存储器那点事(一)常见存储器分类
- 格式:doc
- 大小:65.50 KB
- 文档页数:9
有关各种存储器速度性能的资料大收集,RAM、SRAM、SDRAM、ROM、EPROM、FRAM最后面重点搜集了NOR FLASH 存储器的资料。
====================================================常见存储器概念辨析:RAM、SRAM、SDRAM、ROM、EPROM、常见存储器概念辨析:RAM、SRAM、SDRAM、ROM、EPROM、EEPROM、Flash存储器可以分为很多种类,其中根据掉电数据是否丢失可以分为RAM(随机存取存储器)和ROM(只读存储器),其中RAM的访问速度比较快,但掉电后数据会丢失,而ROM掉电后数据不会丢失。
ROM和RAM指的都是半导体存储器,ROM是Read Only Memory的缩写,RAM是Random Access Memory的缩写。
ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。
RAM 又可分为SRAM(Static RAM/静态存储器)和DRAM(Dynamic RAM/动态存储器)。
SRAM 是利用双稳态触发器来保存信息的,只要不掉电,信息是不会丢失的。
DRAM是利用MOS(金属氧化物半导体)电容存储电荷来储存信息,因此必须通过不停的给电容充电来维持信息,所以DRAM 的成本、集成度、功耗等明显优于SRAM。
SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓冲。
DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快,但从价格上来说DRAM相比SRAM要便宜很多,计算机内存就是DRAM的。
而通常人们所说的SDRAM 是DRAM 的一种,它是同步动态存储器,利用一个单一的系统时钟同步所有的地址数据和控制信号。
使用SDRAM不但能提高系统表现,还能简化设计、提供高速的数据传输。
浅谈我们经常遇到的存储问大家一个问题,什么是SAN、什么是NAS、什么是SCSI,下文进行了很好的分解。
目前磁盘存储市场上,存储分类(如下表一)根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;开放系统的存储分为:内置存储和外挂存储;开放系统的外挂存储根据连接的方式分为:直连式存储(Direct-Attached Storage,简称DAS)和网络化存储(Fabric-Attached Storage,简称FAS);开放系统的网络化存储根据传输协议又分为:网络接入存储(Network-Attached Storage,简称NAS)和存储区域网络(Storage Area Network,简称SAN)。
由于目前绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上,因此本文主要针对开放系统的外挂存储进行论述说明。
今天的存储解决方案主要为:直连式存储(DAS)、存储区域网络(SAN)、网络接入存储(NAS)。
如下:开放系统的直连式存储(Direct-Attached Storage,简称DAS)已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。
主要问题和不足为:直连式存储依赖服务器主机操作系统进行数据的IO读写和存储维护管理,数据备份和恢复要求占用服务器主机资源(包括CPU、系统IO等),数据流需要回流主机再到服务器连接着的磁带机(库),数据备份通常占用服务器主机资源20-30%,因此许多企业用户的日常数据备份常常在深夜或业务系统不繁忙时进行,以免影响正常业务系统的运行。
直连式存储的数据量越大,备份和恢复的时间就越长,对服务器硬件的依赖性和影响就越大。
直连式存储与服务器主机之间的连接通道通常采用SCSI连接,带宽为10MB/s、20MB/s、40MB/s、80MB/s等,随着服务器CPU的处理能力越来越强,存储硬盘空间越来越大,阵列的硬盘数量越来越多,SCSI通道将会成为IO瓶颈;服务器主机SCSI ID资源有限,能够建立的SCSI通道连接有限。
