5.1.2曲线运动(小船过河、速度关联)
- 格式:ppt
- 大小:638.00 KB
- 文档页数:13
小船渡河问题与关联速度问题一、小船过河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。
2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。
3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =dv 1(d 为河宽)。
(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。
(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。
确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。
4. 解题思路5. 解题技巧(1)解决小船渡河问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头所指方向的运动,是分运动,船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线。
(2)应用运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解。
(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关。
(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况,用三角形定则求极限的方法处理。
【典例1】一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s 。
若船在静水中的速度为v 2=5 m/s ,则: (1) 欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2) 欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【典例2】如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x(m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法正确的是()A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s【答案】B【跟踪短训】1. (多选)下列图中实线为河岸,河水的流动方向如图v的箭头所示,虚线为小船从河岸M驶向对岸N 的实际航线.则其中可能正确的是().【答案】AB【解析】船头垂直于河岸时,船的实际航向应斜向右上方,A正确,C错误;船头斜向上游时,船的实际航向可能垂直于河岸,B正确;船头斜向下游时,船的实际航向一定斜向下游,D错误.2. 如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O 点,OA、OB分别与水流方向平行和垂直,且OA=OB.若水流速度不变,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为().A.t甲<t乙B.t甲=t乙C.t甲>t乙D.无法确定【答案】 C【解析】设两人在静水中游速为v0,水速为v,则t甲=x OAv0+v+x OAv0-v=2v0x OAv20-v2t乙=2x OBv20-v2=2x OAv20-v2<2v0x OAv20-v2故A、B、D错,C对.3. 一小船在静水中的速度为3 m/s,它在一条河宽为150 m,水流速度为4 m/s的河流中渡河,则该小船().A.能到达正对岸B.渡河的时间可能少于50 sC.以最短时间渡河时,它沿水流方向的位移大小为200 mD.以最短位移渡河时,位移大小为150 m【答案】 C4.船在静水中的速度与时间的关系如图甲所示,河水的流速随离一侧河岸的距离的变化关系如图乙所示,经过一段时间该船以最短时间成功渡河,下列对该船渡河的说法错误的是()A.船在河水中的最大速度是5 m/sB.船渡河的时间是150 sC.船在行驶过程中,船头必须始终与河岸垂直D .船渡河的位移是13×102 m 学-科/网 【答案】B【解析】 由题图乙可知,水流的最大速度为4 m/s ,根据速度的合成可知,船在河水中的最大速度是5 m/s ,选项A 正确;当船头始终与河岸垂直时,渡河时间最短,有t =d v =3003 s =100 s ,因此船渡河的时间不是150 s ,选项B 错误,C 正确;在渡河时间内,船沿水流方向的位移x 在数值上等于水流速度与时间图像所围成的面积大小,根据速度变化的对称性可得x =4×1002 m =200 m ,再根据运动的合成与分解可得,船渡河的位移为13×102 m ,选项D 正确。
专题拓展课一小船过河与关联速度问题【学习目标要求】 1.通过实例分析进一步理解运动的合成与分解的原理。
2.会用运动合成与分解的理论分析小船过河问题。
3.会分析实际运动中的关联速度问题。
拓展点1小船过河问题1.小船参与的两个分运动(1)船相对水的运动(即船在静水中的运动),它的方向与船头的指向相同。
(2)船随水漂流的运动,它的方向与河岸平行。
2.区别三个速度:水流速度v水、船在静水中的速度v船、船的实际速度(即船的合速度)v合。
3.两类最值问题(1)渡河时间最短问题由于水流速度始终沿河道方向,不能提供指向河对岸的分速度。
因此若要渡河时间最短,只要使船头垂直于河岸航行即可。
由图甲可知,t短=dv船,此时船渡河的位移x=dsin θ,位移方向满足tan θ=v船v水。
甲(2)渡河位移最短问题①v水<v船最短的位移为河宽d,此时渡河所用时间t=dv船sin θ,船头与上游河岸夹角θ满足cos θ=v水v船,如图乙所示。
乙②若v水>v船,如图丙所示,从出发点A开始作矢量v水,再以v水末端为圆心,以v船的大小为半径画圆弧,自出发点A向圆弧作切线即为船位移最小时的合运动的方向。
