C语言程序设计常用算法汇总
- 格式:doc
- 大小:78.00 KB
- 文档页数:14
C程序经典算法50例1.二分查找算法:在有序数组中查找指定元素。
2.冒泡排序算法:通过不断比较相邻元素并交换位置,将较大的元素向后冒泡。
3.快速排序算法:通过选择一个基准元素,将数组分割为左右两部分,并递归地对两部分进行快速排序。
4.插入排序算法:将数组划分为已排序和未排序两部分,每次从未排序中选择一个元素插入到已排序的合适位置。
5.选择排序算法:遍历数组,每次选择最小元素并放置在已排序部分的末尾。
6.希尔排序算法:将数组按照一定间隔进行分组并分别进行插入排序,然后逐步减小间隔并重复这个过程。
7.归并排序算法:将数组递归地划分为两部分,然后将两个有序的部分进行合并。
8.桶排序算法:将元素根据特定的映射函数映射到不同的桶中,然后对每个桶分别进行排序。
9.计数排序算法:统计每个元素的出现次数,然后根据计数进行排序。
10.基数排序算法:从低位到高位依次对元素进行排序。
11.斐波那契数列算法:计算斐波那契数列的第n项。
12.阶乘算法:计算给定数字的阶乘。
13.排列问题算法:生成给定数组的全排列。
14.组合问题算法:生成给定数组的所有组合。
15.最大连续子序列和算法:找出给定数组中和最大的连续子序列。
16.最长递增子序列算法:找出给定数组中的最长递增子序列。
17.最长公共子序列算法:找出两个给定字符串的最长公共子序列。
18.最短路径算法:计算给定有向图的最短路径。
19.最小生成树算法:构建给定连通图的最小生成树。
20.汉诺塔算法:将n个圆盘从一个柱子移动到另一个柱子的问题。
21.BFS算法:广度优先算法,用于图的遍历和查找最短路径。
22.DFS算法:深度优先算法,用于图的遍历和查找连通分量。
23.KMP算法:字符串匹配算法,用于查找一个字符串是否在另一个字符串中出现。
24.贪心算法:每次都选择当前情况下最优的方案,适用于求解一些最优化问题。
25.动态规划算法:将一个大问题划分为多个子问题,并通过子问题的解求解整个问题,适用于求解一些最优化问题。
C语言七大算法一、概述算法是计算机程序设计中解决问题的方法和步骤的描述,是计算机科学的重要基础。
在计算机科学中,有许多经典的算法被广泛应用,并成为不可或缺的工具。
本文将介绍C语言中的七大经典算法,包括排序算法、查找算法、图算法、字符串算法、动态规划算法、贪心算法和分治算法。
二、排序算法排序是将一组元素按照特定规则进行重新排列的过程。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些排序算法在C语言中都有相应的实现,并且各有特点和适用场景。
三、查找算法查找算法用于在一组数据中查找特定值的位置或判断是否存在。
常见的查找算法有线性查找、二分查找、哈希查找等。
这些算法在C语言中的实现可以帮助我们快速地定位目标值。
四、图算法图算法用于解决与图相关的问题,包括最短路径问题、最小生成树问题、拓扑排序等。
在C语言中,我们可以利用图的邻接矩阵或邻接表来实现相关的图算法。
五、字符串算法字符串算法主要用于解决字符串匹配、替换、拼接等问题。
在C语言中,我们可以使用字符串库函数来完成一些基本的字符串操作,例如字符串比较、复制、连接等。
六、动态规划算法动态规划算法是解决一类最优化问题的常用方法,它将问题分解为多个子问题,并通过保存已解决子问题的结果来避免重复计算。
在C语言中,我们可以使用动态规划算法来解决背包问题、最长公共子序列问题等。
七、贪心算法贪心算法是一种通过每一步的局部最优选择来达到全局最优的方法。
贪心算法通常在解决最优化问题时使用,它快速、简单,并且可以给出近似最优解。
C语言中可以使用贪心算法来解决霍夫曼编码、最小生成树等问题。
八、分治算法分治算法是一种将问题分解为多个相同或类似的子问题然后递归解决的方法。
常见的分治算法有快速排序、归并排序等。
在C语言中,我们可以使用分治算法来提高程序的效率和性能。
总结:本文介绍了C语言中的七大经典算法,包括排序算法、查找算法、图算法、字符串算法、动态规划算法、贪心算法和分治算法。
1.定积分近似计算:/*梯形法*/double integral(double a,double b,long n) { long i;double s,h,x;h=(b-a)/n;s=h*(f(a)+f(b))/2;x=a;for(i=1;i<n;i++){x+=h;s+=h*f(x) ;}return(s);}/*矩形法*/double integral(double a,double b,long n) { long i;double t=0,h,x;h=(b-a)/n;x=a;for(i=0;i<n;i++){t+=h*f(x);x+=h;}return(t);}2. 