524.38 KB
- 文档页数:31
连续介质力学中的大变形与断裂研究引言连续介质力学是研究材料在外力作用下的变形和断裂行为的学科,是物理力学的一个重要分支。
在材料科学、工程力学、地球物理学等领域都有广泛的应用。
本文将着重介绍连续介质力学中的大变形与断裂研究。
1. 大变形的介绍大变形是指在外力作用下,材料的形状、体积或内部结构发生明显改变的现象。
当应变达到一定程度时,常规的线弹性理论不能再正确描述材料的变形行为。
因此,理论上需要引入非线性弹性理论来研究大变形现象。
非线性理论根据材料的本构关系和变形描述方程的非线性性质,可以更准确地描述大变形行为。
2. 大变形的数学描述在连续介质力学中,大变形通常通过应变张量的非线性关系来描述。
应变张量是一种描述变形的物理量,用于衡量物体内部相对位移的大小。
在大变形的情况下,应变张量的组分由线性校正项和非线性校正项构成。
3. 大变形与材料性质大变形会显著影响材料的力学性质。
例如,材料的刚度、强度、塑性行为等参数会随着应变增加而发生变化。
另外,在大变形过程中,材料可能会出现局部失稳、产生脆性断裂等现象。
因此,研究大变形对材料性质的影响具有重要的理论和应用价值。
4. 断裂力学的基本原理断裂力学是研究材料在外部载荷作用下发生破裂现象的学科。
断裂是指材料在外力作用下突然失效并发生破碎的过程。
断裂力学的基本原理涉及三个方面:断裂起始准则、裂纹扩展准则和破坏力学。
4.1 断裂起始准则断裂起始准则是研究材料在何时发生破裂的标准。
常用的准则包括拉伸准则、剪切准则和能量准则等,用来描述材料的破裂临界条件。
4.2 裂纹扩展准则裂纹扩展准则是研究裂纹在材料中的扩展行为。
通过研究裂纹的扩展速率和扩展角度等参数,可以确定断裂的发展过程。
4.3 破坏力学破坏力学是研究材料在断裂过程中的破坏机理和破坏能力的学科。
破坏力学通过研究断裂面的断面形态、破碎能量消耗等参数,来描述材料的破坏行为。
5. 大变形与断裂的关系大变形和断裂是紧密相关的。
第1篇一、前言随着科技的不断发展,力学作为一门基础学科,在各个领域中的应用越来越广泛。
本年度,我国力学领域取得了显著的成果,不仅推动了基础理论的深入研究,也为我国科技创新和社会发展提供了有力支撑。
现将本年度力学领域的年度总结如下:一、基础理论研究1. 理论力学本年度,我国理论力学研究取得了一系列重要进展。
在经典力学领域,我国学者在多体系统动力学、刚体运动学、流体力学等方面取得了突破性成果。
同时,在量子力学、相对论力学等领域,我国学者在基础理论研究和应用方面也取得了丰硕的成果。
2. 应用力学在应用力学领域,我国学者在材料力学、结构力学、振动理论等方面取得了显著成果。
特别是在新型材料力学性能研究、复合材料力学性能分析、结构优化设计等方面,我国学者提出了许多创新性理论和方法。
二、实验技术研究1. 纳米力学实验技术纳米力学实验技术是近年来力学领域的研究热点。
本年度,我国在纳米力学实验技术方面取得了重要突破,成功研发出多种新型纳米力学测试设备,如纳米压痕仪、纳米拉伸仪等。
这些设备的研制为纳米材料力学性能研究提供了有力保障。
2. 激光干涉测量技术激光干涉测量技术在力学实验研究中具有重要应用。
本年度,我国在激光干涉测量技术方面取得了显著进展,成功研发出高精度激光干涉测量系统,为材料力学性能研究提供了可靠手段。
三、力学工程应用1. 结构工程在结构工程领域,我国学者在桥梁、高层建筑、地下工程等方面取得了丰硕成果。
特别是在超高层建筑结构设计、大跨度桥梁设计等方面,我国学者提出了许多创新性理论和方法,为我国建筑行业的发展提供了有力支持。
2. 能源工程在能源工程领域,我国学者在风力发电、太阳能发电、核能等领域取得了重要进展。
特别是在风力发电叶片优化设计、太阳能光伏电池结构优化等方面,我国学者提出了许多创新性理论和方法,为我国新能源产业的发展提供了技术支持。
