高考数学(文)专题07+导数有关的构造函数方法(教师版)
- 格式:doc
- 大小:920.93 KB
- 文档页数:18
解题方法系列⑦——构造法在导数中的应用素养解读:此类涉及到已知f (x )与f ′(x )的一些关系式,比较有关函数式大小的问题,可通过构造新的函数,创造条件,从而利用单调性求解. 类型一:f ′(x )g (x )±f (x )g ′(x )型 常用构造形式为F (x )=f (x )·g (x )或F (x )=f (x )g (x ),这类形式是对u ·v ,uv 型函数导数计算的推广及应用,u ·v 型导函数中体现的是“+”法,uv 型导函数中体现的是“-”法.因此当导函数形式中出现“+”法形式时,优先考虑构造u ·v 型,出现“-”法形式时,优先考虑构造uv 型.【典例1】 (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________.[切入点] (1)由f ′(x )-12<0,构造函数g (x )=f (x )-12x ;(2)由f ′(x )g (x )+f (x )g ′(x )构造函数F (x )=f (x )g (x ). [解析] (1)设g (x )=f (x )-12x , ∵f ′(x )<12,∴g ′(x )=f ′(x )-12<0, ∴g (x )为R 上的减函数,又f (1)=1, ∴f (lg x )>lg x +12=12lg x +12,即g (lg x )=f (lg x )-12lg x >12=g (1)=f (1)-12=g (lg10), ∴lg x <lg10,又y =lg x 为增函数, ∴0<x <10,则不等式的解集为(0,10). (2)设F (x )=f (x )g (x ),∵f ′(x )g (x )+f (x )g ′(x )>0,即F ′(x )>0.∴F(x)在(-∞,0)上递增,又∵f(x),g(x)分别是定义R上的奇函数和偶函数,∴F(x)为奇函数,关于原点对称,∴F(x)在(0,+∞)上也是增函数,∵f(-3)g(-3)=0,∴f(3)g(3)=0,∴F(x)=f(x)g(x)<0的解集为{x|x<-3或0<x<3}.[答案](1)(0,10)(2){x|x<-3或0<x<3}(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx. (3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).类型二:xf′(x)±nf(x)型(n为常数)在类型一中若g(x)=x或g(x)=x n,则F′(x)即为此种类型,我们可以思考形如此类函数的一般形式.F(x)=x n f(x),F′(x)=nx n-1f(x)+x n f′(x)=x n-1[nf(x)+xf′(x)];F(x)=f(x) x n,F′(x)=f′(x)·x n-nx n-1f(x)x2n=xf′(x)-nf(x)x n+1;结论:(1)出现nf(x)+xf′(x)形式,构造函数f(x)=x n f(x);(2)出现xf′(x)-nf(x)形式,构造函数F(x)=f(x) x n.我们根据得出的结论去解决典例2.【典例2】(1)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)[切入点](1)由xf′(x)-f(x)<0构造函数F(x)=f(x)x;(2)由xf′(x)+2f(x)>0想到g(x)=x2f(x)的导数及单调性.[解析](1)令F(x)=f(x)x,因为f(x)为奇函数,所以F(x)为偶函数,由于F′(x)=xf′(x)-f(x)x2,当x>0时,xf′(x)-f(x)<0,所以F(x)=f(x)x在(0,+∞)上单调递减,根据对称性,F(x)=f(x)x在(-∞,0)上单调递增,又f(-1)=0,f(1)=0,数形结合可知,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).故选A.(2)∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x),对任意正实数x满足xf′(x)>-2f(x),即xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0,∴函数g(x)在(0,+∞)上单调递增,在(-∞,0)单调递减;由不等式g(x)<g(1),∴|x|<1且x≠0,得-1<x<0或0<x<1,故选D.[答案](1)A(2)D(1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf′(x)-nf(x)>0(x≠0)型,构造F(x)=f(x)x n,则F′(x)=xf′(x)-nf(x)x n+1(注意对x n+1的符号进行讨论),特别地,当n=1时,xf′(x)-f(x)>0,构造F(x)=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.类型三:f ′(x )±λf (x )(λ为常数)型在类型一中若g (x )=e x ,那么在F ′(x )中会出现e x 量,这时可以考虑构造F (x )=f (x )·e x 或F (x )=f (x )e x 型,一般地F (x )=e nxf (x ), F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )]; F (x )=f (x )e nx ,F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx ;结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x ); (2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )e nx . 我们根据得出的结论去解决典例3.【典例3】 (1)f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( ) A .f (a )<e a f (0) B .f (a )>e a f (0) C .f (a )<f (0)e aD .f (a )>f (0)e a(2)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( ) A .f (1)<f (0) B .f (2)>e 2f (0) C .f (3)>e 3f (0)D .f (4)<e 4f (0)[切入点] (1)由f ′(x )-f (x )>0构造函数g (x )=f (x )e x ;(2)由(x -1)[f ′(x )-f (x )]>0构造函数g (x )=f (x )e x . [解析] (1)令g (x )=f (x )e x ,∴g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x >0.∴g (x )在R 上为增函数.又∵a >0,∴g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a f (0).故选B. (2)令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x ,∵(x -1)[f ′(x )-f (x )]>0,∴当x <1时,f ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(-∞,1)上为减函数, ∴g (-1)>g (0),即f (-1)e -1>f (0)e 0=f (0), ∵f (2-x )=f (x )e 2-2x ,∴f (3)=f (-1)e 4>e -1f (0)·e 4=e 3f (0),故选C. [答案] (1)B (2)C(1)对于f ′(x )+nf (x )型构造F (x )=e nx f (x ),F ′(x )=e nx [f ′(x )+nf (x )]. 特别地n =1时,F (x )=e x f (x ),F ′(x )=e x [f ′(x )+f (x )]. (2)对于f ′(x )-nf (x )型构造F (x )=f (x )e nx ,F ′(x )=f ′(x )-nf (x )e nx .特别地n =1时,F (x )=f (x )e x ,F ′(x )=f ′(x )-f (x )e x .类型四:f ′(x )与sin x 、cos x 组合型类型一中当g (x )=sin x 或g (x )=cos x 时,F ′(x )会出现f ′(x )与sin x 、cos x 的结合形式,我们一起看看常考的几种形式. F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ; F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x我们根据得出的结论去解决典例4.【典例4】 (2019·湖南益阳调研)定义在⎝ ⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,恒有f ′(x )>f (x )·tan x 成立,则有( ) A.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3B.3f ⎝ ⎛⎭⎪⎫π6>2cos1·f (1)C .2f ⎝ ⎛⎭⎪⎫π4<6f ⎝ ⎛⎭⎪⎫π6D.2f ⎝ ⎛⎭⎪⎫π4>f ⎝ ⎛⎭⎪⎫π3[切入点] 由f ′(x )>f (x )tan x ,构造函数g (x )=f (x )·cos x .[解析] 由于f ′(x )>f (x )tan x 且x ∈⎝ ⎛⎭⎪⎫0,π2,则f ′(x )cos x -f (x )sin x >0.设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )sin x >0,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π6,即f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π6cos π6,即f ⎝ ⎛⎭⎪⎫π3>3f ⎝ ⎛⎭⎪⎫π6.故A 正确.同理可得B ,C ,D 错误.故选A. [答案] A若导函数中出现了sin x 、cos x 、tan x 与f ′(x )的组合形式,根据F ′(x )的结构特点可考虑构造F (x )=f (x )sin x ,F (x )=f (x )cos x 等形式.1.(2020·太原十二中月考)设a >0,b >0,e 是自然对数的底数,则( ) A .若e a +2a =e b +3b ,则a >b B .若e a +2a =e b +3b ,则a <b C .若e a -2a =e b -3b ,则a >b D .若e a -2a =e b -3b ,则a <b[解析] 因为a >0,b >0,所以e a +2a =e b +3b =e b +2b +b >e b +2b .对于函数y =e x +2x (x >0),因为y ′=e x +2>0,所以y =e x +2x 在(0,+∞)上单调递增,因而a >b 成立.故选A. [答案] A2.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________.[解析] 令g (x )=f (x )-x , ∴g ′(x )=f ′(x )-1.由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0, ∴g (x )>0的解集为(2,+∞). [答案] (2,+∞)。