生成斐波那契数列:/*直接计算*/int fib(int n){ int i,f1=1,f2=1,f;for(i=3;i<=n;i++){f=f1+f2;f1=f2;f2=f;}if(n==1||n==2) return 1;else return f;}/*递归调用*/void fib(int n,int*s){ int f1,f2;if(n==1||n==2) *s=1;else{ fib(n-1,&f1);fib(n-2,&f2);*s=f1+f2;}}3.素数的判断:/*方法一*/for (t=1,i=2;i<n; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法二*/for (t=1,i=2;i<n&&t; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法三*/for (i=2;i<n; i++)if(n%i==0) break;if(i==n) printf("%d is prime",n); /*方法四*/for(t=1,i=2; i<=(int)sqrt(n); i++)if(n%i==0){t=0;break;}if(t) printf("%d is prime",n);4.反序数:/*求反序数*/long fan(long n){ long k;for(k=0;n>0;n/=10)k=10*k+n%10;return k;}/*求回文数*/int f(long n){ long k,m=n;for(k=0;n>0;n/=10)k=10*k+n%10;if(m==k) return 1;return 0;}/*求整数位数*/int f(long n){ int count;for(count=0;n>0;n/=10)count++;return count;}5.求最大公约数:/*方法一*/int gcd(int x,int y){ int z;z=x<y?x:y;while(!(x%z==0&&y%z==0))/*x%z||y%z*/ z--;return z;}/*方法二*/int gcd(int x,int y){int r;while((r=x%y)!=0){x=y;y=r;}return y;}/*方法三*/int gcd(int a ,int b){ int r ;if((r=a%b)==0)return b;elsereturn gcd(b,r);}6.数组常用算法:查找:/*线性查找*/int find(int num,int x[],int key){ int i,m=-1;for(i=0;i<num;i++)if(x[i]==key){m=i;break;}return m;}/*折半查找*/int find(int x[],int num,int key){ int m=-1,low=0,high=num-1,mid;while(low<=high){mid=(low+high)/2;if(x[mid]==key){m=mid;break;}else if(x[mid]>key) high=mid-1;else low=mid+1;}return m;}/*折半查找(递归)*/int b_search(int x[ ],int low,int high,int key) {int mid;mid=(low+high)/2;if(x[mid]==key) return mid;if(low>=high) return -1;else if(key<x[mid])return b_search(x,low,mid-1,key);elsereturn b_search(x,mid+1,high,key); }/*寻找子串*/int find(char *s1,char *s2){ int i,k=0;while(s1[i]==s2[i]) i++;if(s2[i]==0) return k;s1++;k++;return -1;}分词:/*方法一*/void fen(char s[][10],char str){ int i,j,k;for(i=0,j=0,k=0;str[i]!=0;i++)if(isalpha(a[i]))s[j][k++]=str[i];else {s[j][k]=0;k=0;j++;}}}/*方法二*/#include<stdio.h>#include<string.h>void main(){ int i=0,n=0;char s[80],*p;strcpy(s,"It is a book.");for(p=s;p!