四、力学教育与人才培养1. 高等教育本年度,我国力学高等教育取得了显著成果。
第六章 连续介质力学连续介质模型:物质(气,液,固)连续地分布在它们所占有的区域内连续介质质元: 宏观小, 微观大物质讨论宏观力: 包括外力以及外力作用下形变or 运动引起内部的弹性恢复力 讨论内力的一般方法:假想将其切开,切下部分的作用由内力代表;由平衡条件求力.例: (不计重力)连续介质是比质点、刚体更普遍的经典力学模型,应用也最普遍。
物理状态量在连续介质模型下成为点函数. 不计微观内力 §6.1 应力和应变6.1.1 应力固体为例截面π , 方位 n ; P 处邻域 ∆S 上 张力∆TP 处应力σ = lim ∆∆ TS = d T /dS =σ(P, n ) =σt +σn正应力(法向应力, 张力) σn 单位:P a (压强)(>0为拉应力 ; <0为压应力) 剪应力 (or 切应力) σt应力状态:对同一点P 处,方位不同的截面上应力σ不同。
函数关系σ=σP ( n)叫P 处的应力状态. 由平衡方程可以证明,互相垂直的三个截面上的6个应力(正,切应力)就可以完全决定一点处的应力状态 (由此6个应力可以计算出该处任意方位截面上的应力)应力主面: 该面上只有正应力, 称为主应力. 一点处必有三个互相垂直的应力主面6.1.2 应变固体有两种基本的应变形式:线(拉,压)应变 ;剪应变1. 线应变 ε均匀形变 : 长度l , 总形变∆l (截面法向x ) 则 εx = ∆l / l形变不均匀:一点处位移uAB 段形变=∆u x =u x (x+∆x) -u x (x)=∂∂u xx∆x A 处x 方向线应变εx = lim (∆u x /∆x) = ∂u x / ∂x类似: y 方向线应变 εz =∂u y / ∂y z 方向线应变 εz =∂u z / ∂z 一般情况下应变也是点函数, 不均匀形变时各处应变也不相同.应变是位移的空间变化率(位移的偏导数)2. 剪应变以xy 平面为例, 矩形 → 菱形定义:A 点剪应变(xy 平面上,小变形)为 εt = lim (δ1+δ2)= ∂u x /∂x + ∂u y /∂y δ1 ≈tan δ1=B’B’’/A’B’’=[u y (x+∆x) -u y (x)]/∆x → ∂u y /∂x 类似, 当 ∆x →0 , ∆y →0时 , δ2 → ∂u x /∂y3. 体应变均匀形变时, 体应变 εV = 体积增量/体积 =∆V / V不均匀形变时, 讨论一点处体应变一点附近小长方体(∆x,∆y,∆z) 小形变后为[(1+εx )∆x ,(1+εy )∆y, (1+εz )∆z] V=∆x ∆y ∆z ∆V ≈(εx +εy +εz )∆x ∆y ∆z 小变形 εV =εx +εy +εz 剪应变引起的体应变为高阶小量.自然状态无内力内力与外力平衡F F 内∆S →0 ∆x →0∆x →0∆y →0 y+∆侧平面)∆ll x∆x)6.1.3 胡克定律——应力和应变的关系 1678年胡克提出单向拉伸时 ε ∝ σ , 后来推广到三维 (实验定律) 1. 单一正应力引起的线应变 σx 引起 纵向线应变 εx = σx /Y 横向线应变εy =εz = -μεx = -μσx /Y Y —杨氏模量(压强量纲)μ ——泊松比(无量纲) 0≤ μ ≤ 0.5 σy , σz 的贡献类似 2. 总线应变与正应力的关系——广义胡克定律(在一定的形变范围内—比例极限) εx =1Y [σx -μ(σy +σz )] εy =1Y [σy -μ(σx +σz )] εz =1Y [σz -μ(σx +σy )] 3. 体应变与正应力εV =εx +εy +εz =(1-2μ)(εx +εy +εz )/Y ≡ σ0/K σ0≡(σx +σy +σz )/3 K=Y/[3(1-2μ)] K —体弹性模量 由4. 剪应变与剪应力εt =σt /G G —剪切弹性模量5. 