导数中的构造函数【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F nf x x x=;出现()()f x nf x '+形式,构造函数()()F nxx e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e =. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例1. 设是定义在上的可导偶函数,若当时,,则函数的零点个数为A .0B .1C .2D .0或2 【举一反三】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A .B .C .当时,取得极大值D .当时,2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e =. 例2、 已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【举一反三】 已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .B .C .D .3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=;()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=. 例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭ C .()024f f π⎛⎫< ⎪⎝⎭D .()023f f π⎛⎫< ⎪⎝⎭类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+>【举一反三】 已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( ) A .B .C .D .2. 参变分离,构造函数例5. 设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【举一反三】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【强化训练】一、选择题1.已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.2.已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.3.若函数有三个零点,则实数的取值范围是( )A.B.C.D.2.4.已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.3.5.已知函数,若函数在上无零点,则()A.B.C.D.4.6.已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.7.已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.8.若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.6.9.定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.10.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.11.已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2二、填空题12.若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.13.定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.14.已知定义在R 上的奇函数满足f (1)=0,当x >0时,,则不等式的解集是______.8. 15.设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______.9.16.设为整数,若对任意的,不等式恒成立,则的最大值是__________.导数中的构造函数答案【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F nf x x x=;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e=. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (nx )构造常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v⋅,uv 的导函数观察可得知,u v⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv.例2.设是定义在上的可导偶函数,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2【答案】A【解析】设,因为函数为偶函数,所以也是上的偶函数,所以.由已知,时,,可得当时,,故函数在上单调递减,由偶函数的性质可得函数在上单调递增.所以,所以方程,即无解,所以函数没有零点.故选A.【指点迷津】设,当时,,可得当时,,故函数在上单调递减,从而求出函数的零点的个数.【举一反三】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A.B.C.当时,取得极大值D.当时,【答案】C【解析】设,则则又得即,所以即,由得,得,此时函数为增函数由得,得,此时函数为减函数则,即,则,故错误,即,则,故错误当时,取得极小值即当,,即,即,故错误当时,取得极小值此时,则取得极大值本题正确选项:2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e =. 例3、 已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【答案】C 【解析】令,则,可设, ∵,∴. ∴,∴.可得:时,函数取得极大值,时,函数取得极小值.,,,.∴时,不等式的解集中恰有两个整数,.故的取值范围是,故选C.【指点迷津】令,可得,可设,,解得,,利用导数研究其单调性极值与最值并且画出图象即可得出.【举一反三】已知函数是定义在上的可导函数,对于任意的实数x,都有,当时,若,则实数a的取值范围是()A.B.C.D.【答案】B【解析】令,则当时,,又,所以为偶函数,从而等价于,因此选B.f x与sin x,cos x构造3.利用()sin x,cos x因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=; ()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()024f f π⎛⎫< ⎪⎝⎭D .()023f f π⎛⎫< ⎪⎝⎭【答案】B【指点迷津】满足“()()cos sin 0f x x f x x '+>”形式,优先构造()()F cos f x x x=,然后利用函数的单调性和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.1.直接法:直接根据题设条件构造函数例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+> 【答案】B【解析】构造()sin f x x x =形式,则()sin cos f x x x x '=+,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又Q ()f x 为偶函数,根据单调性和图象可知选B .【指点迷津】根据题目中不等式的构成,构造函数()sin f x x x =,然后利用函数的单调性和数形结合求解即可. 【举一反三】 已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( ) A .B .C .D .【答案】A 【解析】易知当≤0时,方程只有一个解, 所以>0.令,,令得,为函数的极小值点,又关于的方程=在区间内有两个实数解,所以,解得,故选A.【指点迷津】根据题目中方程的构成,构造函数,然后利用函数的单调性和数形结合求解即可.2. 参变分离,构造函数例5. 设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】,由,可得的对称轴为,所以,所以,所以,由可得,变形可得,即,设,,易得函数在区间上单调递增,在区间上单调递减,所以,故实数b的取值范围为,故选A【指点迷津】根据,变形可得,通过构造函数,进一步确定的最大值,利用导数,结合的单调性,即可求解.【举一反三】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【答案】B【解析】∵函数,有且只有一个零点,∴方程,,有且只有一个实数根,令g(x)=,则g′(x)=,当时,g′(x)0,当时,g′(x)0,∴g(x)在上单调递增,在上单调递减,当x=时,g(x)取得极大值g()=,又g(0)= g()=0,∴若方程,,有且只有一个实数根,则a=故选B.【强化训练】一、选择题1.已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.【答案】D【解析】令,,.当时,,则在上单调递增,又,所以恒成立;当时,因为在上单调递增,故存在,使得,所以在上单调递减,在上单调递增,又,则,这与恒成立矛盾,综上.故选D.10.已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.【答案】B【解析】由题意设,则,所以函数在上单调递增,所以,即.故选B.11.若函数有三个零点,则实数的取值范围是( ) A.B.C.D.【答案】D【解析】由得,设,则,由得得或,此时函数为增函数,由得得,此时函数为减函数,即当时,取得极小值,当时,取得极大值,当,且,函数图象如下图所示:要使有三个零点,则,即实数a的取值范围是,故本题选D.12.已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.【答案】A【解析】解:∵函数的定义域是∴,∵是函数的唯一一个极值点∴是导函数的唯一根,∴在无变号零点,即在上无变号零点,令,因为,所以在上单调递减,在上单调递增所以的最小值为,所以必须,故选:A.13.已知函数,若函数在上无零点,则()A.B.C.D.【答案】A【解析】解:因为f(x)<0在区间(0,)上恒成立不可能,故要使函数f(x)在(0,)上无零点,只要对任意的x∈(0,),f(x)>0恒成立,即对x∈(0,),a>2恒成立.令l(x)=2,x∈(0,),则l′(x),再令m(x)=2lnx2,x∈(0,),则m′(x)0,故m(x)在(0,)上为减函数,于是m(x)>m()=2﹣2ln2>0,从而l′(x)>0,于是l(x)在(0,)上为增函数,所以l(x)<l()=2﹣4ln2,故要使a>2恒成立,只要a∈[2﹣4ln2,+∞).14.已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】D【解析】由恒成立得,恒成立,设,则.设,则恒成立,在上单调递减,又,当时,,即;当时,,即,在上单调递增,在上单调递减,,,故选:D15.已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.【答案】A【解析】设,则,∴,化简可得.设,∴,∴时,,因此为减函数,∴时,,因此为增函数,∴,∴,∴在上为增函数.∵函数是偶函数,∴函数,∴函数关于对称,又∵,即,又在上为增函数,∴,由函数关于对称可得,,故选A.16.若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.【答案】B【解析】函数在上单调递增,所以在上恒成立,即在上恒成立,令,其对称轴为,当即时,在上恒成立等价于,由线性规划知识可知,此时;当即时,在上恒成立等价于,,即;当即时,在上恒成立等价于,此时;综上可知,,故选.17.定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.【答案】D【解析】构造函数因为是奇函数,所以为偶函数当时,恒成立,即,所以在时为单调递减函数在时为单调递增函数根据偶函数的对称性可知,所以所以选D18.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.【答案】B【解析】因为,所以,令,则,又因为是在上的偶函数,所以是在上的奇函数,所以是在上的单调递增函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数的最大值为2.故选:B19.已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2【答案】A【解析】由题意,设,则.由已知,所以当时,,当时,,又因为在上可导,故函数在上单调递增,在上单调递减,所以,所以无解,即方程无解,即方程无解,所以函数无零点.故选A.二、填空题12.若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.【答案】【解析】关于x的不等式对任意的实数及任意的实数恒成立,先看成b的一次函数,可得即为,可得恒成立,设,,,可得时,,递增;时,,递减,又,,可得在的最小值为,可得.即有a的范围是.故答案为:.20.定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.【答案】【解析】的周期为定义在上的奇函数①时,令,则,即单调递减又不等式的解集为②时,时,不等式成立综上所述:本题正确结果:21.已知定义在R上的奇函数满足f(1)=0,当x>0时,,则不等式的解集是______.【答案】【解析】设,则,结合可得为减函数.因为为奇函数,所以为偶函数,作出简图如下:结合简图,所以的解集是.22.设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______.【答案】【解析】令g(x)=e x f(x)﹣e x,则g′(x)=e x f(x)+e x f′(x)﹣e x=e x(f(x)+f′(x)﹣1),∵f(x)+f′(x)<1,∴f(x)+f′(x)﹣1<0,∴g′(x)<0,g(x)在R上为单调递减函数,∵g(0)=f(0)﹣1=2018﹣1=2017∴原不等式可化为g(x)>g(0),根据g(x)的单调性得x<0, ∴不等式(其中为自然对数的底数)的解集为,故答案为.23.设为整数,若对任意的,不等式恒成立,则的最大值是__________.【答案】1【解析】由题意对任意的,不等式恒成立,则x=1时,不等式也成立,代入x=1得e+3,又为整数,则a,这是满足题意的一个必要条件,又为整数,只需验证a=1时,对任意的,不等式恒成立,即证,变形为对任意的恒成立,令g(x),x∈,则g′(x),在(0,1)上小于0,在(1,)上大于0,故g(x)在(0,1)递减,在(1,)递增,∴g(x)g(1)=3>0,∴对任意的恒成立,故a=1满足题意.故答案为1.。