存储器层次结构存储器层次结构存储技术计算机技术的成功很⼤程度来源于存储技术的巨⼤进步。
早期的电脑甚⾄没有磁盘。
现在电脑上的磁盘都已经按T算了。
随机访问存储器(Random-Access Memory, RAM)随机访问存储器(Random-Access Memory, RAM)分两类:静态的:SRAM,⾼速缓存存储器,既可以在CPU,也可以在⽚下。
动态的:DRAM,⽤于主存或者图形系统帧缓冲区。
通常情况下,SRAM的容量都不会太⼤,⽽相⽐之下DRAM容量可以⼤得离谱。
静态RAMSRAM将每个位存储在⼀个双稳态存储器单元⾥,每个单元⽤⼀个六晶体管电路实现。
这种电路有⼀个属性,它可以⽆限期地保持两个不同的状态的其中⼀个,其他状态都是不稳定的。
如上图,它能稳定在左态和右态,如果处于不稳定状态,它就像钟摆⼀样⽴刻变成两种稳态的其中⼀种。
也因为它的双稳态特性,即使有⼲扰,等到⼲扰消除,电路就能恢复成稳定值。
动态RAMDRAM的每个存储是⼀个电容和访问晶体管组成,每次存储相当于对电容充电。
该电容很⼩,⼤约只有30毫微微法拉。
因为每个存储单元⽐较简单,DRAM可以造的⾮常密集。
但它对⼲扰⾮常敏感,被⼲扰后不会恢复。
因此它必须周期性地读出重写来刷新内存的每⼀位。
或者使⽤纠错码来纠正任何单个错误。
两者总结传统的DRAMDRAM芯⽚内的每⼀个单元被叫做超单元。
在芯⽚内,总共有d 个超单元,它们被排列成⼀个r×c ⼤⼩的矩阵,也就是说d=r×c,每个超单元都可以⽤类似(i,j) 之类的地址定位⽽每个超单元则是由w 个DRAM单元组成。
因此⼀个DRAM芯⽚可以存储dw 位的信息。
上图是⼀个16×8 的DRAM芯⽚的组织。
⾸先由两个addr引脚依次传⼊⾏地址i 和列地址j 。
每个引脚携带⼀个信号。
由于这是4×4 的矩阵,因此两个就够了。
然后定位到(i,j) ,将该地址的超单元信息传出去。
什么是计算机存储器常见的计算机存储器有哪些计算机存储器是一种用来存储数据和指令的设备,是计算机系统的一个重要组成部分。
计算机存储器一般分为主存储器和辅助存储器两种。
主存储器:主存储器是计算机中用来存储数据和指令的地方,也被称为内存。
主存储器是在计算机运行时被CPU直接访问的一种存储设备,主要用来存储当前正在执行的程序和数据。
主存储器的速度比较快,但容量有限。
主存储器的存取速度取决于存储介质的类型,常见的主存储器包括动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)。
1. DRAM(Dynamic Random Access Memory):动态随机存取存储器是一种常见的主存储器,使用电容和晶体管来存储数据。
DRAM需要不断地刷新存储的数据,因此速度比较慢,但成本低廉,容量大。
DRAM广泛应用于个人电脑和其他计算设备上。
2. SRAM(Static Random Access Memory):静态随机存取存储器也是一种常见的主存储器,使用触发器来存储数据。
相比于DRAM,SRAM的读写速度更快,但成本更高,容量较小。
SRAM通常用于缓存和高性能计算机系统中。
辅助存储器:辅助存储器是计算机中用来存储数据和程序的一种永久性存储设备,主要是用来存储不常用的数据和程序。
辅助存储器通常比主存储器容量更大,但速度较慢。
1. 硬盘驱动器(Hard Disk Drive,HDD):硬盘驱动器是一种机械存储设备,使用磁性记录技术来存储数据。
硬盘驱动器容量大,价格便宜,但读写速度较慢。
硬盘驱动器广泛用于个人电脑和服务器上。
2. 固态硬盘(Solid State Drive,SSD):固态硬盘是一种电子存储设备,使用闪存芯片来存储数据。
固态硬盘读写速度快,耐用性强,但价格相对较高。
固态硬盘逐渐取代了传统的硬盘驱动器,成为计算机存储器的主要形式之一3.光盘和闪存盘(CD-ROM、DVD-ROM、USB闪存盘):光盘和闪存盘是一种便携式存储设备,用来存储数据和程序。