='\0';p++)if(*p=='')i=0;elseif(i==0){n++;i=1;}printf("%d\n",n);getch();}排序:/*插入法排序*/void sort(int a[],int n){ int i,j,t;for(i=1;i<n;i++){t=a[i];for(j=i-1;j>=0&&t<a[j];j--)a[j+1]=a[j];a[j]=t;}}/*归并排序*/#define x 10#define y 10void com(int *a,int *b,int *c){ int i,j,k;for(i=0,j=0,k=0;i<=x&&j<=y;){if(a[i]<b[j]){c[k++]=a[i];i++;}else{c[k++]=b[j];j++;}}if(i<x) for(k=k-1;i<x;i++)c[k++]=a[i];if(j<x) for(k=k-1;j<y;j++)c[k++]=a[j]; }/*交换法排序1 冒泡排序*/void sort(int a[],int n){ int i,j,t,flag;for(i=0;i<n-1;i++){flag=1;for(j=0;j<n-1-i;j++)if(a[j]>a[j+1]){t=a[j];a[j]=a[j+1];a[j+1]=t;flag=0;}if(flag) break;}}/*交换法排序2*/void sort(int a[],int n){ int i,j,t;for(i=0;i<n-1;i++)for(j=i+1;j<n;j++)if(a[i]>a[j]){t=a[i];a[i]=a[j];a[j]=t;}}/*选择法排序*/void sort(int a[],int n){ int i,j,point,t;for(i=0;i<n-1;i++){point=i;for(j=i+1;j<n;j++)if(a[point]<a[j]) point=j;if(point!=i){t=a[point];a[point]=a[i];a[i]=t;}}}7.一元非线性方程求根:/*牛顿迭代法求函数跟*/#include <stdio.h>#include <math.h>int main(void){ double x,x1,eps=1e-6,f,f1; /*误差为eps*/x=1.0; /*x=1.0是初值*/do{x1=x;f=6-x1*(5-x1*(4-3*x1)); /*f为f(x)函数*/f1=-5+x1*(8-9*x1); /*f1为f(x)的导函数*/x=x1-f/f1;f=6-x*(5-x*(4-3*x));}while(fabs(f)>=eps &&fabs(x-x1)>=eps);printf("x=%f",x);}/*二分法求函数跟*/#include <stdio.h>#include <math.h>double f(double x){ return 6-x*(5-x*(4-3*x)); /*f(x)函数*/}int main(void){ double a,b,c,x,eps=1e-6;do{scanf("%lf%lf",&a,&b);}while(f(a)*f(b)>0);if(fabs(f(a))<1e-6)x=a;else if (fabs(f(b))<1e-6)x=b;else {c=(b+a)/2;while(fabs(f(c))>eps&&fabs(b-a)>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(b+a)/2;}x=c;}printf("x=%f",x);}/*弦截法求函数跟*/c=(a*f(b)-b*f(a))/ (f(b)-f(a));while(fabs(f(c))>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(a*f(b)-b*f(a))/ (f(b)-f(a));}#include <stdio.h>void f();int main(void){ int x, loop=0;do{for(x=1;x<5;x++) {int x=2;printf("%d",x);}printf("%d ",x);f();loop++;}while(loop<1);getch();}void f(){ printf("%d",x++); }8.汉诺塔:#include<stdio.h>void Hanoi(int n, char A, char B, char C){if(n==1)printf("\n move %d from %c to %c",n,A,C);else{Hanoi(n-1,A,C,B);printf("\nmove %d from %c to %c",n,A,C);Hanoi(n-1,B, A, C);}}int main(void){ Hanoi(3,'A','B','C');getch();}9.建立链表:NODE *creat(void) /* void表示无参函数*/{NODE *head=NULL,*p1=NULL,*p2=NULL;long num;unsigned score;int n=0;do{scanf(“%ld%u”,&num,&score);if(num==0) break;n++;p1=(NODE *)malloc(sizeof(NODE));p1->data.num=num,p1->data.score=score;p1->next=NULL;if(n==1)head=p2=p1;else{p2->next=p1;p2=p1;}}while(1);return head;}10.级数的近似计算:#include <stdio.h>#include <math.h>int main(void){ double s=1,a=1,x,eps,f;int n,m;printf("input x and eps:");scanf ("%lf%lf",&x,&eps);for(n=1;fabs(a)>eps; n++){for(f=1,m=1;m<=n;m++)f*=m;a=pow(x,n)/f;s+=a;}printf("%f",s);}。