构造函数解与导数有关的选填压轴题方法规律:1.注意逆向思谁,构造出的函数的导函数与已知条件相同,或者能够利用已知条件求解2.根据含导函数的不等式构造原函数时要注意从以下几种类型考虑: ①原函数是函数和差的组合; ②原函数是函数乘除的组合; ③原函数是函数与x 的乘除的组合; ④原雨数是函数与xe 的乘除的组合;⑤原函数是函数与)(cos sin x x 的乘除的组合; ⑥原函数是函数与x ln 的乘除的组合 3.常用的构造函数有:)()('x xf x f +构造)(x xf )()(2'2x f x x xf +构造)(2x f x )()('x f x xf -构造x x f )( )()('x f x f +构造)(x f e x)()('x f x f -构造x ex f )(等等(一)与等式有关的函数构造例1若函数)(x f 满足xe x xf x xf 3')()(=-,0)1(=f ,则当0>x 时,)(x f ( B ) A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值又有极小值 D.既无极大值又无极小值解析:设x x f x F )()(=,则x xe x x f x xf x F =-=2'')()()(,所以C e x x x f x F x+-==)1()()( Cx e x x x f x +-=⇒)()(2,又由00)1(=⇒=C f ,所以x e x x x f )()(2-=2510)1()(2'+->⇒>-+=∴x e x x x f x 或251--<x 所以)(x f 在]215,0(-上递减,),215[+∞-上递增所以当0>x 时,)(x f 有极小值,无极大值,故选B练习1.函数)(x f 的导函数为)('x f ,满足x x x f x xf ln )(2)('=+,且ee f 21)(=,则)(x f 的极值情况为( D )A.有极大值无极小值B.有极小值无极大值C.既有极大值又有极小值D.既无极大值也无极小值解析:设)()(2x f x x F =,则x x f x x xf x F ln )()(2)('2'=+=C x x x x f x x F +-==⇒ln )()(22ln )(x C x x x x f +-=⇒,221)(2eC e eC e f =⇒==∴,22ln )(x ex x x x f +-=∴3'2ln )(xex x x x f -+-=∴,设e x x x x g -+-=2ln )(,则e x x x g <<⇒>-=00ln 1)(' )(x g ∴在],0(e 上递增,),[+∞e 上递减0)()(=≤⇒e g x g ,即0)('<x f所以)(x f 在),0(+∞上递减⇒)(x f 在),0(+∞上既无极大值也无极小值,故选D 练习2.若函数)(x f 在R 上可导,且3)2(2)('2-+=x f x x f ,则( C )A .)4()0(f f < B. )4()0(f f = C. )4()0(f f > D.以上都不对 解析:4)2()2(24)2()2(22)('''''-=⇒+=⇒+=f f f f x x f ,38)(2--=∴x x x f ,其开口向上,对称轴为4=x ,所以)4()0(f f >,故选C练习 3.函数)(x f 在其定义域内满足xe xf x xf =+)()('(其中)('x f 为函数)(x f 的导函数),e f =)1(,则函数)(x f ( B )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值又无极小值 解析:令)()(x xf x F =,则x e x f x xf x F =+=)()()('',C e x xf x F x +==∴)()(x C e x f x +=⇒)(,0)1(=⇒=+=∴C e C e f ,x e x f x =∴)(,10)1()(2'>⇒>-=x xx e x f x ,)(x f ∴在)0,(-∞上递减,]1,0(上递减,),1[+∞上递增)(x f ⇒有极小值,无极大值,故选B(二)与不等式有关的函数构造例 2.已知定义在R 上的奇函数)(x f 的导函数为)('x f ,当0<x 时,)(x f 满足)()()(2'x xf x xf x f <+,则)(x f 在R 上的零点个数为( D )A.5B.3C.1或3D.1解析:设)0()()(2<=x e x f x x F x ,则0)]()()(2[)()()(2)('2'2'>-+=-+=x x e x xf x xf x f x e x f x x f x x xf x F )(x F ∴在)0,(-∞上递增,又0)0(=F ,0<∴x 时,0)0()()(2=<=F ex f x x F x0)(<⇒x f又)(x f 为奇函数,所以)(x f 仅有一个零点0=x ,故选D练习4.设)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有0)()('>+x xf x f ,则不等式0)1()2017()2017(>-+++f x f x 的解集为( C )A.)2017,(-∞B.)0,2018(-C.)2017,2018(--D.)2018,(--∞ 解析:设)()(x xf x F =,则)(0)()()(''x F x xf x f x F ⇒>+=在)0,(-∞上递增0)1()2017()2017(>-+++f x f x )1()2017(->+⇔F x F 020171<+<-⇒x20172018-<<-⇒x ,故选C练习5.定义在R 上的函数)(x f 与其导函数)('x f 满足xe xf x f ->+1')()(,则下列不等式一定成立的是( A )A.)1()0(ef e f <+B.)1()0(ef e f >+C.)1()0(f e f <+D.)1()0(f e f >+ 解析:设0)]()([)()()(''>-+=⇒-=e x f x f e x F ex x f e x F x x )(x F ⇒在R 上递增)1()0()1()0()1()0(ef e f e ef f F F <+⇒-<⇒<∴,故选A练习6.定义域为R 的可导函数)(x f 的导函数为)('x f ,满足)()('x f x f >,且1)0(=f ,则不等式1)(<x ex f 的解集为( B ) A.)0,(-∞ B.),0(+∞ C.)2,(-∞ D.),2(+∞解析:设x ex f x F )()(=,则)(0)()()(''x F e x f x f x F x ⇒<-=在R 上递减,又1)0(=F 0)0()(1)(>⇒<⇔<∴x f x F ex f x ,故选B 练习7.已知定义),0(+∞在上的函数)(x f 的导数为)('x f ,且满足)(2)ln )((2'x f x x x f >,则( B )A.)(3)(2)(623e f e f e f >> B.)(2)(3)(632e f e f e f << C.)(2)(3)(632e f e f e f >> D.)(3)(2)(623e f e f e f <<解析:)(2)ln )((2'x f x x x f >⇔)(2)ln 2)(('x f x x x f >⇒)()(ln 'x f x xf x >设0)(ln )()(ln )(ln )(1ln )()(ln )()(2'2''>-=-=⇒=x x x f x xf x x x f x x x f x F xx f x F )(x F ⇒在),0(+∞上递增)(2)(3)(63)(2)()()()()(323232e f e f e f e f e f e f e F e F e F <<⇒<<⇒<<∴,故选B练习8.设函数)(x f 是定义)0,(-∞在上的可导函数,其导函数为)('x f ,且有)(3)('x f x xf <,则不等式0)2()2015()2015(83>-+++f x x f 的解集为( C )A.)2017,(--∞B.)0,2017(-C.)2015,2017(--D.)2018,(--∞解析:设3)()(xx f x F =,则)(0)(3)()(4''x F x x f x xf x F ⇒<-=在)0,(-∞上递减0)2()2015()2015(83>-+++f x x f 20152017020152)2()2()2015()2015(33-<<-⇒<+<-⇒--<++⇒x x f x x f 故选C(三)与三角函数有关的构造函数 例 3.定义在)2,0[π上可导函数)(x f 的导函数为)('x f ,且0sin )(cos )('<+x x f x x f ,0)0(=f ,则( A )A.)3(2)6(ππf f >B.)3(2)4(ππf f <C.0)2(ln >fD.)4(2)6(ππf f < 解析:设x x f x F cos )()(=,则)(0cos sin )(cos )()(2''x F x x x f x x f x F ⇒<+=在)2,0[π上递减 )0)3()(3(2)3(3)6(21)3(23)6(0)3()6()0(<>>⇒>>⇒>>∴ππππππππf f f f f f F F F ,故A 对)3(2)4(21)3(22)4()3()6(ππππππf f f f F F >⇒>⇒>∴,故B 错0)2(ln 0cos )0(2ln cos )2(ln )0()2(ln <⇒<⇒<∴f f f F F ,故C 错)4(26)6(22)4(23)6()4()6(ππππππf f f f F F >⇒>⇒>∴,故D 错练习9.定义在)2,0(π上的函数)(x f ,)('x f 是它的导函数,且恒有)(cos x xf 0sin )('>+x x f 成立,则( B )A.)3(3)4(2ππf f > B.)6(211(1sin πf f >) C.)4(2)6(ππf f >D.)3(3)6(ππf f >解析:设)(0cos )(sin )()(sin )()(''x F x x f x x f x F x x f x F ⇒>+=⇒=在)2,0(π上递增)3(3)4(2)3(23)4(22)3()4(ππππππf f f f F F <⇒<⇒<,故A 错 )3(3)4(2)6(211sin )1()6()1(ππππf f f f F F <⇒>⇒>,故选B练习10定义在)2,0(π上的函数)(x f )满足: x x f x f tan )()('>恒成立,则下列不等式中成立的是( A )A.)3()6(3ππf f > B.1sin )3(332)1(πf f <C.)4()6(2ππf f <D.)3(2)4(3ππf f <解析:在)2,0(π上,x x f x xf x x f x f sin )()(cos tan )()(''>⇔>设x x f x F sin )()(=,则)(0sin cos )(sin )()(2''x F x x x f x x f x F ⇒<-=在)2,0(π上递减)3()6(323)3(21)6()3()6(ππππππf f f f F F >⇒>⇒>∴,故选A 迁移运用:1.奇函数)(x f 定义域为),0()0,(ππ -,其导函数是)('x f ,当π<<x 0时,有0cos )(sin )('<-x x f x x f ,则关于x 的不等式x f x f sin )4(2)(π<的解集为( D )A.),4(ππB.),4()4,(ππππ --C.)4,0()0,4(ππ -D.),4()0,4(πππ - 解析:设x x f x F sin )()(=,则当π<<x 0时,0sin cos )(sin )()(2'<-=xx x f x x f x F )(x F ⇒在),0(π上递减,又)(x F 为偶函数,所以)(x F 在)0,(π-上递增当0>x 时,x f x f sin )4(2)(π<πππππ<<⇒<⇔<⇔x f x F f x x f 4)4()(4sin )4(sin )(当0<x 时,x f x f sin )4(2)(π<04)4()(4sin )4(sin )(<<-⇒->⇔>⇔x f x F f x x f ππππ故选D2.已知)(x f 是定义在R 上的函数,)('x f 是)(x f 的导单数,且满足)(3)('x f x f >,e f =)31(,则3)(ln x x f <的解集为( B ) A.),0(e B.),0(31e C.),1(e D.),1(31e解析:设x ex f x F 3)()(=,则)(0)(3)()(3''x F e x f x f x F x ⇒>-=在R上递增,又1)31()31(==e f F 所以3)(ln x x f <313031ln )31()(ln 1)(ln e x x F x F xx f <<⇒<⇒<⇔<⇔,故选B 3.已知可导函数)(x f 的导函数为)('x f ,2018)0(=f , 若对任意的R x ∈都有)()('x f x f >,则不等式x e x f 2018)(<的解集为( A )A.),0(+∞B.)