计算机内存管理基础知识一、前言学妹刚上大学,问我计算机内存知识需要了解么?我当场就是傻瓜警告,于是就有了这篇文章。
为什么要去了解内存知识?因为它是计算机操作系统中的核心功能之一,各高级语言在进行内存的使用和管理上,无一不依托于此底层实现,比如我们熟悉的Java内存模型。
最近几篇文章学习操作系统的内存管理后,喜欢底层的同学可以去学习CPU结构、机器语言指令和程序执行相关的知识,而看重实用性的同学后续学习多进程多线程和数据一致性时,可以有更深刻的理解。
二、冯•诺伊曼结构1、早期计算机结构在冯•诺依曼结构提出之前的计算机,是一种计算机只能完成一种功能,编辑好的程序是直接集成在计算机电路中,例如一个计算器仅有固定的数学计算程序,它不能拿来当作文字处理软件,更不能拿来玩游戏。
若想要改变此机器的程序,你必须更改线路、更改结构甚至重新设计此计算机。
简单来说,早期的计算机是来执行一个事先集成在电路板上的某一特定的程序,一旦需要修改程序功能,就要重新组装电路板,所以早期的计算机程序是硬件化的。
2、理论提出1945年,冯•诺依曼由于在曼哈顿工程中需要大量的运算,从而使用了当时最先进的两台计算机Mark I和ENIAC,在使用Mark I和ENIAC的过程中,他意识到了存储程序的重要性,从而提出了“存储程序”的计算机设计理念,即将计算机指令进行编码后存储在计算机的存储器中,需要的时候可以顺序地执行程序代码,从而控制计算机运行,这就是冯.诺依曼计算机体系的开端。
这是对计算机发展有深刻意义的重要理论,从此我们开始将程序和数据一样看待,程序也在存储器中读取,这样计算机就可以不单单只能运行事先编辑集成在电路板上的程序了,程序由此脱离硬件变为可编程的了,而后诞生程序员这个职业。
关于冯・诺依曼这位大神,值得单独开一篇文章来聊聊。
3、五大部件冯诺依曼计算机体系结构如下:数据流一》指令流-A 控制流---►img冯•诺依曼结构用极高的抽象描述了计算器的五大部件,以及程序执行时数据和指令的流转过程。
计算机存储器的工作原理及分类计算机存储器是计算机系统中非常重要的组成部分,它承担着存储和读取数据的任务。
在计算机存储器中,数据以二进制形式存储,通过不同类型的存储器进行管理和处理。
本文将深入探讨计算机存储器的工作原理及分类,帮助读者更好地理解这一关键部件。
### 一、工作原理计算机存储器的主要工作原理是通过存储器芯片来存储数据,并通过控制器来控制数据的读写操作。
存储器芯片通常采用半导体材料制成,根据存储方式的不同可分为随机存取存储器(RAM)和只读存储器(ROM)两种类型。
RAM是一种易失性存储器,数据在断电时会丢失,但其读写速度较快。
RAM存储数据的方式是通过电容器来存储电荷,当有电流通过时,电容器充电表示存储1,不通电表示存储0。
ROM是一种非易失性存储器,数据在断电时不会丢失,主要用于存储计算机启动时所需的固件程序等信息。
### 二、存储器分类根据存储器的工作原理和性能特点,可以将存储器分为主存储器和辅助存储器两大类。
1. 主存储器主存储器是计算机系统中最重要的存储器,也称为内存。
主存储器主要用于存储当前运行程序的数据和指令,是CPU能直接访问的存储器。
主存储器的存取速度快,但容量有限,因此常常需要配合辅助存储器使用。
主存储器按照读写速度和容量不同可分为静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)等类型。
2. 辅助存储器辅助存储器主要用于长期存储大量数据和程序,是主存储器的扩展。
辅助存储器的容量通常比主存储器大,但读写速度较慢。
常见的辅助存储器包括硬盘驱动器、固态硬盘、光盘和闪存等。
辅助存储器在计算机系统中扮演着重要的角色,可以提高计算机系统的数据处理和存储能力。
### 三、总结计算机存储器作为计算机系统中至关重要的组件,其工作原理和分类对计算机系统的性能和稳定性具有重要影响。
通过本文的介绍,读者可以更深入地了解计算机存储器的工作原理及分类,为进一步学习计算机硬件和系统架构打下坚实的基础。