C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。
在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。
以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。
-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。
-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。
-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。
2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。
-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。
-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。
3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。
-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。
-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。
4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。
-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。
- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。
5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。
-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。
-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。
以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。
通过学习这些算法,可以更好地理解C语言的应用和开发。
C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
常用算法设计方法C语言常用算法设计方法 (1)一、迭代法 (1)二、穷举搜索法 (2)三、递推法 (6)四、递归 (7)五、回溯法 (15)六、贪婪法 (28)七、分治法 (33)八、动态规划法 (39)常用算法设计方法要使计算机能完成人们预定的工作,首先必须为如何完成预定的工作设计一个算法,然后再根据算法编写程序。
计算机程序要对问题的每个对象和处理规则给出正确详尽的描述,其中程序的数据结构和变量用来描述问题的对象,程序结构、函数和语句用来描述问题的算法。
算法数据结构是程序的两个重要方面。
算法是问题求解过程的精确描述,一个算法由有限条可完全机械地执行的、有确定结果的指令组成。
指令正确地描述了要完成的任务和它们被执行的顺序。
计算机按算法指令所描述的顺序执行算法的指令能在有限的步骤内终止,或终止于给出问题的解,或终止于指出问题对此输入数据无解。
通常求解一个问题可能会有多种算法可供选择,选择的主要标准是算法的正确性和可靠性,简单性和易理解性。
其次是算法所需要的存储空间少和执行更快等。
算法设计是一件非常困难的工作,经常采用的算法设计技术主要有迭代法、穷举搜索法、递推法、贪婪法、回溯法、分治法、动态规划法等等。
另外,为了更简洁的形式设计和藐视算法,在算法设计时又常常采用递归技术,用递归描述算法。
一、迭代法迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。
设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:选一个方程的近似根,赋给变量x0;将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。
