减数分裂与遗传定律
- 格式:ppt
- 大小:3.02 MB
- 文档页数:38
简述遗传学三大定律的实质以及与减数分裂的关系
遗传学三大定律分别是孟德尔定律、染色体理论和基因互补定律。
这三条定律揭示了遗传现象中的本质规律。
孟德尔定律揭示了遗传物质的离散性,证明了遗传物质的分离遵循着一定的规律性。
染色体理论揭示了遗传物质存在于染色体上,遗传物质的分离和组合是通过染色体的分离和组合来完成的。
基因互补定律则揭示了某些基因之间的相互作用,不同基因之间的相互作用会影响到个体的表现型。
减数分裂是生殖细胞形成过程中的一种特殊分裂方式。
在减数分裂中,染色体的复制和分裂过程都只发生一次,最终形成四个单倍体的细胞。
减数分裂是遗传物质在生殖细胞中重新组合的过程,它保证了每个生殖细胞都具有不同的基因组合。
遗传学三大定律的实质都与减数分裂密切相关,孟德尔定律和基因互补定律揭示了基因在减数分裂过程中的行为规律,染色体理论则揭示了染色体在减数分裂中的行为规律。
高考生物减数分裂知识点四、细胞分裂中几个概念的分析1、基本概念理解(1)同源染色体:减数分裂第一次分裂过程中,相互配对(联会)的两条染色体,它们的形状和大小一般都相同(不同的一般指性染色体,如X、Y染色体),一条来自父方,一条来自母方。
减数分裂中精(卵)原细胞和初级精(卵)母细胞中含有同源染色体,在次级精(卵)母细胞、精子(卵细胞)和极体中不含有同源染色体,但在有丝分裂中同源染色体始终存在。
(2)染色单体:在间期染色体复制以后,每条染色体含有两条完全相同的染色质丝,连接在一个着丝点上,每条染色质丝成为一个染色单体。
无论是有丝分裂还是减数分裂,染色单体都是形成于间期,但有丝分裂消失于后期,减数分裂消失于减数第二次分裂的后期。
(3)四分体:同源染色体两两配对的现象叫联会,联会后的每对同源染色体含有四条染色单体,称四分体2、几种数量关系(1)染色体数:以染色体的着丝点数目为依据,有几个着丝点就有几个染色体。
(2)染色单体数:若有染色单体,则染色单体数是染色体数的2倍;若无染色单体则为零(3)DNA分子数:若有染色单体,则DNA分子数是染色体数的2倍;若无染色单体,则DNA分子数等于染色体数。
(4)三者之间的关系染色体复制后着丝点分裂前:染色单体数=2倍染色体数=DNA分子数其他时期:染色体数=DNA分子数;染色单体数=0;一个四分体=1对同源染色体=2个染色体=4个染色单体=4个DNA分子(5)细胞数目关系1个精原细胞 1个初级精母细胞 2个次级精母细胞 4个精子细胞 4个精子1个卵原细胞 1个初级卵母细胞 1个初级精母细胞+1个极体1个卵细胞+3个极体五、减数分别与遗传定律之间的关系减数分裂是三大遗传规律的细胞学基础,三大遗传规律都是研究亲代的性状在子代中的表现问题。
无论哪个规律研究什么性状,亲代性状要在子代中表现出来,都必须经减数分裂、受情作用和个体发育三个阶段,但受精作用与个体发育不过正确识别细胞分裂的相关图像【典例分析】1.下图为同一高等动物不同时期的细胞分裂示意图(假设该生物的体细胞有4条染色体,基因型为MMNn),相关说法正确的是()A.不可能在睾丸中同时观察到上面4幅图B.可用MMMMNNnn表示A、B、C三图中细胞的基因型C.4幅图中染色体组数均为2组D.由D图M、m可知该细胞在之前发生交叉互换【答案】B【解析】【分析】根据题意和图示分析可知:A细胞含有同源染色体,且着丝点分裂,处于有丝分裂后期;B细胞含有同源染色体,且同源染色体成对地排列在赤道板上,处于减数第一次分裂中期;C细胞中含有同源染色体,且着丝点都排列在赤道板上,处于有丝分裂中期;D细胞不含同源染色体,着丝点分裂,处于减数第二次分裂后期。
高中生物《减数分裂与遗传规律》练习题题号一二总分得分一、单选题(本大题共4小题,共4.0分)1.基因型为AaBbDd的二倍体生物,其体内某精原细胞减数分裂时同源染色体变化示意图如下图。
