导数专题5:构造函数法
- 格式:ppt
- 大小:294.00 KB
- 文档页数:12
必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
导数问题的难度较大,对同学们的数学抽象思维能力和运算能力有着较高的要求.导数与函数之间的联系紧密,所以在解答导数问题时,通常要根据已知条件来构造合适的函数模型,利用函数的图象、性质来求得问题的答案.这就是构造函数法.运用构造函数法解答导数问题的步骤为:1.仔细研究题目中给出的关系式的结构特征;2.灵活运用幂函数的求导公式(x n)′=nx n-1、指数函数的求导公式(a x)′=a x ln a(特例(e x)′=e x,(e nx)′=ne nx(n∈N*,n≥2))、对数函数的求导公式(log a x)′=1x ln a(特例(ln x)′=1x)、三角函数的求导公式(sin x)′=cos x,(cos x)′=-sin x等,对已知关系式中的部分式子进行求导或积分;3.根据导数的运算法则(u±v)′=u′±v′,(uv)′=u′v+uv′,(u v)′=u′v-uv′v2将目标式或已知关系式进行变形,并将变形、化简后的式子构造成新函数模型;4.根据导函数与函数的单调性之间的关系判断出函数的单调性;5.根据函数的单调性求函数的极值,比较函数式的大小.把导数问题转化为函数问题来求解,可以达到化繁为简、化难为易的目的.例1.已知函数f(x)是定义在(-∞,0)上的可导函数,且xf′(x)+3f(x)>0,那么不等式(x+2021)3f(x+2021)+27f(-3)>0的解集是().A.(-2024,+∞)B.(-2022,-2021)C.(-∞,-2022)D.(-2024,-2021)解:在不等式xf′(x)+3f(x)>0的两边同乘以x2,可得x3f′(x)+3x2f(x)>0,即x3f′(x)+(x3)′f(x)>0,得(x3f(x))′>0.设函数g(x)=x3f(x),则g′(x)>0,所以g(x)在(-∞,0)上单调递增.而(x+2021)3f(x+2021)+27f(-3)>0可变形为(x+2021)3f(x+2021)>(-3)3f(-3),即g(x+2021)>g(-3).可得-3<x+2021<0,解得-2024<x<-2021.故选D.先根据指数函数的求导公式(x3)′=3x2以及导数的运算法则(uv)′=u′v+uv′将xf′(x)+3f(x)>0变形,即可化简不等式;再构造出函数g(x)=x3+f(x),探讨其单调性,便可根据函数的单调性求得问题的答案.例2.已知函数f(x)是R上的可导函数,且(x-1)⋅(f′(x)-f(x))>0,f(2-x)=f(x)e2-2x,那么一定正确的是().A.f(1)<f(0)B.f(2)>ef(0)C.f(3)>e3f(0)D.f(4)<e4f(0)解:将不等式(x-1)(f′(x)-f(x))>0变形,可得(x-1)∙e x f′(x)-(e x)′f(x)(e x)2>0,即(x-1)∙(f(x)e x)′>0,设函数g(x)=f(x)e x,易知:当x>1时,g′(x)>0;当x<1时,g′(x)<0,所以函数g(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.将f(2-x)=f(x)e2-2x变形,可得f(2-x)e2-x=f(x)e x,即g(2-x)=g(x),所以函数g(x)的图象关于直线x=1对称.根据函数g(x)的单调性、对称性可得g(0)=g(2)<g(3),即f(0)e0<f(3)e3,因此e3f(0)<f(3).故选C.我们以指数函数的求导公式(a x)′=a x ln a为切入点,根据导数的运算法则(u v)′=u′v-uv′v2,构造商式函数g(x)=f(x)e x,即可根据其单调性和对称性求得问题的答案.备考指南54例3.已知函数f (x )是定义在(1,+∞)上的可导函数,对∀x ∈(1,+∞)均有f '(x )ln x >1+ln x xf (x )恒成立,则().A.12f (2)>3f (4)>f (8)B.3f (4)>12f (2)>f (8)C.f (8)>3f (4)>12f (2)D.f (8)>12f (2)>3f (4)解:在f ′(x )ln x >1+ln x xf (x )的两边同乘以x ,移项可得f ′(x )x ln x -(1+ln x )f (x )>0,再变形得f ′(x )ln x -(x ln x )′f (x )(x ln x )2>0,得(f (x )x ln x )′>0,显然该不等式对∀x ∈(1,+∞)恒成立.