上述算法用C程序的形式表示为:【算法】迭代法求方程的根{ x0=初始近似根;d o {x1=x0;x0=g(x1);/*按特定的方程计算新的近似根*/} while ( fabs(x0-x1)>Epsilon);p rintf(“方程的近似根是%f\n”,x0);}迭代算法也常用于求方程组的根,令X=(x0,x1,…,xn-1)设方程组为:xi=gi(X) (I=0,1,…,n-1)则求方程组根的迭代算法可描述如下:【算法】迭代法求方程组的根{ for (i=0;i<n;i++)x[i]=初始近似根;do {for (i=0;i<n;i++)y[i]=x[i];for (i=0;i<n;i++)x[i]=gi(X);for (delta=0.0,i=0;i<n;i++)if (fabs(y[i]-x[i])>delta)delta=fabs(y[i]-x[i]);} while (delta>Epsilon);for (i=0;i<n;i++)printf(“变量x[%d]的近似根是%f”,I,x[i]);printf(“\n”);}具体使用迭代法求根时应注意以下两种可能发生的情况:如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。
C程序设计的常用算法算法(Algorithm):计算机解题的基本思想方法和步骤。
算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。
通常使用自然语言、结构化流程图、伪代码等来描述算法。
一、简单数值类算法此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。
1、求阶乘:n!=1*2*384…..*n; n!= n*(n-1)!=下列程序用于求n的阶乘.在累乘之前,一定要将用于存放乘积的变量的值初始化为1.long func(int n){int i;long t=1;for(i=2;i<=n;i++)t*=i;return t;}printf("\n");}main(){ int n;scanf("%d", &n);printf("n!=%ld\n", fac(n));}2、整数拆分问题:把一个整数各个位上的数字存到数组中#define N 4 /* N代表整数位数*/viod split(int n, int a[ ])/* 1478: a[ 3]=8, a[2 ]=7, a[1 ]=4…*/{int i;for(i=N-1;i!=0; i--){ a[i]=n%10;n=n/10;}}main(){int i,m=1478,b[N-1];split(m, b);for(i=0;i<4; i++)printf(“%5d”, b[i]);}3、求整数的因子之和12=1*2*3*4 long factor(int n){int i;long sum=0;for(i=1;i<=n;i++)if(n%i= =0)sum+=i;return sum;}注意:因子包括1和自身。
C语言常用简单算法C语言是一门功能强大的编程语言,其算法也是很多的。
下面是一些常用的简单算法:1.二分查找算法:二分查找是一种在有序数组中查找特定元素的算法。
它的基本思想是首先在数组的中间位置找到待查找的元素,如果该元素等于目标值,则查找成功;如果该元素大于目标值,说明目标值在数组的前半部分,则在前半部分继续进行查找;如果该元素小于目标值,则说明目标值在数组的后半部分,则在后半部分继续进行查找。
重复以上步骤,直到找到目标值或者确定目标值不存在。
2.冒泡排序算法:冒泡排序是一种简单直观的排序算法。
它的基本思想是通过反复交换相邻的两个元素,将较大的元素逐渐往后移动,从而实现排序的目的。
具体实现时,每一轮比较都会使最大的元素移动到最后。
3.插入排序算法:插入排序是一种简单直观的排序算法。
它的基本思想是将数组分成已排序部分和未排序部分,每次从未排序部分取出一个元素,然后将该元素插入到已排序部分的合适位置,从而实现排序的目的。
4.选择排序算法:选择排序是一种简单直观的排序算法。
它的基本思想是每次选择一个最小(或最大)的元素放到已排序部分的末尾,从而实现排序的目的。
具体实现时,每一轮选择都通过比较找出未排序部分的最小(或最大)元素。
5.快速排序算法:快速排序是一种高效的排序算法。
它的基本思想是通过选取一个基准元素,将数组分成两个子数组,一个子数组中的元素都小于基准元素,另一个子数组中的元素都大于基准元素,然后对这两个子数组分别进行快速排序,最终实现排序的目的。
6.斐波那契数列算法:斐波那契数列是一列数字,其中每个数字都是前两个数字之和。
常见的斐波那契数列算法有递归算法和迭代算法。
递归算法通过反复调用自身来计算斐波那契数列的值,而迭代算法则通过循环来计算。
7.求最大公约数算法:求两个数的最大公约数是一种常见的问题。
常见的求最大公约数的算法有欧几里得算法和辗转相除法。