(21∞+,e C.)1,(2e -∞ D.)0,(-∞ 解析:设x e xf x F )()(=,则)(0)()()(''x F e x f x f x F x⇒<-=在R 上递减,又2018)0()0(==f F x e x f 2018)(<0)0()(2018)(>⇒<⇔<⇔x F x F ex f x ,故选A 4.已知)(x f 是定义在区间),0(+∞上的函数,其导函数为)('x f ,且不等式)(2)('x f x xf <恒成立,则( B )A.)2()1(4f f <B.)2()1(4f f >C.)2(4)1(f f <D.)2(4)1('f f <解析:设2)()(xx f x F =,则0)(2)()(3''<-=x x f x xf x F )(x F ⇒在),0(+∞上递减 )2()1(44)2()1()2()1(f f f f F F >⇒>⇒>∴,故选B 5.函数)(x f 的导函数为)('x f ,对R x ∈∀都有)()('x f x f >成立,若2)2(e f =,则不等式xe xf >)(的解是( A )A.),2(+∞B.)10(,C.),1(+∞D.)2ln ,0(解析:设x e x f x F )()(=,则)(0)()()(''x F e x f x f x F x ⇒>-=在R上递增,又1)2()2(2==e f F 所以xe xf >)(2)2()(1)(>⇒>⇔>⇔x F x F e x f x,故选A 6.已知定义在R 上的奇函数)(x f 满足2)('<x f ,则不等式x e x x f x 32)2ln()1(1+>-+-++的解集为( A )A.)1,2(--B.),1(+∞-C.)2,1(-D.),2(+∞解析:设0321)1()(32)2ln()1()(1''1<--+-+=⇒---+-+=++x x e x x f x F x e x x f x F 对)2(∞+-∈,x 恒成立,)(x F 在)2(∞+-,上递减,又0312)0()1(=+--=-f F 所以0)(>x F 的解集为)1,2(--,故选A7.已知函数)(x f 的定又域为R ,)('x f 为)(x f 的导函数,当),0[+∞∈x 时,0)(cos sin 2'>-x f x x ,且R x ∈∀,12cos )()(=++-x x f x f ,下列说法一定正确的是( B )A.)32(43)65(41ππ-->--f f B.)34(43)65(41ππ-->--f f C.)43(21)3(43ππf f ->- D.)3(43)43(21ππf f ->-- 解析:设)(sin )(2x f x x F -=,则)(0)(cos sin 2)(''x F x f x x x F ⇒>-=在),0[+∞上递增12cos )()(=++-x x f x f )(sin )()(sin sin 22cos 1)()(222x x f x f x x x x f x f ---=-⇔=-=-+⇔)()(x F x F --=⇔)(x F ⇒为奇函数,又0)0(0)0(=-=f F ,所以)(x F 在R 上递增)34(43)65(41)34(65(ππππ-->--⇒->-∴f f F F ,故选B 8.函数)(x f 在R 上的导函数为)('x f ,对于任意的实数x ,都有x x f 40342017)('<+,若t t f t f 40342017)()1(++-<+,则实数t 的取值范围是( A ) A.),21(+∞-B.),23(+∞-C.)21,(--∞D.)23,(--∞ 解析:设x x x f x F 20172017)()(2+-=,则)(020174034)()(''x F x x f x F ⇒<+-=在R 上递减 所以t t f t f 40342017)()1(++-<+)()1(t F t F -<+⇔t t t f t t t f t F t F 20172017)()1(2017)1(2017)1()()1(22---<+++-+⇔-<+⇔211->⇒->+⇔t t t ,故选A9.已知函数)(x f 的定义域为R ,其图像关于点)0,1(-中心对称,其导函数为)('x f ,当1-<x 时,0)]()1()()[1('<+++x f x x f x ,则不等式)0()1(f x xf >-的解集为( A )A.),1(+∞B.)1,(--∞C.)1,1(-D.),1()1,(+∞--∞ 解析:设)()1()(x f x x F +=,则0)()1()()(''>++=x f x x f x F 对)1,(--∞∈x 恒成立)(x F ∴在]1,(--∞上递增,又)(x F 关于)0,1(-对称,且0)1(=-F ,)(x F ∴在R 上递增所以)0()1(f x xf >-101)0()1(>⇒>-⇒>-⇔x x F x F ,故选A10.设函数)(x f 在R 上存在导数)('x f ,R x ∈∀有2)()(x x f x f =+-,在),0(+∞上x x f <)(',若m m f m f 48)()4(-≥--,则实数m 的取值范围为( A )A.),2[+∞B.]2,2[-C.),0[+∞D.),2[]2,(+∞--∞解析:设221)()(x x f x F -=,则0)()(''<-=x x f x F 对0>x 恒成立,)(x F ∴在),0(+∞递减2)()(x x f x f =+-)()()()()(2121)(22x F x F x F x f x x x f ⇒--=⇔---=-⇔为奇函数又)(x f 连续)(x F ⇒连续,)(x F ∴在R 上递减所以m m f m f 48)()4(-≥--)()4(21)()4(21)4(22m F m F m m f m m f >-⇔-≥---⇔24≥⇒≤-⇒m m m ,故选A。
导数证明不等式构造函数法类别1、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g , 从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的 图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
利用导数运算法则构造函数含详解导数运算法则是微积分中的重要内容,它用于求导函数。
在构造函数时,利用导数运算法则可以简化运算,提高计算效率。
本文将详解常见的导数运算法则,方便读者了解并应用于函数构造。
一.常数法则当函数f(x)为常数时,f'(x)=0。
这是由于常数的导数等于0。
二.幂函数法则1.构造函数:设f(x)=x^n,其中n为实数。
2.对函数f(x)求导,根据导数的定义:f'(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx3.展开f(x+Δx)-f(x):f(x+Δx)-f(x)=[(x+Δx)^n-x^n]/Δx=[x^n+n*x^(n-1)Δx+O((Δx)^2)-x^n]/Δx(O(Δx)表示Δx的高阶无穷小)=n*x^(n-1)+O(Δx)4.带入导数的定义,得到导数f'(x)=n*x^(n-1)。
三.指数函数法则2.对函数f(x)求导,根据导数的定义:f'(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx3.展开f(x+Δx)-f(x):f(x+Δx)-f(x)=e^(x+Δx)-e^x=e^x*e^Δx-e^x=e^x*(e^Δx-1)4. 带入导数的定义,得到导数f'(x)=e^x * lim(Δx→0) [(e^Δx - 1)/Δx]。
根据数学推导,lim(Δx→0) [(e^Δx - 1)/Δx]=1,因此f'(x)=e^x。
四.对数函数法则1. 构造函数:设f(x)=ln(x),其中ln(x)是以e为底的自然对数。
2.对函数f(x)求导,根据导数的定义:f'(x)=lim(Δx→0) [f(x+Δx)-f(x)]/Δx3.展开f(x+Δx)-f(x):f(x+Δx)-f(x)=ln(x+Δx)-ln(x)= ln[(x+Δx)/x]= ln(1+Δx/x)4. 使用泰勒展开:ln(1+Δx/x)≈Δx/x,当Δx趋近于0时。
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可. 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
一、 基础知识常见导数结构1. 对于不等式f x k k '>≠(),(0),构造函数()()=−+g x f x kx b2. 对于不等式xf x f x '+>()()0,,构造函数=g x xf x ()()3. 对于不等式xf x f x '−>()()0,,构造函数=()()g x f x x4. 对于不等式xf x nf x '+>()()0,,构造函数=ng x x f x ()() 5. 对于不等式xf x nf x '−>()()0,,构造函数=g x f x x ()()n6. 对于不等式f x f x '+>()()0,,构造函数=xg x e f x ()() 7. 对于不等式f x f x '−>()()0,,构造函数=()()g x f x e x8. 对于不等式f x kf x '+>()()0,,构造函数=kxg x e f x ()() 9. 对于不等式f x xf x '+>()2()0,,构造函数=x g x ef x 2()()10. 对于不等式f x a f x '+⋅>()ln ()0,,构造函数=xg x a f x ()() 11. 对于不等式f x f x x +'⋅>()()tan 0,,构造函数=⋅g x x f x ()sin () 12. 对于不等式f x x f x '−⋅>()tan ()0,,构造函数=⋅g x x f x ()cos ()13. 对于不等式f x f x '>()()0,,构造函数=g x f x ()ln () 14. 对于不等式f x x f x x'+>()ln ()0,,构造函数=⋅g x x f x ()ln ()导数构造例1.已知函数=+f x x alnx 2()12,若对任意两个不相等的正数x 1,x 2,都有−>−x x f x f x 4()()1212恒成立,则a 的取值范围为( ) A .[4,+∞) B .+∞(4,) C .−∞(,4] D .−∞(,4)【答案】A【解答】解:已知函数=+f x x alnx 2()12,若对任意两个不相等的正数x 1,x 2,都有−>−x x f x f x 4()()1212恒成立,构造函数可得即当>x 0时,=+−≥'xf x x a()40在+∞(0,)上恒成立, 即≥+xa x 42在+∞(0,)上恒成立, 则≥−=a x x max (4)42, 则实数a 的取值范围是+∞4,)[, 故选:A .变式1.已知函数=+−f x e ax x ()2,其中∈a R ,若对于任意的x 1,∈x [12,+∞),且<x x 12,都有−<−x f x x f x a x x ()()()211212成立,则a 的取值范围是( ) A .[1,+∞) B .[2,+∞)C .−∞(,1]D .−∞(,2]【答案】D【解答】解:对于任意的x 1,∈x [12,+∞),且<x x 12,都有−<−x f x x f x a x x ()()()211212成立,∴不等式等价为<++x x f x a f x a()()1212成立, 令=+xh x f x a()(),则不等式等价为当<x x 12时,<h x h x ()()12恒成立, 即函数h x ()在+∞(1,)上为增函数;=+−+xh x e ax a x ()2,则'=−+−xh x xe e ax x ()022在+∞(1,)上恒成立;二、课堂练习1.加减构造法∴−+−xe e a x x 20;即−−a xe e x x 2恒成立,令=−g x xe e x x (),∴'=>g x xe x ()0;∴g x ()在+∞(1,)上为增函数; ∴>g x g ()(1)=0;∴−a 20; ∴a 2.∴a 的取值范围是−∞(,2].故选:D . 2.指数乘除法构造例1. 已知f x ()为R 上的可导函数,且∀∈x R ,均有>'f x f x ()(),则以下判断正确的是() A .>f e f (2019)(0)2019 B .<f e f (2019)(0)2019 C .=f e f (2019)(0)2019D .f (2019)与e f (0)2019大小无法确定 【答案】C【解答】解:设=e h xf x x ()(),则'='−e h x f x f x x()()(), ∀∈x R ,均有>'f x f x ()(),∴'<h x ()0,∴h x ()在R 上是减函数, ∴<h h (2019)(0), ∴<ef f (0)(2019)2019, ∴<f e f (2019)(0)2019.故选:B .变式1.函数=y f x ()的导函数为'f x (),满足∀∈x R ,'>f x f x ()()且f (1)=e ,则不等式>f lnx x ()的解集为( )A .+∞e (,)B .+∞(1,)C .e (0,)D .(0,1)【答案】A【解答】解:令=t lnx ,则>⇔>f lnx x f t e t ()(), 令=e g xf x x ()(),则'=>'−eg x f x f x x()0()(), 因为:满足∀∈x R ,'>f x f x ()()∴g x ()在R 上单调递增,∴>⇔>⇔>ef t eg t g f t t t ()1()()(1)⇔>⇔>⇔>t lnx x e 11, 故选:A .