叙述正确的是()A. 三对等位基因的分离均发生在次级精母细胞中B. 该细胞能产生AbD、ABD、abd、aBd四种精子C. B(b)与D(d)间发生重组,遵循基因自由组合定律D. 非姐妹染色单体发生交换导致了染色体结构变异2.如图表示人体内的细胞在分裂过程中每条染色体的DNA含量变化曲线,下列有关叙述正确的是()A. 有丝分裂过程中,赤道板和纺锤体都出现在bc时期B. 有丝分裂过程中,ef期的细胞中都含有两个染色体组C. 减数分裂过程中,cd期的细胞都含有23对同源染色体D. 减数分裂过程中,基因的分离和自由组合都发生在cd段的某一时期3.下图为某哺乳动物的一个器官中处于不同分裂时期的细胞图像,相关叙述正确的是()A. 基因分离定律发生在A细胞中B. A细胞分裂产生的子细胞叫极体或精细胞C. A、C细胞中含有同源染色体对数依次为2、2D. A、C细胞属于减数分裂,A细胞是次级精母细胞4.某种蛇体色的遗传如右图所示,当两种色素都没有时表现为白色。
选纯合的黑蛇与纯合的橘红蛇作为亲本进行杂交,下列有关叙述错误的是()A. 亲本黑蛇和橘红蛇的基因型分别为BBtt、bbTTB. F1的基因型全部为BbTt,表现型全部为花纹蛇C. 让F1花纹蛇相互交配,后代花纹蛇中纯合子的比例为116D. 让F1花纹蛇与杂合的橘红蛇交配,其后代出现白蛇的概率为18二、识图作答题(本大题共4小题,共20.0分)5.如图是某种遗传病的家谱图(显、隐性基因分别用A、a表示)。
据图回答问题:(1)根据遗传病遗传图谱判断:致病基因位于_________染色体上,属于_________性遗传。
(2)I2的基因型是_________。
(3)Ⅲ2的基因型为_________,其为纯合子的概率是_________。
有丝分裂和减数分裂有丝分裂(一)过程时期间期前期中期后期末期特点①变化:完成DNA的复制和有关蛋白质的合成②结果:每个染色体都形成两个姐妹染色单体,呈染色质形态①出现染色体,②核膜、核仁消失,③出现纺锤体①所有染色体的着丝点都排列在赤道板上。
①着丝点分裂,姐妹染色单体分开,成为两个子染色体。
并分别向两极移动①染色体变成染色质,②核膜、核仁重现,③纺锤体消失,④在赤道板位置出现细胞板,并扩展成分隔两个子细胞的细胞壁后期:一分为二向两极。
末期:两消两现新壁现。
植物细胞有丝分裂动物细胞有丝分裂相同点分裂过程基本相同,染色体变化规律相同不同点前期由细胞两极发出的_纺锤丝形成纺锤体由两组中心体发出星射线形成纺锤体末期细胞中部形成细胞板→细胞壁,将细胞均分为两个子细胞细胞膜从细胞的中央_凹陷,将细胞缢裂成两部分一、减数分裂(一)相关概念①. 同源染色体:两个形状、大小一般都相同,一个来自父方,一个来自母方,在减数分裂中要配对的染色体。
1和2或3和4 都是一对同源染色体(数目:同源染色体的对数= 体细胞染色体数减半)②.联会:同源染色体两两配对的行为。
如图③.四分体:含有四个姐妹染色单体的配对的一对同源染色体。
1和2或3和4各组成一个四分体(一个四分体中有两个着丝点、两条染色体、四个DNA分子,四条染色单体)(数目:四分体数= 同源染色体对数= 体细胞染色体数减半)④.非姐妹染色单体:不是连在同一个着丝点上的染色单体(二)减数分裂的过程(精子形成过程为例)间期:精原细胞体积增大,染色体复制,初级精母细胞形成减数第一次分裂前期中期后期末期特点同源染色体联会,四分体出现,非姐妹染色单体交叉互换:同源染色体排列在赤道板上同源染色体分离向细胞两极,非同源染色体自由组合形成两个次级精母细胞,染色体数目减半细胞种类初级精母细胞次级精母细胞减数第二次分裂前期中期后期末期特点无同源染色体染色体散乱分布在纺锤体中央染色体的着丝点排列在赤道板上着丝点分裂,染色体一分为二,姐妹染色体向两极移动分裂结果形成四个精子细胞细胞种类次级精母细胞精细胞(三)、精子和卵细胞形成的区别第一次分裂第二次分裂1个极体2个极体滋长(2N)(N)3个极体1个卵原细胞1个初级卵母细胞1个极体(N)(2N)复制(2N)1个次级母细胞(N)1个卵细胞(N)精原复制初级四分体(交叉互换)次级单体分开精变形精细胞精母分离(自由组合)精母细胞子染色体2N 2N N 2N N NDNA 2C 4C 4C 2C 2C C C比较精子卵细胞不同点形成部位动物精巢,植物花药动物卵巢,植物胚囊形成特点均等分裂,有变形期不均等分裂,无变形期三、DNA 和染色体的数目变化曲线图1、减数分裂DNA 和染色体的数目变化曲线图n n母细胞 母细胞 母细胞 母细胞减数分裂过程中DNA 的复制发生在间期,此时DNA 数目加倍但是染色体数目不变。
遗传学三大经典定律
遗传学是研究遗传现象的一门学科,其中三大经典定律是遗传学的基础。
这三大经典定律分别是孟德尔定律、染色体定律和联锁定律。