欧几里得算法通过不断用较小数除以较大数的余数,直到余数为0,得到最大公约数。
C语言入门必学—10个经典C语言算法C语言是一种广泛使用的编程语言,具有高效、灵活和易学的特点。
它不仅在软件开发中被广泛应用,也是计算机科学专业的必修课。
在学习C语言的过程中,掌握一些经典的算法是非常重要的。
本文将介绍10个经典C语言算法,帮助读者更好地了解和掌握C语言。
一、冒泡排序算法(Bubble Sort)冒泡排序算法是最简单、也是最经典的排序算法之一。
它通过不断比较相邻的元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数组的最后(或最前)位置。
二、选择排序算法(Selection Sort)选择排序算法是一种简单但低效的排序算法。
它通过不断选择最小(或最大)的元素,并与未排序部分的第一个元素进行交换,将最小(或最大)的元素逐渐交换到数组的前面(或后面)。
三、插入排序算法(Insertion Sort)插入排序算法是一种简单且高效的排序算法。
它通过将数组分为已排序和未排序两个部分,依次将未排序部分的元素插入到已排序部分的合适位置。
四、快速排序算法(Quick Sort)快速排序算法是一种高效的排序算法。
它采用了分治的思想,通过将数组分为较小和较大两部分,并递归地对两部分进行排序,最终达到整个数组有序的目的。
五、归并排序算法(Merge Sort)归并排序算法是一种高效的排序算法。
它采用了分治的思想,将数组一分为二,递归地对两个子数组进行排序,并将结果合并,最终得到有序的数组。
六、二分查找算法(Binary Search)二分查找算法是一种高效的查找算法。
它通过不断将查找范围折半,根据中间元素与目标值的大小关系,缩小查找范围,最终找到目标值所在的位置。
七、递归算法(Recursive Algorithm)递归算法是一种通过自我调用的方式解决问题的算法。
在C语言中,递归算法常用于解决树的遍历、问题分解等情况。
八、斐波那契数列算法(Fibonacci Sequence)斐波那契数列是一列数字,其中每个数字都是前两个数字的和。
C语言常用算法模块的总结一、最大值,最小值问题教材page13/1.6、page36/2.4(2)、(3)、page98例5.1、5.2二、连乘连加问题 page113、114、115 page129/6.3 page129/6.4、6.5三、闰年算法 page17、 page107四、连续小数相加减 page18、 page124五、素数、整除问题 page18、 page124、 page126、 page127六、大小写字母转换、密码问题 page51、 page87、 page89/4.9、 page104、 page67、 page128七、格式化字符提醒起于page 76八、三角形面积问题 page86九、一元二次方程 page87、 page89/4.8、 page108十、分段一元函数 page100、 page110、 page111/5.5、5.6十一、位运算 page112/5.7、 page129/6.2、6.3十二、公约数公倍数 page129/6.1十三、迭代法、二分法 page129-130/6.11-13C语言常用算法模块的总结一、最大值,最小值问题教材page13/1.6、page36/2.4(2)、(3)、page98例5.1、5.2主要思想:替换+中转关联习语: if句int a,b,c,max; 多余的一个max是承载中转的容器scanf(“%d,%d,%d”,&a,&b,&c);max=a; 定初值if(max<b)Max=b; 分别取a、 b、c相互比较,由于只需输if(max<c) 出最大或者最小值,所以只需将最大值存Max=c; 储在max中即可printf(“……”);如果需要依次输出所给的数值,则须在比较大小之后进行替换赋值int a,b,t;scanf(“%d,%d”,&a,&b)if(a>b){ 此步的依次赋值体现了赋值运算自右向左的结合次序t=a; 先将a的值赋给t,此时a的值空出a=b; 将b的值赋给a,b值空出b=t; 将t中存储的a的值赋给b,此时t仍回复空值} 若混淆其中赋值规律则产生混乱printf(“……”);二、连乘连加问题page113、114、115 page129/6.3 page129/6.4、6.5主要思想:容器+循环关联习语:while(do……while)、for、(goto)int i,sum=0; 循环第一步,定初值,sum可视作是承载运算结果的容器,初为空i=1;while(i<=100) 构设循环条件,注意必须是有限循环,否则程序无终止{sum=sum+I; 循环第二步,累计结果i++; 循环第三步,循环量自增。
C程序设计的常用算法算法(Algorithm):计算机解题的基本思想方法和步骤。
算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。