设函数g (x )=f (x )x ln x,则g ′(x )>0,所以函数g (x )在(1,+∞)上单调递增.所以g (2)<g (4)<g (8),即f (2)2ln 2<f (4)4ln 4<f (8)8ln 8,变形得f (2)2ln 2<f (4)8ln 2<f (8)24ln 2,可得f (8)>3f (4)>12f (2).故选C.根据已知条件和对数函数的求导公式(log a x )′=1x ln a,得到(x ln x )′=1+ln x ,便可根据导数的运算法则(uv )′=u ′v +uv ′和(u v )′=u ′v -uv ′v 2,将不等式进行变形、化简,进而构造出函数g (x )=f (x )x ln x,利用函数的单调性即可解题.例4.已知函数f (x )是定义在(-π2,π2)上的可导函数,且f ′(x )cos x +f (x )sin x >0恒成立,那么下列不等式不成立的是().A.2f (π3)<f (π4)B.2f (-π3)<f (-π4)C.f (0)<2f (π4) D.f (0)<2f (π3)解:将f ′(x )cos x +f (x )sin x >0变形,得f ′(x )cos x -f (x )(cos x )′(cos x )2>0,即(f (x )cos x )′>0,设g (x )=f (x )cos x,得g ′(x )>0,所以函数g (2)在(-π2,π2)上单调递增.因为-π2<-π3<-π4<0<π4<π3<π2,所以f (-π3)cos(-π3)<f (-π4)cos(-π4)<f (0)cos 0<f (π4)cos π4<f (π3)cos π3,化简得2f (-π3)<2f (-π4)<f (0)<2f (-π4)<2f (π3),所以A 选项不正确.故本题选A.由f ′(x )cos x +f (x )sin x >0的结构特征,可联想到三角函数的求导公式(cos x )′=-sin x 以及导数的运算法则(uv )′=u ′v +uv ′,将不等式进行变形、化简,便可构造出新函数g (x )=f (x )cos x.例5.设定义在R 上的函数f (x )是连续可导函数,对任意的x ∈R 都有f (x )+f (-x )=2x 2.当x ∈(0,+∞)时,f ′(x )<2x .若不等式f (2-a )-f (a )≥4-4a 成立,则实数a 的取值范围是().A.(0,1]B.[1,2)C.(-∞,1]D.[1,+∞)解:当x ∈(0,+∞)时,根据不等式f ′(x )<2x ,可得f ′(x )-2x <0,再变形得f ′(x )-(x 2)′<0,即(f (x )-x 2)′<0.设函数g (x )=f (x )-x 2,则g ′(x )<0,所以函数g (x )在(0,+∞)上单调递减.因为对任意的x ∈R 都有f (x )+f (-x )=2x 2,所以g (x )+g (-x )=f (x )-x 2+f (-x )-(-x )2=0,所以函数g (x )是R 上的奇函数.因为f (x )是连续函数,所以函数g (x )在R 上单调递减.不等式f (2-a )-f (a )≥4-4a 可变形为f (2-a )-(2-a )2≥f (a )-a 2,即g (2-a )≥g (a ).由函数g (x )的单调性可知2-a ≤a ,解得a ≥1.故选D.根据已知条件f ′(x )<2x ,可知需要利用指数函数的求导公式(x 2)′=2x 以及导数的运算法则(u ±v )′=u ′±v ′,将不等式变形并化简,进而构造函数g (x )=f (x )-x 2,分析其函数的单调性、奇偶性,即可解题.对于本题,还可以将f (x )+f (-x )=2x 2变形为f (x )-x 2+f (-x )-(-x )2=0,再根据f (x )-x 2与f (-x )-(-x )2的结构特征构造函数g (x )=f (x )-x 2.导数问题侧重于考查一些常见的求导公式与导数的四则运算法则(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′,(u v )′=u ′v -uv ′v2的灵活应用.导数问题较为复杂,同学们不仅要灵活运用导数和函数知识,还需培养数学抽象、逻辑推理以及数学运算能力,才能轻松解题.(作者单位:甘肃省河州中学教育集团附属中学)备考指南55。