变式2.定义在[0,+∞)上的可导函数,且+<'x f x f x ()(),则对任意正实数a ,下列式子恒成立的是( )A .f (a )<e f a (0)B .f (a )>e f a (0)C .e f a (a )<f (0)D .e f a (a )>f (0) 【答案】A 【解答】解:+<'x f x f x ()(),∴−<−'f x f x x ()(),∴<−'−e e f x f x xx x0()(),设=e g x f x x()(), ∴'=<'−e g x f x f x x()0()(),∴g x ()在[0,+∞)单调递减,∴g (a )<g (0)∴<e ef a f a ()(0)0, 即f (a )<e f a (0), 故选:A . 3.指数升级构造法例1.对定义在R 上的可导函数f x ()恒有−+'>x f x xf x (4)()()0,则f x ()( ) A .恒大于等于0 B .恒小于0C .恒大于0D .和0的大小关系不能确定【答案】C【解答】解:令=eg x x f x x()()4,∴'=−+'e g x x x f x xf x x()[(4)()()]3−+'>x f x xf x (4)()()0恒成立,∴当>x 0时,>'g x ()0,此时函数g x ()单调递增, 当<x 0时,<'g x ()0,此时函数g x ()单调递减,∴当=x 0时,g x ()取得极小值,同时也是最小值=g (0)0,∴=e g x g x f x x()(0)()4,即=e g x x f x x()()4,当≠x 0时,>g x ()0,∴当≠x 0时,>f x ()0,−+'>x f x xf x (4)()()0恒成立,∴当=x 0时,+>f 4(0)00恒成立,∴>f (0)0,综上无论x 取何值,恒有>f x ()0, 故选:C .变式1.设'f x ()是函数f x ()的导函数,且'>∈f x f x x R ()2()(),=f e e 2()(1为自然对数的底数),则不等式<f lnx x ()2的解集为( )A .e 2(0,)B .C .e (1,e 2)D .e2(【答案】B【解答】解:可构造函数=e F xf x x()()2, '==−'−e eF x f x e f x e f x f x x xx x ()()()2()()2()22222, 由'>f x f x ()2(),可得'>F x ()0,即有F x ()在R 上递增. 不等式<f lnx x ()2即为<x f lnx 1()2,>x (0),即<e f lnx lnx1()2,>x 0.即有==eF f 2()121()1,即为<F lnx F 2()()1,由F x ()在R 上递增,可得<lnx 21,解得<<x 0.故不等式的解集为,故选:B . 4.幂函数乘除法构造例题1.已知函数=y f x ()对任意的∈+∞x (0,)满足>'f x xf x ()()(其中'f x ()为函数f x ()的导函数),则下列不等式成立的是( )A .>f f 2()21(1)B .<f f 2()21(1)C .<f f 22()(11D .>f f 22()1(1)【答案】D【解答】解:令=x F x f x ()(),∈+∞x (0,),则'='−x F x xf x f x ()()()2, >'f x xf x ()(),即:'−<xf x f x ()()0, ∴'<F x ()0,∴F x ()在∈+∞x (0,)上单调递减,故>F F 2()1(1),即:>f f 22()1(1)故选:D .变式1.已知定义在R 上的偶函数=y f x ()的导函数为'f x (),函数f x ()满足:当>x 0时,'+>x f x f x ()()1,且f (1)=2018.则不等式<+x f x ||()12017的解集是( ) A .−(1,1)B .−∞(,1)C .−(1,⋃0)(0,1)D .−∞(,⋃−1)(1,+∞)【答案】C【解答】解:当>x 0时,'+>x f x f x ()()1, 所以:'+−>x f x f x ()()10, 令:=−=−F x x f x x x f x ()()(()1), 则'='+−>F x x f x f x ()()()10,即当:>x 0时,F x ()单调递增.又f x ()为R 上的偶函数, 所以:F x ()为R 上的奇函数,=F (0)0, 则当<x 0时,F x ()单调递增.不等式:<+x f x ||()12017, 当>x 0时,<+x f x x ()2017,即:−<x f x x ()2017,F (1)=f (1)−=12017, 即:<F x F ()(1), 所以:<<x 01;当<x 0时,−x .<−+f x x ()2017,−>−x f x x ()2017,−=−F F (1)(1)=−2017,即:>−F x F ()(1), 所以:−<<x 10; 综上,不等式:<+x f x ||()12017,的解集为:−(1,⋃0)(0,1). 故选:C . 5.对数乘除法构造例1.已知定义在e [,+∞)上的函数f x ()满足+<'f x xf x lnx ()()0且f (4)=0,其中'f x ()是函数f x ()的导函数,e 是自然对数的底数,则不等式>f x ()0的解集为( ) A .e [,4) B .+∞(4,) C .e (,4) D .e [,+e 1)【答案】A 【解答】解:x e ,∴lnx 1,则不等式+<'f x xf x lnx ()()0等价为+<'xf x lnx f x ()0(), 设=g x f x lnx ()(), 则'='+<xg x f x lnx f x ()()0(), 即g x ()在e [,+∞)上为减函数,f (4)=0,∴g (4)=f (4)=ln 40,则不等式>f x ()0等价为>lnxf x ()0, 即>=g x g ()0(4),g x ()在e [,+∞)上为减函数,∴<e x 4,即不等式>f x ()0的解集为e [,4), 故选:A .变式1.已知定义在e [,+∞)上的函数f x ()满足+<'f x xf x lnx ()()0且f (4)=0,其中'f x ()是函数f x ()的导函数,e 是自然对数的底数,则不等式>f x ()0的解集为( )A .e [,4)B .+∞(4,)C .e (,4)D .e [,+e 1)【答案】A则不等式+<'f x xf x lnx ()()0等价为+<'xf x lnx f x ()0(), 设=g x f x lnx ()(), 则'='+<xg x f x lnx f x ()()0(), 即g x ()在e [,+∞)上为减函数,f (4)=0,∴g (4)=f (4)=ln 40,则不等式>f x ()0等价为>lnxf x ()0, 即>=g x g ()0(4),g x ()在e [,+∞)上为减函数,∴<e x 4,即不等式>f x ()0的解集为e [,4), 故选:A . 6.对数升级构造法例1..已知函数f x ()的导函数为'f x (),e 为自然对数的底数,若函数f x ()满足'+=x xf x f x lnx ()(),且f (e )=e1,则不等式+−+>−f x f e x e (1)(1)的解集是( ) A .e (0,) B .+e (0,1) C .−e (1,) D .−+e (1,1)【答案】C 【解答】解:'+=xxf x f x lnx()(), ∴'=xxf x lnx(()), 两边积分=+xf x ln x C 2()12,∴=+x f x ln x C 2()()112, f (e )=e 1,∴f (e )=+=e e C 2()111,∴=C 21,∴=+x f x ln x 22()()1112,。
专题07 导数中的问题【高考真题】1.(2022·新高考Ⅱ) 曲线y =ln|x|过坐标原点的两条切线的方程为____________,____________.1.答案 y =1e x y =-1e x 解析 因为y =ln|x|,当x >0时y =ln x ,设切点为(x 0,ln x 0),由y ′=1x,所以y ′|x =x 0=1x 0,所以切线方程为y -ln x 0=1x 0(x -x 0),又切线过坐标原点,所以-ln x 0=1x 0(-x 0),解得x 0=e ,所以切线方程为y -1=1e (x -e),即y =-1e x ;当x <0时y =ln(-x ),设切点为(x 1,ln(-x 1)),由y ′=1x,所以y ′|x =x 1=1x 1,所以切线方程为y -ln(-x 1)=1x 1 (x -x 1),又切线过坐标原点,所以-ln(-x 1)=1x 1(-x 1),解得x 0=-e ,所以切线方程为y -1=-1e (x +e),即y =-1e x ;故答案为y =1e x ;y =-1ex . 2.(2022·新高考Ⅱ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________.2.答案 (-∞,-4)∪(0,+∞) 解析 ∵y =(x +a )e x ,∴y ′=(x +1+a )e x ,设切点为(x 0,y 0),则y 0=(x 0 +a )e x 0,切线斜率k =(x 0+1+a )e x 0,切线方程为y -(x 0+a )e x 0=(x 0+1+a )e x 0(x -x 0).∵切线过原点,∴-(x 0+a )e x 0=(x 0+1+a )e x 0(-x 0),整理得,x 02+a x 0-a =0.∵切线有两条,∴△=a 2+4a >0,解得a <-4或a >0,∴a 的取值范围是(-∞,-4)∪(0,+∞),故答案为(-∞,-4)∪(0,+∞).3.(2022·全国乙文)函数f (x )=cos x +(x +1)sin x +1在区间[0,2π]的最小值、最大值分别为( )A .-π2,π2B .-3π2,π2C .-π2,π2+2D .-3π2,π2+2 3.答案 D 解析 f ′(x )=-sin x +sin x +(x +1)cos x =(x +1)cos x ,所以f (x )在区间(0,π2)和(3π2,2π)上f ′(x )>0, 即f (x )单调递增;在区间(π2,3π2)上f ′(x )<0,即f (x )单调递减,又f (0)=f (2π)=2,f (π2)=π2+2,f (3π2)=-(3π2+1)+1=-3π2,所以f (x )在区间[0,2π]上的最小值为-3π2,最大值为π2+2.故选D . 4.(2022·新高考Ⅱ)已知函数f (x )=x 3-x +1,则( )A .f (x )有两个极值点B .f (x )有三个零点C .点(0,1)是曲线y =f (x )的对称中心D .直线y =2x 是曲线y =f (x )的切线4.答案 AC 解析 由题,f ′(x )=3x 2-1,令f ′(x )>0得x >33或x <-33,令f ′(x )<0得-33<x <33, 所以f (x )在(-33,33)上单调递减,在(-∞,-33),(33,+∞)上单调递增,所以x =±33是极值点,故A 正确;因f (-33)=1+239>0,f (33)=1-239>0,f (-2)=-5<0,所以,函数f (x )在(-∞,-33)上有一个零点,当x ≥33时,f (x )≥f (33)>0,即函数f (x )在(33,+∞)上无零点,综上所述,函数f (x )有一个零点,故B 错误;令h (x )=x 3-x ,该函数的定义域为R ,h (-x )=(-x )3-(-x )=-x 3+x =-h (x ),则h (x )是奇函数,(0,0)是h (x )的对称中心,将h (x )的图象向上移动一个单位得到f (x )的图象,所以点(0,1)是曲线y =f (x )的对称中心,故C 正确;令f ′(x )=3x 2-1=2,可得x =±1,又f (1)=f (-1)=1,当切点为(1,1)时,切线方程为y =2x -1,当切点为(-1,1)时,切线方程为y =2x +3,故D 错误.故选AC .5.(2022·新高考Ⅱ) 已知函数f (x )=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f (x )在区间(0,5π12)单调递减 B .f (x )在区间⎝⎛⎭⎫-π12,11π12有两个极值点 C .直线x =7π6是曲线y =f (x )的对称轴 D .直线y =32-x 是曲线y =f (x )的切线 5.答案 AD 解析 由题意得,f (2π3)=sin(4π3+φ)=0,所以4π3+φ=k π,k ∈Z ,即φ=-4π3+k π,k ∈Z , 又0<φ<π,所以k =2时,φ=2π3,故f (x )=sin(2x +2π3).对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sin u 图象知y =f (x )在(0,5π12)上是单调递减;对B ,当x ∈⎝⎛⎭⎫-π12,11π12时,2x +2π3∈(π2,5π2),由正弦函数y =sin u 图象知y =f (x )只有1个极值点,由2x +2π3=3π2,解得,即x =5π12为函数的唯一极值点;对C ,当x =7π6时,2x +2π3=3π,f (7π6)=0,直线x =7π6不是对称轴;对D ,由y ′=2cos(2x +2π3)=-1,得cos(2x +2π3)=-12,解得2x +2π3=2π3+2k π(k ∈Z )或2x +2π3=4π3+2k π(k ∈Z ),从而得,x =k π(k ∈Z )或x =π3+k π(k ∈Z ),所以函数y =f (x )在点(0,32)处的切线斜率为k =y ′|x =0=2cos 2π3=-1,切线方程为y =32-x .