通常使用自然语言、结构化流程图、伪代码等来描述算法。
一、计数、求和、求阶乘等简单算法此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。
例:求阶乘。
下列程序用于求n的阶乘.在累乘之前,一定要将用于存放乘积的变量的值初始化为1.long func(int n){int i;long t=1;for(i=2;i<=n;i++)t*=i;return t;}例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。
(本题为计数的应用)本题使用数组来处理,用数组a[100]存放产生的确100个随机整数,数组x[10]来存放个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数。
即个位是1的个数存放在x[1]中,个位是2的个数存放在x[2]中,……个位是0的个数存放在x[10]。
void main(){ int a[101],x[11],i,p;for(i=0;i<=11;i++)x[i]=0;for(i=1;i<=100;i++){ a[i]=rand() % 100;printf("%4d",a[i]);if(i%10==0)printf("\n");}for(i=1;i<=100;i++){ p=a[i]%10;if(p==0) p=10;x[p]=x[p]+1;}for(i=1;i<=10;i++){ p=i;if(i==10) p=0;printf("%d,%d\n",p,x[i]);}}二、求两个整数的最大公约数、最小公倍数分析:求最大公约数的算法为辗转相除法。
(最小公倍数=两个整数之积/最大公约数) 求最大公约数的算法步骤:(1) 对于已知两数m,n,使得m>n;(2) m除以n得余数r;(3) 若r=0,则n为求得的最大公约数,算法结束;否则执行(4);(4) m←n,n←r,再重复执行(2)。
例如: 求m=14 ,n=6 的最大公约数. m n r14 %6= 26 %2= 0void main(){ int nm,r,n,m,t;printf("please input two numbers:\n");scanf("%d,%d",&m,&n);nm=n*m;if (m<n){ t=n; n=m; m=t; }r=m%n;while (r!=0){ m=n; n=r; r=m%n; }printf("最大公约数:%d\n",n);printf("最小公倍数:%d\n",nm/n);}将其写成一函数,返回最大公约数。
int gcd(int m,int n){ int t,r;if(m<n) { t=m;m=n;n=t; }r=m%n;while(r!=0){ m=n; n=r; r=m%n; }return n;}如果求最小公倍数,其函数形式稍作调整:int gcd(int m,int n){ int a=m, b=n;int t,r;if(m<n) { t=m;m=n;n=t; }r=m%n;while(r!=0){ m=n; n=r; r=m%n; }return (a*b)/n;}只能被1和本身整除的正整数称为素数。
基本思想:在判断数m是否为素数时,首先把m作为被除数,将2—sqrt(m)的所有数字依次作为除数,去除m,只要有一个数能将m整除,则m不是素数;否则,如果都除不尽,则m就是素数。
(可用以下程序段实现)void main(){ int m,i,k;printf("please input a number:\n");scanf("%d",&m);k=sqrt(m);for(i=2;i<k;i++)if(m%i==0) break;if(i>=k)printf("该数是素数");elseprintf("该数不是素数");}将其写成一函数,若为素数返回1,不是则返回0int prime( int m){int i,k;k=sqrt(m);for(i=2;i<k;i++)if(m%i==0) return 0;return 1;}四、求最小值算法思想:定义变量min用于存放当前所有找到的最小数,a为已知数组。
算法步骤如下:1)在min中存放第1个数,比较从数组中的第二个元素开始。
2)数组a中每个元素依次与min中的数组相比,小者放入min中。
3)比较完数组的最后一个元素,算法结束。
Min中数为所求。
