中心极限定理和高斯噪声的产生、白噪声的分析、色噪声的产生。
- 格式:pptx
- 大小:184.24 KB
- 文档页数:19
(五)⾼斯⽩噪声⾼斯⽩噪声,幅度服从⾼斯分布,功率谱密度服从均匀分布。
(1)⽩噪声,如同⽩光⼀样,是所有颜⾊的光叠加⽽成,不同颜⾊的光本质区别是的它们的频率各不相同(如红⾊光波长长⽽频率低,相应的,紫⾊光波长短⽽频率⾼)。
⽩噪声在功率谱上(若以频率为横轴,信号幅度的平⽅为功率)趋近为常值,即噪声频率丰富,在整个频谱上都有成分,即从低频到⾼频,低频指的是信号不变或缓慢变化,⾼频指的是信号突变。
任意时刻出现的噪声幅值都是随机的,即不相关的(这句话实际上说的就是功率谱密度服从均匀分布的意思,不同的是,前者从时域⾓度描述,⽽后者是从频域⾓度描述)注释:功率谱密度(Power Spectral Density,PSD)的概念,它从频域⾓度出发,定义了信号的功率是如何随频率分布的,即以频率为横轴,功率为纵轴(2)⾼斯分布,从概率密度⾓度来说,⾼斯⽩噪声的幅度分布服从⾼斯分布。
注释:概率密度定义了信号出现的频率是如何随着其幅值变化的,即以信号幅值为横轴,以出现的频率为纵轴。
MATLAB举例说明 clcclear allsigma=sqrt(1/(10.^(0/10))); % 发送功率为1,平均信噪⽐SNR=0dB时的⾼斯⽩噪声标准差n=sigma*(randn(1,10000)+1j*randn(1,10000)); %复⾼斯⽩噪声的实部和虚部是满⾜独⽴同分布的⾼斯随机变量noise=imag(n(1,:)); %复⾼斯⽩噪声的虚部,均值为0,⽅差为sigma^2noise=real(n(1,:)); %复⾼斯⽩噪声实部,均值为0,⽅差为sigma^2y1=fft(noise,1000); %频率采样点个数为1000p1=y1.*conj(y1); %噪声功率计算%作图figureff=0:99;subplot(2,1,1)stem(ff,p1(1:100)); %功率谱密度服从均匀分布subplot(2,1,2)hist(noise,50) %幅度服从⾼斯分布。
白噪声的产生和分析①理想白噪声均值为零而功率谱密度为非零常数,即()012N S N ωω=-∞<<+∞,的平稳随机过程()N t 称为白噪声。
利用维纳—辛钦公式,不难得到白噪声的自相关函数为()()12j N N R S e d ωττωωπ∞-∞=⎰04j N e d ωτωπ∞-∞=⎰()012N δτ= ②若一个具有零均值的平稳随机过程()X t ,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。
带限白噪声又可分为低通型的和带通型的。
低通型带限白噪声的功率谱密度满足()0, 0,X S WS Wωωω≤⎧=⎨>⎩ 自相关函数为()()12j X XR S e d ωττωωπ∞-∞=⎰012Wj WS e d ωτωπ-=⎰0sin WS W W τπτ=带通型带限白噪声的功率谱密度满足()000,220,X W W S S ωωωω⎧-<<+⎪=⎨⎪⎩其它自相关函数为()()00sin 2cos 2X W WS R W ττωττπ= Matlab 相关函数rand(m,n) 产生m 行n 列的均匀分布 randn(m,n) 产生m 行n 列的高斯分布 [c,lags] =xcorr(x,maxlags,'option') 自相关函数,'option'选择'unbiased'无偏估计,时域区间[-maxlags:maxlags] ,序列长度2*maxlags+1[Pxx,f] = periodogram(x,window,nfft,fs) 功率谱密度,偶数点时,Pxx 长度(nfft/2 + 1),w 范围[0,pi][f,xi] = ksdensity(x) 一维概率密度 fft(X) 傅里叶变换[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') 巴特沃斯滤波器,Wp 为通带边界频率,Ws 为阻带边界频率,Rp 通带最大衰减,Rs 为阻带最小衰减,n 为阶数,Wn 为归一化频率[z,p,k] = buttap(n) 巴特沃斯模拟低通滤波器模型[h,w] = freqz(hd,n) 离散时域滤波器的频率响应,h、w长度为n,w范围[0,pi] filter(b,a,X) 滤波器[b,a]=ellip(n, Rp, Rs, Wn,'option') 椭圆滤波器实验设计与实现(1)用Matlab编写和仿真程序。