单片机的存储器在单片机的世界里,存储器就如同一个信息的宝库,它承担着存储和管理数据与程序的重要任务。
如果把单片机比作是一个聪明的大脑,那么存储器就是大脑中的记忆区域,负责记住各种关键的信息和指令。
单片机的存储器可以大致分为两类:只读存储器(ROM)和随机存取存储器(RAM)。
只读存储器就像是一本无法修改的百科全书,里面的内容在制造的时候就已经被确定下来,并且在后续的使用过程中无法更改。
而随机存取存储器则更像是一个可以随时记录和修改的笔记本,能够根据我们的需要灵活地存储和更新数据。
先来说说只读存储器(ROM)。
它又可以分为几种不同的类型,比如掩膜 ROM、可编程 ROM(PROM)、可擦除可编程 ROM (EPROM)和电可擦除可编程 ROM(EEPROM)。
掩膜 ROM 是在芯片制造过程中,通过掩膜工艺将信息一次性写入的。
这就好比是在生产一本书的时候,直接把内容印在了书页上,一旦印好就无法更改。
所以掩膜 ROM 通常用于存储那些在单片机运行过程中不会改变的程序或数据,比如一些固化的系统程序。
可编程 ROM(PROM)则给了我们一次写入的机会。
它在出厂时里面的内容是空白的,我们可以通过特定的编程设备将数据写入其中。
但一旦写入,就不能再修改了,就像在一张白纸上写下了字,就无法擦掉重写。
可擦除可编程 ROM(EPROM)则相对灵活一些。
我们可以通过紫外线照射的方式将里面的数据擦除,然后重新写入新的内容。
这就像是用一块可以擦除的黑板,擦干净后又能重新书写。
电可擦除可编程 ROM(EEPROM)则更加方便。
它不需要通过紫外线照射,而是通过电信号就可以实现数据的擦除和重新写入。
这使得在实际应用中,对数据的更新和修改变得更加便捷。
接下来是随机存取存储器(RAM)。
RAM 可以随时进行读和写操作,这使得它非常适合用于存储那些在单片机运行过程中需要频繁改变的数据。
静态随机存取存储器(SRAM)的速度较快,但集成度相对较低,成本也较高。
存储器那点事(一)常见存储器分类前言注:本文中所谈到的器主要是指磁盘阵列,通过SAN/NAS/iSCSI等接口与主机相连,虽然说SAN交换机、物理带库、磁带机和光盘塔也属于存储的范畴,但不在本文讨论范围内。
存储器,或者称作存储阵列,是当今业界一个比较Fashion的词,见过不少这个圈子里的公司为了提高档次,会主动往存储行业靠,经常自我标榜“哥所在的集成公司是高科技,不仅搬箱子,哥还做存储”,“哥公司自己生产具有完全知识产权的存储器”…(当然现在再这么说有点out了,现在流行自我标榜“哥公司现在做云计算高科技呢”)。
当然,这个圈子里面的人在和身边朋友自我介绍是做存储这个高科技行业时,也经常碰到另外一种情况,“哥们你们那边250G的盘多少钱一块啊,你们卖U盘么”…那么存储器究竟该如何定义呢在我看来,二十多年前Sun公司提出了“就是计算机”的理念,对于整个IT行业发生了翻天覆地的变化,那么我们也完全可以说“存储也是计算机”。
存储是什么呢,对,存储也是计算机。
2000年前的存储器,多是作为主机的附属品出现的,记得97年本人在做系统员时,看到厂商在调试几套HP 9000和SUN小型机,几个集成商的将一个个磁盘塞进一个独立架子里面(后来才知道那叫磁盘柜),一边塞进去还一边说:“哥们千万注意啊,这玩意叫磁盘阵列,贼贵,一块磁盘顶一台夏利呢”。
我们当时大吃一惊,高科技啊,一块小铁片竟然顶得上大街上一辆出租车(其实当时也不过是给个JBOD+软件RAID,现在想想,真叫暴利啊)…而且当时安装磁盘阵列也是看起来很高深的一件事情,不同于主机UNIX操作系统要插入光盘,输入命令、不断回车,磁盘阵列的安装往往是在主机安装完后再导入一些,然后运行一个脚本,出去吃个饭、抽根烟….就完成了。
这就是早期DAS阶段的典型工作流程,存储器在当时仅仅是器的附属品。
2000年左右以后,国内的存储器市场慢慢进入了一个繁荣阶段,具有独立控制器的磁盘阵列产品越来越多(不再依赖于主机端的软件RAID技术);另外除了IBM/HP/SUN/Compaq/SGI五大UNIX厂商有自己的存储器产品外,独立存储厂商在国内也如雨后春笋般出现了,(第一次还以为是那个做显示器的厂商)、Brocade、Netapp、MCData、HDS等存储网络产品公司也慢慢地出现在招标书和投标现场,可以说,2000年以后,存储器进入了一个快速发展的时期。