这时船头与上游河岸夹角θ满足cos θ=v船v水,最短位移x短=dcos θ,而渡河所用时间仍用t=dv船sin θ计算。
丙【例1】(2020·黑龙江哈尔滨三中高一月考)某人以一定的速度使船头垂直于河岸向对岸划船,当水流匀速时,对于他过河所需时间、发生的位移与水速的关系描述正确的是()A.水速小时,位移小,时间短B.水速大时,位移大,时间长C.水速大时,位移大,时间不变D.位移、时间与水速无关解析由分运动和合运动具有独立性和等时性可知,水流速度对过河时间没有影响,水速大时,合速度较大,位移较大,故只有C项正确。
答案 C【例2】已知某船在静水中的速度为v1=5 m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100 m,水流速度为v2=3 m/s,方向与河岸平行,(1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少;(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v2′=6 m/s,船在静水中的速度为v1=5 m/s不变,船能否垂直河岸渡河?解析(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t=dv1=1005s=20 s。
曲线运动、运动的合成与分解、小船过河和关联速度模型特训目标特训内容目标1曲线运的条件(1T-4T)目标2运动的合成和分解(5T-8T)目标3小船过河问题(9T-12T)目标4关联速度模型(13T-16T)【特训典例】一、曲线运的条件1中国女子铅球运动员巩立姣用21年的坚持与拼搏,向世界展示女子铅球的中国力量。
在某次练习时,巩立姣水平掷出的铅球的运动轨迹如图所示,A、B、C为铅球运动轨迹上的三点,ED为轨迹上B点的切线。
将铅球视为质点,不考虑空气阻力,下列说法正确的是()A.铅球在B点的速度沿AB连线方向B.铅球在B点的速度沿BC连线方向C.铅球的运动是变加速运动D.铅球的运动是匀变速运动【答案】D【详解】AB.铅球做曲线,轨迹由A到C,B点的速度方向沿切线方向,即BD方向,故AB错误;CD.铅球在竖直方向上受重力作用,故铅球的运动是匀变速曲线运动,故C错误,D正确。
故选D。
2“青箬笠,绿蓑衣,斜风细雨不须归”是唐代诗人张志和《渔歌子》中的描写春雨美景的名句。
一雨滴由静止开始下落一段时间后,进入如图所示的斜风区域下落一段时间,然后又进入无风区继续运动直至落地,不计雨滴受到的阻力,则下图中最接近雨滴真实运动轨迹的是()A. B.C. D.【答案】B【详解】A.离开斜风区时雨滴的速度斜向左下方,进入无风区后雨滴只受重力,速度和加速度不在一条直线上,不可能做直线运动,A错误;BD.离开斜风区时雨滴的速度斜向左下方,轨迹在速度和重力之间偏向重力一侧,B正确,D错误;C.离开斜风区时雨滴有水平向左的分速度,所以在落地前雨滴的速度不可能竖直向下,C错误。
故选B。
3公交车是人们重要的交通工具,如图是某公交车内部座位示意图,其中座位A和座位B的连线与公交车前进的方向垂直。
当公交车在某一站台由静止开始启动做匀加速运动的同时,一名乘客从A座位沿A、B的连线匀速运动到B座位,则站台上的人看到()A.该乘客的运动轨迹为直线B.该乘客的运动轨迹为曲线C.因该乘客在公交车上做匀速直线运动,所以乘客处于平衡状态D.该乘客对地的速度保持不变【答案】B【详解】AB.乘客与车具有垂直于AB方向的加速度,乘客的速度与加速度方向不在同一条直线上,所以轨迹为曲线,A错误,B正确;CD.相对地面,乘客有沿公交车前进方向的加速度,不处于平衡状态,速度在变化,C、D错误;故选B。
小船渡河问题如图所示,船过河时,船的实际运动(即相对于河岸的运动)可以看成是随水以速度v1漂流的运动和以v2相对于静水的划行运动的合运动。
随水漂流和划行这两个分运动互不干扰各自独立而具有等时性。
(1)最短时间:根据等时性可用船对水分运动时间代表渡河时间,由于河宽一定,只有当船对水速度v2垂直河岸时,垂直河宽的分速度最大,所以必有t min=错误!,如图所示.但此时实际位移s不是最短,s>d。
(2)船头偏向上游一定角度时,船通过的实际位移最短.当v2〉v1,若要位移最短,则船应到达小船渡河问题【典例探究】【典例1】河水的流速随离河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A. 船渡河的最短时间是60 sB. 船在行驶过程中,船头始终与河岸垂直C。
船在河水中航行正对岸,应使合运动的速度方向垂直河岸。
如图所示。
合速度v=v2sinθ<v2,所以此时合位移最短为河宽d,而渡河时间为:t=错误!=错误!〉t min,并且要求角度θ合适(一定)cosθ=错误!。
当v2<v1时,无论船的航向如何,合速度均不可能垂直于河岸.船不可能到达正对岸B点,无论如何均会冲向下游。
根据v1、v2和v之间满足平行四边形定则,其中v1确定,v2大小确定,方向可调,画出v2所有可能方向,从中选择v与河岸夹角最大的方向,即为最短位移.如图所示,先作OA表示水流速度v1,然后,以A为圆心,以v2的大小为半径作圆,过O作圆的切线OC与圆相切于C,连接AC,再过O作AC的平行线OB,过C作OA的平行线交于B,则OB表示船对水的速度v2和船的航向,从图不难看出,船沿OCD行驶到对岸的位移最短。
此时v2与河岸的夹角θ满足cosθ=错误!。
的轨迹是一条直线D。
船在河水中的最大速度是5 m/s【典例2】已知某船在静水中的速度为v1=4m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100m,水流速度为v2=3m/s,方向与河岸平行.(1) 欲使船以最短时间渡河,航向怎样?最短时间是多少?船发生的位移有多大?(2)欲使船以最小位移渡河,航向又怎样?渡河所用时间是多少?即船的航向与河岸上游方向夹角θ时,渡河位移最短,船的实际位移为:s=错误!=错误!.船渡河所需时间为:t=错误!=错误!=错误!=错误!由绳子(或杆)牵连物体的运动分解如图所示,这类问题是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度。