本文科普一下高斯白噪声(white Gaussian noise,WGN)。
百度百科上解释为“高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布”,听起来有些晦涩难懂,下面结合例子通俗而详细地介绍一下。
白噪声,如同白光一样,是所有颜色的光叠加而成,不同颜色的光本质区别是的它们的频率各不相同(如红色光波长长而频率低,相应的,紫色光波长短而频率高)。
白噪声在功率谱上(若以频率为横轴,信号幅度的平方为功率)趋近为常值,即噪声频率丰富,在整个频谱上都有成分,即从低频到高频,低频指的是信号不变或缓慢变化,高频指的是信号突变。
由傅里叶变换性质可知,时域有限,频域无限;频域有限,时域无限。
那么频域无限的信号变换到时域上,对应于冲击函数的整数倍(由公式也可推得:)。
即说明在时间轴的某点上,噪声孤立,与其它点的噪声无关,也就是说,该点噪声幅值可以任意,不受前后点噪声幅值影响。
简而言之,任意时刻出现的噪声幅值都是随机的(这句话实际上说的就是功率谱密度服从均与分布的意思,不同的是,前者从时域角度描述,而后者是从频域角度描述)。
这里要指出功率谱密度(Power Spectral Density,PSD)的概念,它从频域角度出发,定义了信号的功率是如何随频率分布的,即以频率为横轴,功率为纵轴。
既然白噪声信号是“随机”的,那么反过来,什么叫做“相关”呢?顾名思义,相关就是某一时刻的噪声点不孤立,和其它时刻的噪声幅值有关。
其实相关的情况有很多种,比如此时刻的噪声幅值比上一时刻的大,而下一时刻的噪声幅值比此时刻的还大,即信号的幅值在时间轴上按从小到大的顺序排列。
除此之外,幅值从大到小,或幅值一大一小等都叫做“相关”,而非“随机”的。
解释完了“白噪声”,再来谈谈“高斯分布”。
高斯分布,又名正态分布(normal distribution)。
概率密度函数曲线的形状又两个参数决定:平均值和方差。
简单来说,平均值决定曲线对称中线,方差决定曲线的胖瘦,即贴近中线的程度。
1.什么是白噪声?答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。
白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。
换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。
相对的,其他不具有这一性质的噪声信号被称为有色噪声。
理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。
然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。
一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。
例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。
高斯白噪声的概念——."白"指功率谱恒定;高斯指幅度取各种值时的概率p (x)是高斯函数高斯噪声——n维分布都服从高斯分布的噪声高斯分布——也称正态分布,又称常态分布。
对于随机变量X,记为N(μ,σ2),分别为高斯分布的期望和方差。
当有确定值时,p(x)也就确定了,特别当μ=0,σ2=1时,X的分布为标准正态分布。
2.matlab中白噪声和有色噪声怎么表示?答:假设V和W是2个n维噪声序列,其中V表示白噪声,W表示有色噪声,在MATLAB中表示方法为:V=randn(m,n)W = filter(b,1,V);b为滤波器系数。
3. 什么叫单边功率谱和双边功率谱?他们如何计算?答:单边功率谱密度(N0)主要用在复数信号中,双边功率谱密度(N0/2)主要用在实信号中。
单边功率谱适于基带分析,在基带中是0中频。
如果信号通过了调制,将原中频搬移到了高频段,原来的负频部分就成了正频,利用双边功率谱进行分析。
白噪声的研究与生成目录白噪声的研究与生成 (1)目录 (1)1. 白噪声的定义 (2)2. 统计特性 (2)3. 白噪声的生成 (3)3.1 高斯白噪声的生成 (3)3.1.1. WGN:产生高斯白噪声 (3)3.1.2. AWGN:在某一信号中加入高斯白噪声 (3)3.1.3.注释 (4)3.2 均匀分布的白噪声的产生 (5)4.白噪声的应用 (6)1.白噪声的定义白噪声是指功率密度在整个频域内均匀分布的噪声。