孟德尔定律,也叫遗传定律,是指在杂交中,各个性状的遗传是相互独立的,而且各自遵循着一定的比例,这个比例是1:2:1。
孟德尔定律为遗传学提供了精确的数学基础,从而开创了现代遗传学的先河。
染色体定律是指遗传物质——染色体在有丝分裂和减数分裂中
的运动规律。
这个定律是由梅特兰和塔芬嘉根据实验结果总结出来的。
染色体定律的发现使得遗传学得以更加深入地了解了染色体的构成
和功能。
联锁定律是指同一染色体上的两个不同性状基因之间有可能存
在联系,这种联系越紧密,这两个基因就越难以分离。
联锁定律的发现为遗传学研究提供了重要的线索,从而揭示了基因在染色体上的位置和相互关系。
这三大经典定律为遗传学的研究奠定了基础,并且对现代遗传学的发展产生了深远的影响。
- 1 -。
减数分裂与遗传定律专题1.下列叙述正确的是()A.杂种后代中只显现出显性性状的现象,叫做性状分离B.隐性性状是指生物体不能表现出来的性状C.测交是指F1与隐性纯合子杂交D.杂合子的后代不能稳定遗传2.下列关于遗传学概念的叙述,正确的是:()A、纯合子自交产生的子代所表现出的性状就是显性性状B、性状相同,遗传因子组成不一定相同C、兔的白毛和黑毛,狗的长毛和卷毛都是相对性状D、纯合子杂交后代都是纯合子3.减数分裂发生在()A.体细胞分裂过程中B.原始生殖细胞产生成熟生殖细胞的过程中C.性原细胞增殖过程中D.成熟生殖细胞分裂的过程中4.下列有关减数分裂的叙述,错误的是()A.减数分裂过程中染色体复制一次,细胞分裂两次B.染色体数目减半发生在减数第一次分裂过程中C.着丝点分裂发生在减数第二次分裂过程中D.减数分裂的结果是形成四个成熟的生殖细胞5.下列结构或细胞不能发生减数分裂过程的是()A.卵巢B.曲细精管C.精原细胞D.精子6.下列有关减数分裂的叙述,错误的是()A.减数分裂过程中染色体复制一次,细胞分裂两次B.染色体数目减半发生在减数第一次分裂过程中C.着丝点分裂发生在减数第二次分裂过程中D.减数分裂的结果是形成四个成熟的生殖细胞7.下列有关四分体的叙述,正确的是()A. 每个四分体包含联会的一对同源染色体的四个染色单体B. 经过复制的同源染色体都能形成四分体C. 四分体时期可能发生姐妹染色单体间的交叉互换D. 人的精原细胞中有23个四分体8.减数分裂过程中第一次分裂后期和第二次分裂后期的染色体数目之比和DNA含量之比分别是()A.2:1和2:1B.1:1和2:1C.4:1和4;1D.4:1和2:19.减数分裂过程中,染色体的行为变化是()A. 染色体复制→同源染色体分离→同源染色体联会→着丝点分裂B. 同源染色体联会→染色体复制→同源染色体分离→着丝点分裂C. 同源染色体联会→染色体复制→分裂→同源染色体分离D. 染色体复制→同源染色体联会→同源染色体分离→着丝点分裂10.在豌豆杂交实验中,为防止自花传粉,通常需要进行的操作是()A.将花粉涂在雌蕊柱头上 B. 除去母本未成熟花的雄蕊、C.采集另一植株的花粉D.除去母本未成熟花的雌蕊11.关于遗传学的基本概念的叙述,正确的是()A.遗传学中常用“× ”、“ × ”表示杂交和自交B.隐性性状是指生物体不能表现出来的性状C.具有相对性状的两纯合子杂交产生子一代未表现出来的性状就是显性性状D.性状分离是指杂种后代中显性性状和隐性性状同时出现的现象12.下列测交或自交组合,叙述正确的是()A.纯合子测交后代都是纯合子B.纯合子自交后代都是纯合子C.杂合子自交后代都是杂合子D.杂合子测交后代都是杂合子13.孟德尔采用假说—演绎法发现了遗传规律,下列有关说法不正确的是()A.孟德尔通过豌豆的杂交和自交实验提出问题、B .孟德尔提出的唯一假说是性状是由遗传因子决定的C .孟德尔采用测交实验验证他的假说是否正确D .孟德尔探索遗传规律的过程是实验 假设验证结论14.在豌豆杂交实验中,高茎与矮茎杂交,F 2中高茎和矮茎的比为787∶277,上述实验实质是( )A .高茎基因对矮茎基因是显性B .F 1自交,后代出现性状分离C .控制高茎和矮茎的基因不在一条染色体上D .等位基因随同源染色体的分开而分离15.基因的自由组合定律发生于下图中哪个过程( )AaBb ――→①1AB ∶1Ab ∶1aB ∶1ab ――→②雌雄配子随机结合――→③子代9种基因型――→④ 4种表现型A .①B .②C .③D .④16.下列说法正确的是( )A .表现型相同的生物,基因型一定相同B .D 和D ,D 和d ,d 和d 都是等位基因C .隐性性状是指生物体不能表现出来的性状D .杂合子一般表现出显性性状17.细胞分裂是生物体一项重要的生命活动,是生物体生长、发育、繁殖和遗传的基础。