故选AD . 6.(2022·全国乙理)已知x =x 1和x =x 2分别是函数f (x )=2a x -ex 2(a >0且a ≠1)的极小值点和极大值点.若 x 1<x 2,则a 的取值范围是____________.6.答案 (1e,1) 解析 f ′(x )=2ln a a x -2ex ,因为x 1,x 2分别是函数f (x )=2a x -ex 2的极小值点和极大值 点,所以函数f (x )在(-∞,x 1)和(x 2,+∞)上递减,在(x 1,x 2)上递增,所以当x ∈(-∞,x 1)和(x 2,+∞)时,f ′(x )<0,当x ∈(x 1,x 2)时,f ′(x )>0,若a >1时,当x <0时,2ln a a x >0,2ex <0,则此时,f ′(x )>0,与前面矛盾,故a >1不符合题意,若0<a <1时,则方程2ln a a x -2ex =0的两个根为x 1,x 2,即方程ln a a x =ex 的两个根为x 1,x 2,即函数y =ln a a x 与函数y =e x 的图象有两个不同的交点,∵0<a <1,∴函数y =a x 的图象是单调递减的指数函数,又∵ln a <0,∴y =ln a a x 的图象由指数函数y =a x 向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|ln a |倍得到,如图所示:设过原点且与函数y =g (x )的图象相切的直线的切点为(x 0,ln a a x 0),则切线的斜率为g ′(x )=ln 2a a x 0,故切线方程为y -ln a a x 0=ln 2a a x 0(x -x 0),则有-ln a a x 0=-x 0 ln 2a a x 0,解得x 0=1 ln a ,则切线的斜率为122ln ln eln a a a a ⋅=,因为函数y =ln a a x 与函数y =e x 的图象有两个不同的交点,所以e ln 2a <e ,解得1e<a <e ,又0<a <1,所以1e <a <1,综上所述,a 的范围为(1e,1). 7.(2022·新高考Ⅱ) 已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( )A .[18,814]B .[274,814]C .[274,643] D .[18,27] 7.答案 C 解析 ∵ 球的体积为36π,所以球的半径R =3,设正四棱锥的底面边长为2a ,高为h ,则l 2=2a 2+h 2,32=2a 2+(3-h )2.所以6h =l 2,2a 2=l 2-h 2,所以正四棱锥的体积V =13Sh =13×4a 2×h =23×(l 2-l 436)×l 26=19(l 4-l 636),所以V ′=19(4l 3-l 56)=19l 3 (24-l 26),当3≤l ≤26时,V ′>0,当26≤l ≤33时,V ′<0,所以当l =26时,正四棱锥的体积V 取最大值,最大值为643,又l =3时,V =274,l =33时, V =814.所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是[274,643].故选C . 【知识总结】1.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上.2.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调递增区间,由f ′(x )<0的解集确定函数f (x )的单调递减区间.(2)由函数的单调性求参数的取值范围①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0(x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.3.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0附近两侧的符号变化:若左正右负,则x 0为极大值点;若左负右正,则x 0为极小值点;若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤①求函数y =f (x )在区间(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a ),f (b )的大小,最大的一个是最大值,最小的一个是最小值.【同类问题】题型一 曲线的切线方程1.(2021·全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. 1.答案 5x -y +2=0 解析 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所 以切线方程为y +3=5(x +1),即5x -y +2=0.2.(2020·全国Ⅱ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +12.答案 B 解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1) =4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.3.(2018·全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程 为( )A .y =-2xB .y =-xC .y =2xD .y =x3.答案 D 解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D . 法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .4.(2020·全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.4.答案 2x -y =0 解析 设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x+1,所以切线的斜率 为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.5.(2019·全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=05.答案 C 解析 设y =f (x )=2sin x +cos x ,则f ′(x )=2cos x -sin x ,∴f ′(π)=-2,∴曲线在点(π,-1) 处的切线方程为y -(-1)=-2(x -π),即2x +y -2π+1=0.故选C .6.(2021·新高考Ⅱ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a6.答案 D 解析 根据y =e x 图象特征,y =e x 是下凸函数,又过点(a ,b )可以作曲线y =e x 的两条切线, 则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .故选D .7.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)7.答案 C 解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1 =2,∴x 20=1,∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上,∴y 0=x 30-x 0+3,∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3.∴切点P 为(1,3)或(-1,3).8.(2019·江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e , -1)(e 为自然对数的底数),则点A 的坐标是________.8.答案 (e ,1) 解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m(x -m ).又切线过点 (-e ,-1),所以有n +1=1m(m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1). 9.设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y=0垂直,则切点P (x 0,f (x 0))的坐标为 .9.答案 (0,0) 解析 ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0,∴切点P (x 0,f (x 0))的坐标为(0,0).10.过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________.10.答案 (1,+∞) 解析 由y ′=a e x ,若切点为(x 0,0e x a ),则切线方程的斜率k =0'|x x y ==0e x a >0, ∴切线方程为y =0e x a (x -x 0+1),又P (1,e)在切线上,∴0e x a (2-x 0)=e ,即e a=0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ),∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0;当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,∴φ(x )max =φ(1)=e ,又x →-∞时,φ(x )→0;x →+∞时,φ(x )→-∞,∴0<e a<e ,解得a >1,即实数a 的取值范围是(1,+∞). 题型二 曲线的公切线方程11.(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12 C .y =12x +1 D .y =12x +1211.答案 D 解析 易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①.设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程y =12x +12. 12.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为 .12.答案 y =e x 或y =x +1 解析 设l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -11e x x +1e x,①,同理设l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②,由题意知,①与②相同,∴111122121e e , e e ln 1,x x x x x x x x -⎧=⇒=⎪⎨⎪-+=+⎩③④把③代入④有-11e x x +1e x =-x 1+1,即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.13.若直线l 与曲线y =e x 及y =-14x 2都相切,则直线l 的方程为________.13.答案 y =x +1 解析 设直线l 与曲线y =e x 的切点为(x 0,0x e ),直线l 与曲线y =-14x 2的切点为 ⎝⎛⎭⎫x 1,-x 214,因为y =e x 在点(x 0,0x e )处的切线的斜率为y ′|x =x 0=0x e ,y =-x 24在点⎝⎛⎭⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝⎛⎭⎫-x 2|x =x 1=-x 12,则直线l 的方程可表示为y =0x e x -x 0e 0x e +0x e 或y =-12x 1x +14x 21,所以⎩⎨⎧ 0x e =-x 12,-x 00x e +0x e =x 214,所以0x e =1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.14.曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.14.答案 1 解析 由y =ln x +x 得y ′=1x+1,设点(x 1,ln x 1+x 1)是曲线C 1上任一点,∴曲线C 1在点(x 1, ln x 1+x 1)处的切线方程为y -(ln x 1+x 1)=⎝⎛⎭⎫1x 1+1(x -x 1),即y =⎝⎛⎭⎫1x 1+1x +ln x 1-1.同理可得曲线C 2在点(x 2,x 22)处的切线方程为y -x 22=2x 2(x -x 2),即y =2x 2x -x 22.