所有频率具有相同能量的随机噪声称为白噪声。
从我们耳朵的频率响应听起来它是非常明亮的“咝”(每高一个八度,频率就升高一倍。
因此高频率区的能量也显著增强)。
即,此信号在各个频段上的功率是一样的。
由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。
相对的,其他不具有这一性质的噪声信号被称为有色噪声。
理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整信号视为白噪声,以方便进行数学分析。
2.统计特性术语白噪声也常用于表示在相关空间的自相关为0的空域噪声信号,于是信号在空间频率域内就是“白色”的,对于角频率域内的信号也是这样,例如夜空中向各个角度发散的信号。
右面的图片显示了计算机产生的一个有限长度的离散时间白噪声过程。
需要指出,相关性和概率分布是两个不相关的概念。
“白色”仅意味着信号是不相关的,白噪声的定义除了要求均值为零外并没有对信号应当服从哪种概率分布作出任何假设。
因此,如果某白噪声过程服从高斯分布,则它是“高斯白噪声”。
类似的,还有泊松白噪声、柯西白噪声等。
人们经常将高斯白噪声与白噪声相混同,这是不正确的认识。
根据中心极限定理,高斯白噪声是许多现实世界过程的一个很好的近似,并且能够生成数学上可以跟踪的模型,这些模型用得如此频繁以至于加性高斯白噪声成了一个标准的缩写词:AWGN。
高斯色噪声的产生实验报告一.实验要求用SPW或者Matlab产生高斯色噪声,其功率谱满足高斯函数:22()2()cff fS fσ--=其中,2000cf Hz=,50fHzσ=二.实验原理首先通过实验1的正态分布随机数生成程序生成高斯白噪声,然后将该白噪声通过一个滤波器滤波,滤波器的频率响应满足上述的频谱特性,从而得到所需的色噪声。
三.仿真分析频率(kHz)功率/频率(dB/Hz)高斯白噪声的功率谱图1 高斯白噪声的验证由于本实验需要首先生成高斯白噪声,因此做了高斯白噪声的验证。
显然,从图1中,可以明显看出,生成的噪声的统计特性服从高斯分布,其功率谱服从均匀分布,因此得到的噪声是高斯白噪声。
-3滤波器的幅频响应幅度频率(Hz )图2 滤波器的幅频响应如图2所示,设计的滤波器的幅频响应满足高斯分布,其中心频率为2000Hz ,满足设计要求。
频率 (kHz)功率/频率 (d B /H z )高斯色噪声的功率谱-9高斯色噪声的功率谱功率/频率(W /H z )频率(Hz )图3 高斯色噪声的功率谱估计将图1中所描述的高斯白噪声通过图2描述的滤波器进行滤波,从而得到了符合频率分布的高斯色噪声。
图3采用两种功率谱估计的方法对得到的高斯色噪声进行了功率谱估计。
显然,得到的色噪声的功率谱特性满足高斯高斯,说明得到的色噪声就是高斯色噪声,其功率谱满足高斯函数。
三.附录本实验的程序如下:clear; clc;f_sample=8000; step =1; f_c=2000; segma_f=50; ff=0:step:f_sample;S_f = 1/( sqrt(2*pi)*segma_f) *exp(- (ff-f_c).^2/2/segma_f^2);u=Probability_method(length(ff));u_fft = fft(u);f_filter=u_fft.*S_f;u_ifft = ifft(f_filter);%--------- 画图--------figure(1) %滤波器幅频特性plot(ff,S_f,'linewidth',2)grid ontitle('滤波器幅频特性');%高斯分布白噪声功率谱估计figure(2)Hs=spectrum.periodogram;psd(Hs,u,'Fs',f_sample);grid on%-- %高斯色噪声功率谱估计figure(3)[hk,f]=pwelch(u_ifft,70,1,[],f_sample,'twosided'); plot(f,hk,'b','LineWidth',2)grid ontitle('高斯色噪声功率谱估计');Hs=spectrum.periodogram;figure;psd(Hs,u_ifft,'Fs',f_sample);grid on。