各向同性固体只有两个独立的弹性模量, Y 、G 、K 、μ中只有两个独立K= Y / [3(1-2μ)] G=Y /2(1+μ) < Y一般 μ ≈ 0.35 G 、K 、Y 的量级为1010 —1011 P a , 差别不太大部分材料的弹性模量材料 铝 铜 金 电解铁 铅 铂 银 熔融石英 聚苯乙烯 K 7.8 16.1 16.9 16.7 3.6 14.2 10.4 3.7 0.41 G 2.5 4.6 2.85 8.2 0.54 6.4 2.7 3.12 0.133 Y 6.8 12.6 8.1 21 1.51 16.8 7.5 7.3 0.36 μ 0.355 0.37 0.42 0.29 0.43 0.30 0.38 0.17 0.353 说明: K 、G 、Y 的单位 为1010P a补充题4. 矩形截面杆在轴向拉应力σz =2.0⨯105 P a作用下变形,已知Y=19.6⨯1010 P a , μ=0.3 .求:εV 补充题5. 矩形悬臂梁的一端有作用力P.已知l =2 m, h=20cm,梁宽b=5 cm ,P=1000kg 力, 求梁内最大正应力§6.2 固体拉伸.弯曲.扭转讨论三种情况下的应力状态,计算应力与应变 6.2.1等截面直杆的拉压 圆形截面直杆;两端均匀压强p (拉>0;压<0)横截面 σz =p σt =0 应力状态: 与z 轴互垂两面上 σR =σφ=0 ——单向应力状态 ∴ σz =p= Y εz = Y ∆l / l 均匀形变 弹性形变势能: E P = ⎰ F 外du = ⎰0∆lSY u ldu=YS ∆l 2 / 2l u 为z 方向位移, S 为横截面积(近似不变) 弹性形变势能密度 e P =E P /V=12Y εz 2 =12σz εz (也适于不均匀形变) 说明:其他均匀截面直杆σR ≈0 σφ≈0 可以近似按圆杆处理6.2.2 矩形梁纯弯曲矩形梁(高h,宽b) 力偶矩M纵向画线弯曲:上短—压; 中不变—中性面; 下长—拉横截面上 σx , σt =0应力状态: σy =σz =0——单向应力状态M ⇒ 应力σx , 形变θ0P 处:εx= lim (PP’-oo’)/oo’= lim[(ρ+y)∆θ-ρ ∆θ]/ρ ∆θ=y/ρ σx =Y εx =Yy / ρ ∝ y 下面求ρ 横截面上:∑F =0 (∴中性面正在中点)∆θ→0 ∆θ→0 p z φM 内= ⎰y σx dS = Y ⎰ y 2 dS /ρ ≡YρI z =(应该)= M ——柏努力. 欧勒定律∴ Y/ρ = M/I z σx =M I z y σx max =M I z 2h ρ=YI z /M θ0 = l /ρ(θ0 为转角,代表形变;l 为中性面的长度) 定义对z 轴惯性矩 I z ≡ ⎰y 2 dS 对矩形截面 I z =2b ⎰02h /y 2dy =112bh 3 为节约材料:h ↑ , b ↓ ; 减少中性层还有鸟骨、麦杆…说明:(1)其他形状截面的梁在力偶矩作用下弯曲时,σy ≠ 0 σz ≠0, 非单向应力状态,但σy ≈0 σz ≈0 ,与单向应力状态偏差不大,可以近似按单向应力状态计算(2)非力偶矩作用时,一般可以忽略剪应力,近似按纯弯曲处理:(不计重力) 悬臂梁M 内=M(x)=P(l -x)简支梁 x ∈(0,l /2) M 内=M(x)= P x/2仍有: σx (x)=M(x) y/I z ρ(x) =YI z / M(x) 注意:σx (x),ρ(x),M(x)不再是常数 (3)仍有:e P =12Y εz 2 =12σz εz6.2.3 圆柱扭转表面画上圆周和母线圆周线不变, 横截面保持平面——横截面上 σtR =0应力状态: 横截面上 σt =σt φ σz =0 (只有M) σR =σφ=0 横截面上形变:圆周处εt (R)=R φ /h r 处εt (r)=r φ /h ∴ σt (r)=Gr φ /h ∝ r下面求φ M 内= ⎰ σt r dS = ⎰0R σt r 2πrdr=12h πGR 4φ ≡D φ =(应该)=M ∴G φ/h=2M/(πR 4) σt (r)= G φr/h M=D φ ∴ σt (r)=24M R πr σt max (r)=2M /πR 3 φ=M/D 扭转弹性系数 D=πGR 4/2h (悬丝扭矩 M=D φ D ∝ R 4/h ) 扭转弹性势能E P = ⎰0φM d φ=D φ2 /2 可证e P =12G εt 2 =12σt εt6.2.4 允许应力.