构造函数法证明不等式的八种方法一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。
在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。
下面我将分享导数小题中构造函数的技巧。
一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。
在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。
由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。
我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。
当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。
例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。
当 $x0$ 恒成立。
则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。
因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。
利用导数运算法则构造函数含详解导数运算法则是微积分中的重要内容,它用于求导函数。
在构造函数时,利用导数运算法则可以简化运算,提高计算效率。
本文将详解常见的导数运算法则,方便读者了解并应用于函数构造。
一.常数法则当函数f(x)为常数时,f'(x)=0。
这是由于常数的导数等于0。
二.幂函数法则1.构造函数:设f(x)=x^n,其中n为实数。
2.对函数f(x)求导,根据导数的定义:f'(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx3.展开f(x+Δx)-f(x):f(x+Δx)-f(x)=[(x+Δx)^n-x^n]/Δx=[x^n+n*x^(n-1)Δx+O((Δx)^2)-x^n]/Δx(O(Δx)表示Δx的高阶无穷小)=n*x^(n-1)+O(Δx)4.带入导数的定义,得到导数f'(x)=n*x^(n-1)。
三.指数函数法则2.对函数f(x)求导,根据导数的定义:f'(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx3.展开f(x+Δx)-f(x):f(x+Δx)-f(x)=e^(x+Δx)-e^x=e^x*e^Δx-e^x=e^x*(e^Δx-1)4. 带入导数的定义,得到导数f'(x)=e^x * lim(Δx→0) [(e^Δx - 1)/Δx]。
根据数学推导,lim(Δx→0) [(e^Δx - 1)/Δx]=1,因此f'(x)=e^x。
四.对数函数法则1. 构造函数:设f(x)=ln(x),其中ln(x)是以e为底的自然对数。
2.对函数f(x)求导,根据导数的定义:f'(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx3.展开f(x+Δx)-f(x):f(x+Δx)-f(x)=ln(x+Δx)-ln(x)= ln[(x+Δx)/x]= ln(1+Δx/x)4. 使用泰勒展开:ln(1+Δx/x)≈Δx/x,当Δx趋近于0时。
导数构造函数技巧在数学和工程学领域中,导数是一个非常重要的概念。
导数不仅在微积分的学习中扮演着重要的角色,而且在机器学习、优化和信号处理等领域也起着至关重要的作用。
为了更好地理解和应用导数,构造函数技巧是一个非常有用的工具。
本文将介绍导数构造函数的技巧,并且通过一些示例来展示它们的应用。
一、定义导数在介绍导数构造函数技巧之前,我们首先需要了解导数的定义。
导数是描述函数在某一点的变化率的概念。