存储器和主机的采购可以分开、建立独立的存储网络等概念分别被以EMC和Brocade 为代表的存储公司发扬光大。
存储与计算分离的概念颠覆了传统的DAS模式,在传统模式中,存储器被看作一个简单的外设依附于主机系统,而存储与计算分离以后,存储子系统从原来的计算系统中分离出来形成一个独立的子系统(这是EMC早期一再强调的概念),存储和主机间通过高速网络互联,这样存储器从后台走向了前台,这样诞生了Brocade和Mcdata(后被Brocade收购)等SAN网络设备公司。
同时随着网络共享应用的持续增长和网络文件共享协议的成熟(SUN发明的NFS协议和推出的CIFS协议),文件服务器作为一种独立的存储器也走向了市场,其代表公司就是Netapp。
一、常见的存储器的现在业界有非常多的存储公司,每家公司也有不同档次的产品,当然每家公司都会花大力气大家宣扬自己的产品如何如何高性能、如何如何稳定可靠,档次如何如何高,而且都能摆出不少道理,所谓王婆卖瓜,自卖自夸嘛。
那么存储器到底该如何分类呢,存储阵列的档次划分有没有依据呢,下面介绍几种常见的分类方法。
1、专业IT研究公司Gartner的分类很多专业IT人士看各种产品在业界的定位和评测,都会参考Garnter公司的评价,那么Gartner公司是什么东东呢。
高德纳咨询公司(Gartner)是全球最具权威的IT 研究与顾问咨询公司,其官方网站: 。
Garnter公司成立于1979年,总部设在康涅狄克州斯坦福。
其研究范围复盖全部IT产业,就IT的研究、发展、评估、应用、市场等领域,为客户提供客观、公正的论证报告及市场调研报告,协助客户进行市场分析、、项目论证、投资决策。
为决策者在投资风险和管理、策略、发展方向等重大问题上提供重要咨询建议,帮助决策者作出正确抉择。
针对于存储磁盘阵列行业Garnter会定期发布一些分析报告,我们取其中两个比较有著名的报告类型,一份是针对于所谓的High-End企业级存储器市场的分析,比如《MarketScope for High-End Enterprise Disk Arrays, 2H05》实际上就是Garnter公司在2005年12月30日对于2005年下半年针对High-End企业级存储器市场的总结回顾;而另外一份叫《Magic Quadrant for Midrange Enterprise Disk Arrays》的报告就是Garnter定期用魔力四象限的方式对于Midrange Enterprise Disk Arrays的定义。
通过定期对这两份报告进行分析,我们能够很方便地了解这个行业各种存储器的定位和技术含量。
Gartner定义的High-End Enterprise Disk Arrays分析我们首先来看看Gartner是从哪些角度给各家存储器厂商定位和评分的• Presales support 售前技术部门的支持能力;• Break/fix service and post-sales support 售后服务和处理问题的能力;• Total-cost-of-ownership evaluation 总体拥有成本估算;• Technologies that have net effect of reducing power and cooling consumption and space requirements各家厂商的产品在节点、制冷技术和空间节省方面的技术特点;• Independent software vendor support独立软件厂商的支持力度;• Acquisition, upgrade, service and warranty pricing购买和升级费用,服务和保修费用;• The impact of changing storage更换存储器的影响。
每隔一段时间Gartner会根据上述的评分标准将各家存储厂商定位到五个级别中,Strong Negative,Caution,Promising、Positive和Strong Positive。