强度计算1. 只有正应力or 剪应力材料极限应力(正or 剪)σj , 许可应力[σ]=σj /K 安全系数=1.4—3.0 — 14材料 屈服极限σs 强度极限σb 许可应力 [σ] (kg/cm 2)A 3 2200—2400 3800—4700 1700 16Mn 2900—3500 4800—5200 2300 300#水泥 拉21,压210 拉6,压105 红松(顺纹) 拉981,压328 拉65, 压100 注:A 3—普通低碳钢 16 Mn —低合金钢 常温、静态、一般工作条件材料中最大应力(正or 剪) 应满足 σmax ≤ [σ] 2. 复杂应力情况——按相应的强度理论计算§6.3 流体静力学——流体力平衡下内应力的分布 流体:液,气; 具流动性; 主要讨论液体; 设: 连续、均匀6.3.1 静止流体内应力δσt1. 一点处应力状态σt≡0 只有正应力σ , 且正应力大小与截面无关σ( n)≡σ证: 因为可流动流体静摩擦力=0 ∴σt≡0如图四面体受力平衡设S面上正应力为σ ,x向Sσ⋅x -σx S x=0σ=σ n S=S n S x=S ⋅ x∴σx S x=Sσ⋅x =σS⋅x= σS xσx=σ类似σy=σ=σzx,y,z任选, ∴任意截面上的正应力的大小皆为σ由四面体受力平衡, 从三个坐标平面的应力⇒任意截面S上的应力. 注意:忽略了体积力2. 流体内压强定义:流体内压强为P= -σ(流体中一般没有拉应力,∴σ<0 P>0)说明:(1)压强为标量,严格定义P= -σ0 = (σx+σy+σz) /3(2) 由一点处应力状态, σ与方位无关∴P与方位无关(3) 从证明知,关键σt=0 . 所以对理想流体(无内摩擦)在流动(包括加速流动)时结论也对(4)对粘滞性流体流动时有剪应力,各截面σ不相同.但若σt较小可以忽略,各截面正应力近似相等为σ , P ≈-σ(5) 流体中负压强(拉应力).特定条件(稳定,缓慢过程)下,流体中可出现负压. 水的负压可以达到300atm6.3.2 静止流体平衡方程——临近点处压强关系取小段柱状流体f—单位质量..上的体积外力x向: [P(x) - P(x+∆x)] ∆S + ρ∆S ∆x f x =0∴∂P /∂x = ρf x类似: ∂P /∂y = ρf y ∂P /∂z = ρf z合起来:∇P = (∂P/∂x) x +(∂P/∂y) y +(∂P/∂z) z = ρf 6.3.3 重力场中静流体1. 流体中压强随高度分布小范围g为常矢量f = (∆m g) /∆m =g = g y ∂P/∂x =∂P/∂z = 0 ⇒P与x,z无关, 在同一高度上P相等∂P/∂y = ρg若ρ为常数(液体or高度差不大的气体)积分得:P(y)=P0+ρgy P0=P(0)不同密度液体(鸡尾酒)的稳定分界面为水平面2. 帕斯卡定律定律:加在密闭液体中的压强等值地传到液体中各处以及壁上.解释: 设压强加在o处,使P0等值地改变,但ρgy 保持不变,所以P(y)随P0同样增加.3. 阿基米德定律定律:浸在流体中物体所受浮力等于物体排开的流体的重量证明:设物体外表面为S .流体对物体作用通过压强体现.∴浮力=⎰-Pd S保持S不变,则浮力不变. 