遗传基本规律知识点总结_1、基因的分离规律是在进行减数分裂的时候,等位基因随着同源染色体的分开而分离,分别进入两个配子中,独立地随着配子遗传给后代。
2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状。
隐性性状在遗传学上,把杂种F1中未显现出来的那个亲本性状。
性状分离在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象。
显性基因控制显性性状的基因。
一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因。
一般用小写字母表示,豌豆矮茎基因用d表示。
3、等位基因在一对同源染色体的同一位置上的,控制着相对性状的基因。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)非等位基因存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
4、相对性状:同种生物同一性状的不同表现类型。
(此概念有三个要点:同种生物豌豆,同一性状茎的高度,不同表现类型高茎和矮茎)。
表现型是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
5、纯合体由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
杂合体由含有不同基因的配子结合成的合子发育而成的个体。
不能稳定遗传,后代会发生性状分离。
6、测交让杂种子一代与隐性类型杂交,用来测定F1的基因型。
测交是检验生物体是纯合体还是杂合体的有效方法。
携带者在遗传学上,含有一个隐性致病基因的杂合体。
7、隐性遗传病:由于控制患病的基因是隐性基因,所以又叫隐性遗传病。
显性遗传病:由于控制患病的基因是显性基因,所以叫显性遗传病。
8、遗传图解中常用的符号:P 亲本♀一母本♂父本杂交自交(自花传粉,同种类型相交) F1 杂种第一代 F2 杂种第二代。
减数分裂过程中等位基因分寓定律减数分裂是生物体进行生殖细胞形成的过程中不可或缺的一步。
在这个过程中,细胞核中的染色体数量减少一半,确保了下一代的遗传变异和变异的多样性。
减数分裂过程中的等位基因分离定律是遗传学中的一项重要理论,它解释了等位基因在减数分裂过程中是如何分配给子细胞的。
1. 什么是等位基因?等位基因是指在染色体上同一基因位点上的不同形式。
在一个基因位点上,我们可以有一个来自父亲的等位基因A,另一个来自母亲的等位基因a。
每个个体都拥有两个等位基因,分别来自父亲和母亲。
2. 减数分裂中的等位基因分离定律减数分裂中的等位基因分离定律由遗传学家孟德尔于十九世纪末发现。
它说明了在减数分裂过程中,等位基因是如何分配给子细胞的。
根据等位基因分离定律,每个个体的两个等位基因在减数分裂过程中会分开分配给子细胞,确保了不同等位基因之间的独立性。
3. 等位基因分离的原理等位基因分离的原理可以通过遗传学交叉试验来解释。
在这个试验中,将两个纯合的等位基因型个体(AA和aa)进行交配,得到的子代称为杂合子(Aa)。
当杂合子进行减数分裂形成生殖细胞时,等位基因A和a会随机地分配到子细胞中。
这就意味着,在减数分裂过程中,每个子细胞中都有可能包含一个等位基因A和一个等位基因a。
4. 等位基因分离的意义等位基因分离定律的发现和理解对于遗传学的发展和进步具有重要意义。
它不仅解释了亲代个体中的等位基因是如何传递给后代的,还为遗传变异和进化提供了理论基础。
等位基因分离定律的发现证明了不同等位基因之间的独立性,这为基因组的杂交和重组提供了可能性,使得后代个体能够具备不同的遗传特征,增加了生物多样性。
5. 我的观点和理解减数分裂过程中的等位基因分离定律是遗传学中的重要理论之一。
通过它,我们可以更好地理解基因的遗传规律和多样性的产生。
等位基因分离定律的发现对于我们深入探索生物体的遗传机制、疾病的遗传学研究以及农作物和畜牧动物的遗传改良等方面都具有重要的指导意义。