那么Gartner是如何定义high-end enterprise disk arrays的呢我们来看看其定义标准:1. Use a multiple controller architecture使用多控制器体系架构;2. Support mainframe. and open-system environments支持mainframe和开放系统;3. Support FICON, Enterprise Systems Connection (ESCON) or Fibre Channel host connectivity同时支持FICON/ESCON和FC光纤通道接口;4. Support the z/OS operating system and/or other mainframe. operating systems支持z/OS和其他mainframe操作系统;能够进入这个所谓High-End Enterprise Disk Array 富人俱乐部的存储器较少,主要包括以下几种• EMC — Symmetrix V-Max and DMX-4• Fujitsu — ETERNUS8000• Hitachi/Hitachi Data Systems — Universal Storage Platform. V and VM• HP — StorageWorks XP24000, XP20000•— System Storage and DS6800• Sun — Sun StorageTek 9990V and 9985V可以说Gartner采用了一种非常经典和传统的方法来定义级存储器,即“出身血统论”(4个条件中除了第一条是多控制器外,其他都和IBM大机的连接性和支持力度有关),特别是表现在能够支持大机这一点(能够做到这一点的存储厂商确实很少,往往是那些很早就存储器或者做过IBM兼容机的厂商才具备这些能力和血统)。
但是笔者对于这种划分方法持一定的保留意见,因为大机在如今新建的中心已经较少的出现,开放系统(AIX/HPUX/Solaris/Windows/Linux和等)占了绝对优势。
而即时在IBM内部,Mainframe(大型主机)的重要性也发展速度也不比当年。
用户花重金买“高端”存储器看中的是其性能、可靠性、可管理性和其他数据保护,至于他能否连接IBM Mainframe,其实并不那么重要。
而且能够连接大型主机的存储器,往往配置相对较为复杂,比如HDS的USP系列在配置时就有个cu/ldev的概念,一般初学者是很难理解为什么要这么设计,其实这就是早期为了和大型主机连接而留下的传统产物。
因此笔者的观点是,如果您的数据中心有预算买“高端”存储,不准备采用Mainframe (大型主机),或者说即时有Mainframe也不准备和开放系统存储器互联互通(包括在四大银行数据中心,Mainframe和开放系统都是各有各的存储,一般也不会和开放系统共享存储器,甚至连维护人员都是分为两组)。
因此建议各位在选型阶段所谓高端或者中端来说,不要拘泥于Gartner的报告分类,建议更加关注其体系结构(多控制器结构)、性能、可靠性、可管理性和其他数据保护功能。
Gartner定义的Midrange Enterprise Disk Arrays分析Gartner采用了其经典的魔力四象限(Magic Quadrant)来定义Midrange Enterprise Disk Arrays,魔力象限是在某一特定内的对市场情况进行的图形化描述。
魔力象限(Magic Quadrant)由Gartner公司于2006年9月25日取得“魔力象限”版权,并可以在获得许可的情况下重复使用。
它根据Gartner公司的定义,它描述了Gartner 公司依据标准对该市场内的厂商所进行的分析。
Gartner公司并不对在魔力象限中描述的任何厂商、产品或服务出具官方认可,也不建议技术用户只选择那些位于“领导者”象限里的厂商。
魔力象限仅用作一种研究工具,并不意味着是行动的具体指导。