将物体换成流体,该流体应处于平衡,即外界对S的压力之和等于流体重量:⎰-Pd S +m g =0∴浮力= -m g 浮力作用点即该流体重心(一般情况下不是物体的重心)附: 等温理想气体压强随高度的分布已知其密度ρ=cP (c为常数)解: dP/dy = -ρg = -cgP ⎰PPdPP= ⎰y-cg dy 得:P(y)=P0e-cgy又例: 以ω匀速转动的水平试管,内部充满流体. 以试管为参考系, 则惯性离心力为体积力,产生径向压强差.§6.4 流体的定常流动6.4.1 描述流体运动的两种方法1. 两种方法拉格郎日法: 认准各个质元,分别描述其运动状态(r i,v i,a i)及其变化规律r i,v i,a i只是t的函数, v=d r/dt , a=d v/dt ; 应用牛顿定律必须用拉格郎日法. 困难:如何认准?如何跟踪?描述不便欧拉法: 讨论流体场(流体性质场)的场分布∆x)主要是流速场v=v(r,t) . 还有a=a(r,t)P=P(r,t) 压强场……2. 欧拉法中质元的加速度质元加速度a = d v/dt (速度全导数or实质导数)是对一个确定质元速度v(即拉格郎日法中的速度v)的导数.流速场v(r,t)在地点不变下对t的偏导数∂v/∂t ≠a (流速场中同一地点不同时刻的v是不同质点的速度)认准m i :a=d v(x,y,z,t)/dt=∂v/∂t+[∂∂vxdx +∂∂vydy+∂∂vzdz]/dt=∂∂vt+v x∂∂vx+v y∂∂vy+v z∂∂vz=∂∂vt+ v ⋅∇v3. 流体流动的图象表示拉格郎日法: 流体质元的实际运动轨迹——迹线流管——流线围成的细管;流束——流管中流体6.4.2定常流动: v与t无关,v=v(r) ;不定常流动: v与t有关定常流动特点:∂v/∂t =0 a = v⋅∇v≠ 0流线不变,与迹线重和∴迹线也不变P,ρ与t无关是否为定常流与参考系有关设迹线如图. V1,2,3为t1,2,3时刻同一质点的速度.若v与t无关,则v也是速度场中1,2,3点的速度,迹线也是流线. 迹线不变则场中质元数不变,∴ρ不变圆柱在理想流体在匀速直线运动. 在静系中流体为非定常流动,在圆柱参考系中为定常流动§6.6 粘滞流体的流体长时间、长距离、相对速度很大时,粘滞性不可忽略主要讨论层流. 层流:流体分层流动,彼此不混淆流体粘滞性的体现:固、液相对运动时出现摩擦力;液体内部流速不同,各层之间出现摩擦力6.6.1流体的粘滞性板A匀速直线运动引起层流,各层之间粘滞力fz层假想剖面∆S, 两侧粘滞力∆f牛顿摩擦定律:(实验定律) ∆f ∝ (dv/dz) ∆S 即∆f = ηdvdz∆Sdv/dz : z方向速度(空间)变化率(速度梯度)η: 粘滞系数(黏度)温度T↑⇒η↓ (液体) η↑(气体)(f本质: 液体主要来自层之间分子力;气体是通过该层交换宏观定向动量)[η]=ML-1T -1SI(MKS)制为Pa ⋅s CGS制为“泊”1泊=0.1 Pa⋅s η/ρ——运动黏度(比黏度)满足牛顿摩擦定律的流体——牛顿流体(否则叫非牛顿流体—少数如血液)6.6.2 粘滞流体的运动规律1. 动力学方程(介绍) 纳维—斯托克斯方程(Nevier,M. , Stokes,G.G.)-∇P+ρf+η∇2 v = ρ (d v/dt)2. 修改后的伯努力方程定常流动,不可压缩,沿流管(有粘滞性) 由功能原理dW粘1→2 +(P1-P2)dV = dE= (dm v22/2+dm gz2)-(dm v12/2+dm gz1)dm=ρdV∴ P1+ρv12/2+ρgz1=P2+ρv22/2+ρgz2 +w12——修正后的伯努力方程∆t)∆t)m i运动轨迹m质点t2t时刻:3流线w 12 = -w 粘1→2 = dW 粘1→2 /dV >0 为单位体积..流体克服..