对于一个函数 f(x),它的导数可以用下面的公式表示:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中 h 是一个无穷小的变化量。
导数告诉我们函数 f 在某一点上的瞬时变化率。
二、构造函数的技巧构造函数技巧是一种通过使用已知函数的导数来构造新的函数导数的方法。
通过应用构造函数技巧,我们可以得到一些特定函数的导数,而不必进行繁琐的求导运算。
1. 常数的导数对于一个常数函数f(x) = c,其中c 是一个常数,它的导数恒为零。
这是因为常数函数在任何点上的变化率都为零。
f'(x) = 0例如,对于函数 f(x) = 5,它的导数 f'(x) = 0。
2. 幂函数的导数对于幂函数 f(x) = x^n,其中 n 是一个正整数,它的导数可以通过应用幂函数的导数规则来得到。
f'(x) = n * x^(n-1)例如,对于函数 f(x) = x^2,它的导数 f'(x) = 2x。
类似地,对于函数 f(x) = x^3,它的导数 f'(x) = 3x^2。
3. 指数函数的导数对于指数函数 f(x) = e^x,它的导数恒等于其本身。
f'(x) = e^x例如,对于函数 f(x) = e^2x,它的导数 f'(x) = e^2x。
4. 对数函数的导数对于对数函数 f(x) = ln(x),其导数可以通过应用对数函数的导数规则来得到。
f'(x) = 1 / x例如,对于函数 f(x) = ln(x^2),它的导数 f'(x) = 2/x。
导数构造函数导数是微积分中非常重要的一个概念,它是描述函数变化率的一种数学工具。
在实际应用中,我们需要对函数进行分析和研究,而导数构造函数则是其中的一个基础性问题。
首先,导数的定义是一个函数在某一点的变化率,它可以用极限的方法进行表达。
例如,如果函数f(x)在x点有导数,那么导数的值可以表示为:f’(x) = lim(h→0) [f(x+h) - f(x)] / h这个式子表达的是当自变量x在x点有微小的变化h时,函数f(x)的变化率。
因此,我们可以将其表示为一个新的函数g(x),定义为:g(x) = lim(h→0) [f(x+h) - f(x)] / h这个函数g(x)就是函数f(x)在x点的导数,可以用来描述函数f(x)在该点的变化率。
接下来,我们来探讨导数构造函数的方法。
一种比较常用的方法是使用极限定义式进行构造。
例如,我们可以构造一个函数f(x) =x^2,然后求它在任意点x处的导数。
对于这个函数,我们可以将其导数表示为:f’(x) = lim(h→0) [(x+h)^2 - x^2] / h= lim(h→0) [x^2 + 2xh + h^2 - x^2] / h= lim(h→0) [2x + h]= 2x这个结果意味着,函数f(x)在任意一点x处的导数等于2x。
也就是说,当x增加1时,函数f(x)的变化率为2。
这样,我们就成功地构造了函数f(x)的导数函数。
除了极限定义式外,我们还可以利用求导法则来构造函数的导数。
求导法则是一系列用来求导的公式,包括常数函数求导、幂函数求导、指数函数求导、对数函数求导、三角函数求导等等。
通过使用求导法则,我们就可以快速地得到各种各样函数的导数。
最后,需要注意的是,导数是一种非常有用的数学工具,它在微积分、物理、经济学、工程学等领域都有着广泛的应用。
对于学习者来说,了解导数构造函数的方法,不仅可以加深对微积分的理解,还可以应用到实际问题中。
因此,对于学习微积分的人来说,必须掌握导数构造函数的方法,才能更好地进行学习和研究。
导数构造函数
导数构造函数是用一条曲线的导数来创建一个新的函数的过程。
该函数称为原函数或反导函数。
导数构造函数可以帮助人们确定原函数,因为导数是原函数的斜率。
一些常见的导数构造函数如下:
1. 积分法:积分法可以使用原函数的定义来构造导数函数。
2. 等价关系法:如果一个导数函数f(x)的绝对值小于或等于一
个常量,那么f(x)就是某个函数g(x)的导数。
3. 微分方程法:微分方程法通过解决微分方程来构造导数函数。
4. 反演法:反演法是一种将导数和原函数相互转换的方法。
5. 逆运算法:逆运算法使用逆函数(如果存在)来构造导数函数。
这些方法都可以用来构造导数函数,但是不同的方法适用于不同的函数。
因此,在选择方法时需要谨慎选择。