依题意知两切线重合,∴⎩⎪⎨⎪⎧ 1x 1+1=2x 2,ln x 1-1=-x 22,消去x 2得1x 21+2x 1+4ln x 1-3=0,①,令f (x )=1x 2+2x +4ln x -3(x >0),则f ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=2(2x +1)(x -1)x 3,当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=0,∴f (x )只有一个零点.即方程①只有一个解,故曲线C 1与C 2只有1条公切线.15.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = .15.答案 8 解析 方法一 因为y =x +ln x ,所以y ′=1+1x,y ′|x =1=2.所以曲线y =x +ln x 在点(1,1) 处的切线方程为y -1=2(x -1),即y =2x -1.因为y =2x -1与曲线y =ax 2+(a +2)x +1相切,所以a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.方法二 同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).因为y ′=2ax +(a +2),所以0|x x y '==2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8. 16.(2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________.16.答案 0或1 解析 设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x 的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x 2=1x 1.又由k =y 2-y 1x 2-x 1=e x 2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)·(x 1-1)=0,则x 1=1e 或x 1=1,则直线y =kx +b 与曲线y =ln x +2的切点为⎝⎛⎭⎫1e ,1或(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e=e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.17.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.17.答案 1-ln 2 解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为 y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2).∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln(x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln2. 18.已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( )A .0B .-1C .3D .-1或318.答案 D 解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根,因此Δ=(a -1)2-4=0,解得a =-1或a =3,所以a =-1或a =3.19.若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________.19.答案 ⎣⎡⎭⎫e 24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,设公切线与曲线C 1切于点(x 1,ax 21),与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e 2x x +,记f (x )=12e 2x x +,则f ′(x )=122e (2)4x x x +-,当x ∈(0,2)时,f ′(x )<0,f (x )单调递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增.∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞. 20.已知曲线f (x )=ln x +1与g (x )=x 2-x +a 有公共切线,则实数a 的取值范围为 .20.答案 8 解析 设切线与f (x )=ln x +1相切于点P (x 0,ln x 0+1),f ′(x 0)=1x 0,∴切线方程为y -(ln x 0+ 1)=1x 0(x -x 0),即y =1x 0x +ln x 0,联立⎩⎪⎨⎪⎧ y =1x 0x +ln x 0,y =x 2-x +a ,得x 2-⎝⎛⎭⎫1+1x 0x +a -ln x 0=0,∴Δ=⎝⎛⎭⎫1+1x 02-4(a -ln x 0)=0,即1x 20+2x 0+1-4a +4ln x 0=0,即4a =1x 20+2x 0+1+4ln x 0有解,令φ(x )=1x 2+2x+1+4ln x (x >0),φ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=2(2x +1)(x -1)x 3,当x ∈(0,1)时,φ′(x )<0,当x ∈(1,+∞)时,φ′(x )>0,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=4,又x →+∞时,φ(x )→+∞,故φ(x )的值域为[4,+∞),所以4a ≥4,即a ≥1,故实数a 的取值范围是[1,+∞). 题型三 函数的性质21.设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,1 C .(1,+∞) D .(0,+∞) 21.答案 B 解析 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x-2x +2=(4x - 2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧4x -2>0,ln x <0或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,选B .22.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为 .22.答案 ⎝⎛⎭⎫0,π6,⎝⎛⎭⎫5π6,π 解析 f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =π6或x =5π6,当0<x <π6时,f ′(x )>0,当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,π6和⎝⎛⎭⎫5π6,π上单调递增,在⎝⎛⎭⎫π6,5π6上单调递减.23.函数f (x )=2|sin x |+cos2x 在[-π2,π2]上的单调递增区间为( ) A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 23.答案 A 解析 由题意,因为f (-x )=2|sin(-x )|+cos(-2x )=2|sin x |+cos2x =f (x ),所以f (x )为偶函数,当0≤x ≤π2时,f (x )=2sin x +cos2x ,则f ′(x )=2cos x -2sin2x ,令f ′(x )≥0,得sin x ≤12,所以0≤x ≤π6,由f (x )为偶函数,可得当-π6≤x ≤0时,f (x )单调递减,则在[-π2,-π6]上单调递增,故选A . 24.设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点24.答案 D 解析 f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以x =2为f (x )的极小值点.25.已知函数f (x )=2e f ′(e)ln x -x e,则f (x )的极大值点为( )A .1eB .1C .eD .2e 25.答案 D 解析 f ′(x )=2e f ′(e)x -1e ,故f ′(e)=1e ,故f (x )=2ln x -x e ,令f ′(x )=2x -1e>0,解得0<x <2e ,令 f ′(x )<0,解得x >2e ,故f (x )在(0,2e)上递增,在(2e ,+∞)上递减,∴x =2e 时,f (x )取得极大值2ln 2,则f (x )的极大值点为2e .26.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .126.答案 A 解析 f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.∵x =-2是f (x )的极值点,∴f ′(-2)=0,即(4-2a -4+a -1)e -3=0,得a =-1.∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x 2+x -2)e x -1.由f ′(x )>0,得x <-2或x >1;由f ′(x )<0,得-2<x <1.∴f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,∴f (x )的极小值点为1,∴f (x )的极小值为f (1)=-1.27.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论不正确的是( ) A .xf (x )在(0,+∞)上单调递增 B .xf (x )在(0,+∞)上单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值1227.答案 ABC 解析 由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,即[xf (x )]′=ln x x ,设g (x )=xf (x ), 即g ′(x )=ln x x,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)上单调递增,在(0,1)上单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABC . 28.(多选)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为2 28.答案 ABC 解析 由f (x )=0,得x 2+x -1=0,∴x =-1±52,故A 正确.f ′(x )=-x 2-x -2e x = -(x +1)(x -2)e x,当x ∈(-∞,-1)∪(2,+∞)时,f ′(x )<0,当x ∈(-1,2)时,f ′(x )>0,∴f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增,∴f (-1)是函数的极小值,f (2)是函数的极大值,故B 正确.又f (-1)=-e ,f (2)=5e2,且当x →-∞时,f (x )→+∞,x →+∞时,f (x )→0,∴f (x )的图象如图所示,由图知C 正确,D 不正确.29.已知函数f (x )=2sin x +sin2x ,则f (x )的最小值是________.29.答案 -332解析 ∵f (x )的最小正周期T =2π,∴求f (x )的最小值相当于求f (x )在[0,2π]上的最小 值.f ′(x )=2cos x +2cos2x =2cos x +2(2cos 2x -1)=4cos 2x +2cos x -2=2(2cos x -1)(cos x +1).令f ′(x )=0,解得cos x =12或cos x =-1,x ∈[0,2π].∴由cos x =-1,得x =π;由cos x =12,得x =53π或x =π3.∵函数的最值只能在导数值为0的点或区间端点处取到,f (π)=2sinπ+sin2π=0,f ⎝⎛⎭⎫π3=2sin π3+sin 2π3=332,f ⎝⎛⎭⎫53π=-332,f (0)=0,f (2π)=0,∴f (x )的最小值为-332. 30.(多选)设函数f (x )=x +e |x |e|x |,则下列选项正确的是( ) A .f (x )为奇函数 B .f (x )的图象关于点(0,1)对称C .f (x )的最大值为1e +1D .f (x )的最小值为-1e+1 30.答案 BCD 解析 f (x )=x e |x |+1,不满足f (-x )=-f (x ),故A 项错误;令g (x )=x e |x |,则g (-x )=-x e|-x |= -x e |x |=-g (x ),所以g (x )为奇函数,则f (x )关于点(0,1)对称,B 项正确;设f (x )=x e|x |+1的最大值为M ,则g (x )的最大值为M -1,设f (x )=x e|x |+1的最小值为N ,则g (x )的最小值为N -1,当x >0时,g (x )=x e x ,所以g ′(x )=1-x ex ,当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以当0<x <1时,g (x )单调递增,当x >1时,g (x )单调递减,所以g (x )在x =1处取得最大值,最大值为g (1)=1e,由于g (x )为奇函数,所以g (x )在x =-1处取得最小值,最小值为g (-1)=-1e ,所以f (x )的最大值为M =1e+1,最小值为N =-1e+1,故C 、D 项正确.故选B 、C 、D .。