粘滞阻力做的功水平均匀细管中: v,z 相同, P 1 -P 2=w 12=P 2 -P 3=…=P 0’-P 1=ρg(H 1-H 2)=…=ρg ∆H=ρg(H 0’-H 1) ∴P 0’-P B =P 0’-P 0=ρgH 0’=w 细管 将液面A 与出口B 联系:P 0+ρgH 0+0=P 0+0+ρv 2/2+w 细管+w 粗管∴ρv 2/2=ρg(H 0-H 0’) -w 粗管=ρgh 0-w 粗管≈ρgh 0 v ≈(2gh 0)1/2w 细管, w 粗管分别是单位体积流体在细管和粗管中流动克服阻力做的功∴粘滞流体水平均匀流动必有压强差——流水水面不水平 , 熔岩流动高度差很大3. 哈根—泊肃叶(Hagen,G. , Poiseuille, J.L.M.)方程——水平圆管层流哈—泊定律由哈根1839年实验证实, 后为泊肃叶1842年独立发现水平圆管, 定常流动柱坐标(r,φ,z)v z 与r,φ无关v =v z (r)z d v /dt=0忽略体积力f =0 , 流线平行直线, ∴同一横截面上P 相同对小圆柱, 1、2两横截面上对应处速度相同 ∴合外力为零 即 (P 1-P 2)πr 2 + ηdv drz⋅2πr l =0 (f 粘为-z 方向, dv z /dr<0 ∴取 “+”)⎰0v r z ()dv z = ⎰R r -12ηl(P 1-P 2)r drv z (r)= (P 1-P 2)(R 2 -r 2) / (4ηl ) Q V = ⎰ v ⋅ d S = ⎰0Rv z 2πr dr = π(P 1 -P 2)R 4 / (8ηl ) ——哈—泊公式由此可以讨论石油、天然气、水输送问题(管径、压差与流量);隧道、河流的流量…平均流速 v =Q V /S= (P 1 -P 2)R 2 / (8ηl ) P 1 -P 2=8ηv l R -2 ∝ l R -2,l光滑金属管光滑同心环缝滑阀口Re C2000—2300 1100 260例. 日常生活. 水管d=0.025m Re C =2000 1atm 20︒C时η=1.0⨯10 -3Pa⋅ s 则临界水流速v C = ηRe C /ρd = 0.079 m/s∴一般管流为湍流。
数学物理的连续介质力学方法连续介质力学是研究物质的宏观性质和运动规律的一门学科,它是数学物理学的重要分支之一。
在连续介质力学中,我们将物质视为连续的,而不是离散的粒子。
通过建立数学模型和方程,我们可以描述物质的运动、变形和相互作用等现象。
在这篇文章中,我们将探讨数学物理的连续介质力学方法。
1. 连续介质的基本概念在连续介质力学中,我们将物质视为连续的,即认为物质在微观尺度上是无限细小的。
这样一来,我们可以使用连续函数来描述物质的性质和运动规律。
连续介质力学的基本概念包括质点、质点集合、质量和密度等。
通过对这些概念的定义和描述,我们可以建立起数学模型来描述连续介质的力学行为。
2. 连续介质的运动学连续介质的运动学是研究物质运动的一门学科。
在连续介质力学中,我们可以通过定义位移、速度和加速度等概念来描述物质的运动。
通过对这些概念的数学表达,我们可以建立起描述物质运动的方程。
其中,最基本的方程是连续性方程和动量守恒方程。
连续性方程描述了物质的质量守恒,而动量守恒方程描述了物质的动量守恒。
通过求解这些方程,我们可以得到物质的运动规律。
3. 连续介质的变形学连续介质的变形学是研究物质变形的一门学科。
在连续介质力学中,我们可以通过定义应变和应力等概念来描述物质的变形。
应变描述了物质的形状和大小的变化,而应力描述了物质内部的力和应变之间的关系。
通过对这些概念的数学表达,我们可以建立起描述物质变形的方程。
其中,最基本的方程是胡克定律和应力平衡方程。
胡克定律描述了物质的应力和应变之间的关系,而应力平衡方程描述了物质的应力平衡。
通过求解这些方程,我们可以得到物质的变形规律。
4. 连续介质的相互作用在连续介质力学中,物质之间存在着相互作用。
这种相互作用可以通过定义物质的内部能和外部能来描述。
内部能是指物质内部的相互作用能,而外部能是指物质与外界的相互作用能。
通过对这些能量的数学表达,我们可以建立起描述物质相互作用的方程。