程序如下:main(){ int a[10]={12,45,7,8,96,4,10,48,2,46},i,min;for(i=0;i<10;i++)printf(“%3d”,a[i]);printf(“\n”);min=a[0];for(i=1;i<10;i++)if(a[i]<min) min=a[i];printf(“the result is:%d”, min);}int minvalue(int a[],int n){int i,min;min=a[0];for(i=0;i<n;i++)if(a[i]<min) min=a[i];return min;}main(){int a[10]={12,45,7,8,96,4,10,48,2,46},i,min;for(i=0;i<10;i++)printf(“%3d”,a[i]);printf(“\n”);min=minvalue(a,10);printf(“the result is:%d”, min);}五、排序问题1.选择法排序(升序)基本思想:1)对有n个数的序列(存放在数组a(n)中),从中选出最小的数,与第1个数交换位置;2)除第1 个数外,其余n-1个数中选最小的数,与第2个数交换位置;3)依次类推,选择了n-1次后,这个数列已按升序排列。
程序代码如下:Array void main(){ int i,j,imin,s,a[10];printf("\n input 10 numbers:\n");for(i=0;i<10;i++)scanf("%d",&a[i]);for(i=0;i<9;i++){ imin=i;for(j=i+1;j<10;j++)if(a[imin]>a[j]) imin=j;if(i!=imin){s=a[i]; a[i]=a[imin]; a[imin]=s; }printf("%d\n",a[i]);}}2.冒泡法排序(升序)基本思想:(将相邻两个数比较,小的调到前头)1)有n个数(存放在数组a(n)中),第一趟将每相邻两个数比较,小的调到前头,经n-1次两两相邻比较后,最大的数已“沉底”,放在最后一个位置,小数上升“浮起”;2)第二趟对余下的n-1个数(最大的数已“沉底”)按上法比较,经n-2次两两相邻比较后得次大的数;3)依次类推,n个数共进行n-1趟比较,在第j趟中要进行n-j次两两比较。
程序段如下void main(){ int a[10];int i,j,t;printf("input 10 numbers\n");for(i=0;i<10;i++)scanf("%d",&a[i]);printf("\n");for(j=0;j<=8;j++)for(i=0;i<9-j;i++)if(a[i]>a[i+1]){t=a[i];a[i]=a[i+1];a[i+1]=t;}printf("the sorted numbers:\n");for(i=0;i<10;i++)printf("%d\n",a[i]);}3.合并法排序(将两个有序数组A、B合并成另一个有序的数组C,升序)基本思想:1)先在A、B数组中各取第一个元素进行比较,将小的元素放入C数组;2)取小的元素所在数组的下一个元素与另一数组中上次比较后较大的元素比较,重复上述比较过程,直到某个数组被先排完;3)将另一个数组剩余元素抄入C数组,合并排序完成。
程序段如下:void main(){ int a[10],b[10],c[20],i,ia,ib,ic;printf("please input the first array:\n");for(i=0;i<10;i++)scanf("%d",&a[i]);for(i=0;i<10;i++)scanf("%d",&b[i]);printf("\n");ia=0;ib=0;ic=0;while(ia<10&&ib<10){ if(a[ia]<b[ib]){ c[ic]=a[ia];ia++;}else{ c[ic]=b[ib];ib++;}ic++;}while(ia<=9){ c[ic]=a[ia];}while(ib<=9){ c[ic]=b[ib];ib++;ic++;}for(i=0;i<20;i++)printf("%d\n",c[i]);}六、查找问题1.①顺序查找法(在一列数中查找某数x)基本思想:一列数放在数组a[1]---a[n]中,待查找的数放在x 中,把x与a数组中的元素从头到尾一一进行比较查找。
用变量p表示a数组元素下标,p初值为1,使x与a[p]比较,如果x不等于a[p],则使p=p+1,不断重复这个过程;一旦x等于a[p]则退出循环;另外,如果p大于数组长度,循环也应该停止。
(这个过程可由下语句实现)void main(){ int a[10],p,x,i;printf("please input the array:\n");scanf("%d",&a[i]);printf("please input the number you want find:\n");scanf("%d",&x);printf("\n");p=0;while(x!=a[p]&&p<10)p++;if(p>=10)printf("the number is not found!\n");elseprintf("the number is found the no%d!\n",p);}思考:将上面程序改写一查找函数Find,若找到则返回下标值,找不到返回-1②基本思想:一列数放在数组a[1]---a[n]中,待查找的关键值为key,把key与a数组中的元素从头到尾一一进行比较查找,若相同,查找成功,若找不到,则查找失败。