导数综合——构造函数法一、 导入函数与导数主要题型有:导数的几何意义,利用导数解决单调区间、最值、极值等问题,构造函数解决不等式的证明、不等式恒成立、存在性问题,利用导数解决函数方程问题等.二、例题方法:利用已知函数构造函数方法:利用放缩法构造函数;利用拆分法构造函数。
方法:利用换元法构造函数;利用分离参数法构造函数。
方法:利用齐次式构造函数方法:利用结构的相似性构造函数例1.(2016年全国II )讨论函数x e x x x f 22)(+-=的单调性,并证明当0>x 时, 02)2(>++-x e x x例2. (2014新课标1)设函数12()ln x x e f x e x x-=+,证明:()1f x >学情分析课堂学生为高三年级的农村班(各区县尖子生)学生,学生基础普遍较好,应变能力,思维能力,推理能力,计算能力等均较强。
但是利用导数之构造函数的方法解决有关的不等式,恒成立,存在性,零点等问题,还没有形成知识体系,方法体系。
对于刚系统接触此方法的学生来说还是充满了挑战。
在本节课之前学生已经复习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用等。
本节课应着重让同学们通过直观感受,分析,变形,推理等手段,帮助同学们寻找规律,总结出构造函数的方法。
效果分析本课例仅对几个规律性很强的构造函数的导数问题作了总结.通过本课的学习,老师和学生都感悟到“规律是客观存在的”,寻找规律的过程是一种创造性思维的过程,是数学发现的一种重要途径。
其实规律本就客观存在,有时缺少的是发现规律的人.教师在教学中要挖掘规律,使数学简单化;学生在学习中也要认真总结规律性的东西,从而使学习更简单。
总之,发现规律的过程是我们要共同研究的重要过程.在这个过程中,教师和学生都体验到成功的快乐。
教师与学生共同协作发现规律教学,使教学更简洁、更实效。
教材分析高中教材导数内容的增加,为我们证明不等式提供了新方法,开辟了新途径。
专题07 导数有关的构造函数方法一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④⎝⎛⎭⎫1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则(1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________________________. 6.复合函数的导数(1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x e 形式的函数 4.构造成积的形式 5.与ln x 有关的构造 6.构造成商的形式7.对称问题(一)构造多项式函数例1.已知函数满足,且的导函数,则的解集为( ) A.B. C. D.【答案】D【解析】令,则,所以函数在定义域上为单调递减函数,因为,所以,即,根据函数在定义域上单调递减,可知,故选D.考点:函数的单调性与导数的关系.【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数,利用新函数的性质是解答问题的关键,属于中档试题.练习 1.设函数在上存在导函数,对于任意的实数,都有,当时,.若,则实数的取值范围是( )A .B .C .D . 【答案】A考点:导数在函数单调性中的应用.()()f x x R ∈()1f l =()f x ()1'2f x <()122x f x <+{}|x 1x <-{}|1x x >()F x ()122x f x <+()F x 1x >()F x ()f x R '()f x x (,0)x ∈-∞m 1[,)2-+∞3[,)2-+∞[1,)-+∞[2,)-+∞【思路点睛】因为,设,则,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果. 练习2.设奇函数在上存在导数,且在上,若,则实数的取值范围为( ) A . B .C .D .【答案】B 【解析】令,因为,所以函数的奇函数,因为时,,所以函数在为减函数,又题意可知,,所以函数在上为减函数,所以,即,所以,所以,故选B.考点:函数的奇偶性及其应用.【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键. 练习3.设函数在上存在导函数,对任意,都有,且时,,若,则实数的取值范围是( )A .B .C .D . 【答案】B【解析】令,则,则,得为上的奇函数.∵时,,故在单调递增,再结合及为奇函数,知在为增函数,又()g x ()g x (,0)-∞R ()f x R ()f x 'x R ∈(0,)x ∈+∞()f x x '>a [)1,+∞(],1-∞(],2-∞[)2,+∞()g x R 0x >()g x (0,)+∞(0)0g =()g x ()g x (,)-∞+∞则,即.故选B .考点:函数的单调性及导数的应用.【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于的不等式来求解.本题解答的关键是由已知条件进行联想,构造出新函数,然后结合来研究函数的奇偶性和单调性,再通过要解的不等式构造,最终得到关于的不等式,解得答案.(二)构造三角函数型例2.已知函数的定义域为 ,为函数的导函数,当时,且,.则下列说法一定正确的是( )A. B.C. D.【答案】B 【解析】令,则.因为当时,,即,所以,所以在上单调递增.又,,所以,所以,故为奇函数,所以在上单调递增,所以.即,故选B.考点:(1)利用导数研究函数的单调性;(2)函数的综合应用.(],1a ∈-∞a ()f x x '>()g x a ()f x R ()'fx ()f x [)0,x ∈+∞x R ∀∈[)0,x ∈+∞[)0,x ∈+∞x R ∀∈R练习1.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是( )A .B .C .D .【答案】A【解析】构造函数,则,即函数g (x )在单调递增,则,,即,故A 正确.,即考点:利用导数研究函数的单调性 练习2.定义在上的函数,是它的导函数,且恒有成立,则()A.B.C . D.【答案】D)(x f y =)('x f )(x f )2,0(π)(x f ()'f x【解析】在区间上,有,即令,则,故在区间上单调递增. 令,则有,D 选项正确.考点:1、函数导数;2、构造函数法.【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到,往往转化为来思考;第二个要点是构造函数法,题目中,可以化简为,这样我们就可以构造一个除法的函数,而选项正好是判断单调性的问题,顺势而为.(三)构造xe 形式的函数例3.已知函数的导数为,且对恒成立,则下列函数在实数集内一定是增函数的为( )A. B. C. D.【答案】D 【解析】设,则.对恒成立,且.在上递增,故选D.考点:1、函数的求导法则;2、利用导数研究函数的单调性. 练习1. 设函数是函数的导函数,,且,则的解集为( )0,2π⎛⎫⎪⎝⎭()F x 0,2π⎛⎫⎪⎝⎭tan x sin cos xx()f x ()f x ′x R ∈()f x ()xf x ()xe f x ()xxe f x R x ∈0xe >R )(xf '1)0(=fA. B.C. D.【答案】B【解析】依题意,构造函数,由,得,考点:函数导数,构造函数法.【思路点晴】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性.构造函数法是在导数题目中一个常用的解法.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.练习2.已知定义在上的函数,是的导函数,若,且,则不等式(其中为自然对数的底数)的解集是()A.B.C.D.【答案】C考点:利用导数研究函数的单调性.【方法点晴】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.结合已知条件中的以及所求结论可知应构造函数,利用导数研究的单调性,结合原函数的性质和函数值,即可求解.),34ln(+∞),32ln(+∞),23(+∞),3(+∞eln23x>()f x R()f x'()f x()02f=e()1,-+∞()0,+∞()x gy=练习3.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集是()A .B.C .D . 【答案】B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集.练习4.已知定义在上的可导函数的导函数,满足,且为偶函数,,则不等式的解集为( )A .B .C .D . 【答案】D【解析】设,则R ()f x ()f x 'x ()1f x +(),0-∞()0,+∞1,e ⎛⎫-∞ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()g x R ()1f x +()01f =-()1xf x e<-()g x 0x >()0,+∞0R x ∈()0<'x g ()x g y =R ()f x ()'f x ()2+f x ()41=f ()<x f x e ()2,-+∞()4,+∞()1,+∞()0,+∞∴函数是上的减函数,∵函数是偶函数, ∴函数∴函数关于对称, ∴原不等式等价为 ∴不等式等价即∵是上的减函数,∴.∴不等式式的解集为.选D 考点:利用导数研究函数的性质【名师点睛】本题考查了利用导数研究函数的单调性、利用函数的单调性求解不等式,体现了数学转化思想方法,属于中档题.解题时根据题意构造函数是解题的关键练习5.设函数是函数的导函数,,且,则的解集是( )A.B.C. D. 【答案】B【解析】设,则,所以(为常数),则,由,,所以,又由,所以即,即,解得.故选B . (四)构造成积的形式g x ()R ()2+f x 2x =1g x ()<,()<x f x e 1g x ()<,g x ()R 0x >()<x f x e ()0,+∞()f x '1)0(=f ln 4,3⎛⎫+∞⎪⎝⎭ln 2,3⎛⎫+∞ ⎪⎝⎭3,2⎛⎫+∞ ⎪ ⎪⎝⎭,3e ⎛⎫+∞ ⎪ ⎪⎝⎭c 2c =()3f x >3213xe ->ln 23x >例4.已知定义在上的函数满足:函数的图象关于直线对称,且当时,(是函数的导函数)成立.若,,,则,,的大小关系是( )A .B .C .D . 【答案】A【解析】易知关于轴对称,设,当时,,在上为递减函数,且为奇函数,在上是递减函数.,即,故选A.考点:函数的性质.【方法点睛】本题考查学生的是函数的性质,属于中档题目.从选项可以看出,要想比较的大小关系,需要构造新函数,通过已知函数的奇偶性,对称性和单调性,判断的各种性质,可得在上是递减函数.因此只需比较自变量的大小关系,通过分别对各个自变量与临界值作比较,判断出三者的关系,即可得到函数值得大小关系.练习1.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( ) A .B .C .D . 【答案】B 【解析】构造函数,,由于,故,为减函数.原不等式即,故R ()y f x =()1y f x =+1x =-(),0x ∈-∞()f x '()f x a b c a b c >>b a c >>c a b >>a c b >>()x f y ()0,∞-∈x ()x F ∴()0,∞-()x F ()x F ∴R c b a >>c b a ,,()x f ()x F ()x F R 1,0()f x (,0)-∞'()f x (2018,0)-(2016,0)-()Fx.考点:函数导数与不等式,构造函数.【思路点晴】本题考查函数导数与不等式,构造函数法.是一个常见的题型,题目给定一个含有导数的条件,这样我们就可以构造函数,它的导数恰好包含这个已知条件,由此可以求出的单调性,即函数为减函数.注意到原不等式可以看成,利用函数的单调性就可以解出来.练习2.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( )A .B .C .D . 【答案】D【解析】∵函数是定义在上的可导函数,,∴函数在上是增函数,∴不等式的解集为.练习3.函数是定义在区间上可导函数,其导函数为,且满足,则不等式的解集为( )A .B .C .D .【答案】C 【解析】由,则当时,,即,所以函数为单调递增函数,由,即,所以,()F x ()F x ()f x ()0,+∞()f x '()2012,+∞()0,2012()0,2016()2016,+∞()f x ()0,+∞2y x f x =()()0,+∞()2016,+∞()f x ()0,+∞()'fx ()0,x ∈+∞()xfx所以不等式的解集为,故选C.(五)与ln x 有关的构造例5.已知定义在实数集R 的函数满足(1)=4,且导函数,则不等式的解集为()A. B.C. D. 【答案】D【解析】设t=lnx,则不等式化为,设g(x)=f(x)-3x-1,则。