初中数学中考第2讲.圆中三大切线定理.尖子班.学生版
- 格式:pdf
- 大小:1.01 MB
- 文档页数:12
2024年中考重点之圆的切线与切圆定理圆是几何学中非常重要的基本形状之一,而关于圆的切线和切圆定理是中考数学中的重点内容之一。
本文将详细介绍圆的切线以及切圆定理的概念和应用。
一、圆的切线1. 切线的定义在平面几何中,切线是一条与圆只有一个交点的直线。
2. 切线的性质(1)切线与半径的关系:切线与半径垂直相交。
(2)切线的方向:切线与半径的夹角为90度。
(3)切线的长度:从切点到圆心的部分是切线的长度。
二、切圆定理1. 切圆定理的表述在一个圆中,如果一条直线通过圆上的两个不同的点,并且这条直线的两端分别与圆相交,那么这条直线就被称为切线,并且它与圆的切点在同一条直径上。
2. 切圆定理的应用(1)切线与半径的关系:由切圆定理可知,切线与半径在切点处构成90度的夹角,因此可以利用这一性质求解有关圆的问题。
(2)求切线长度:利用切圆定理可以通过已知的半径长度和圆心和切点的距离求解切线的长度。
(3)求切点坐标:利用切圆定理可以通过已知的圆心坐标和切线方程求解切点的坐标。
三、例题解析题目:已知一个圆的半径为r,圆心的坐标为(h, k),直线y = mx + c(m ≠ 0)经过与圆的两个交点,求切线的方程。
解析:根据题目中已知条件,直线y = mx + c与圆相交于两个不同的点。
由于直线是切线,因此切线与直径垂直相交,并且切点在同一条直径上。
设切点的坐标为(x1, y1),则根据切圆定理,切点的横坐标为h - (km + c)/(m^2 + 1),纵坐标为k + m(x1 - h)。
由于切线垂直于半径,可以得到切线的斜率为-1/m。
由切点坐标可以确定切线的方程为y - y1 = -(1/m)(x - x1)。
将切点的坐标代入切线方程,可以得到切线的具体方程为y - (k + m(x1 - h)) = -(1/m)(x - (h - (km + c)/(m^2 + 1)))。
至此,我们得到了关于切线的方程。
四、总结本文详细介绍了圆的切线和切圆定理的概念和应用。
14初三秋季·第2讲·尖子班·学生版围田地漫画释义满分晋级阶梯暑期班第六讲秋季班第六讲秋季班第八讲圆7级期末复习之圆中的重要结论及应用圆6级期末复习之圆的综合圆5级圆中三大切线定理秋季班第十五讲秋季班第十三讲秋季班第二讲2圆中三大切线定理15中考内容中考要求ABC圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题弧长会计算弧长能利用弧长解决有关问题扇形会计算扇形面积能利用扇形面积解决有关问题圆锥的侧面积和全面积会求圆锥的侧面积和全面积能解决与圆锥有关的简单实际问题圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考中考考点分析中考内容与要求16初三秋季·第2讲·尖子班·学生版查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。
九年级数学圆切线知识点在九年级数学学习中,圆切线是一个重要的知识点。
本文将介绍圆的切线的定义、性质以及相关的定理。
一、圆切线的定义和性质圆是一个平面上的闭合曲线,它的每个点到圆心的距离都相等。
圆周上的任意一条线段称为弦,连接圆周上两个点的最短线段称为弦。
如果在圆上有一条线段,且这条线段的每一个端点都在圆上,那么这条线段就是圆的切线。
根据圆的定义和性质,圆的切线有一些重要的性质:1. 切线与半径垂直:圆的切线与半径的形成的角是直角。
2. 唯一性:一个圆上的任意点只有唯一一条切线与之相切。
3. 切线长度:当切线与半径形成的角不等于90度时,切线与圆心的距离是半径的长度。
4. 相交性质:如果两个圆相交,那么它们的切线会相交于相交点。
二、圆切线的定理除了基本的定义和性质外,还有一些与圆切线相关的定理。
下面将介绍一些常见的定理:1. 切线定理:如果一条直线与一个圆相切,那么这条直线与半径的形成的角是直角。
2. 弦切定理:如果一条弦与一个切线相交,那么切线与弦间的角等于弦上对应的圆心角。
3. 切线长定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线的长度的乘积等于这两条切线分别与圆心连线长度的平方。
4. 切线角定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线所对应的圆心角相等。
三、习题练习现在我们来做一些练习题,以加深对圆切线知识点的理解。
1. 在圆 O 上,切线 AB,C 是正切点。
若弧 AC 的度数是120度,求角 BAC 的度数。
解答:由弧与切线的性质可得,角 BAC 的度数等于弧 AC 的度数的一半,即 120/2 = 60 度。
2. 已知圆心角 ADC 的度数是135度,弦 AC 与切线 AB 相交于点 E,求角 BDE 的度数。
解答:根据弦切定理可知,角 BDE 等于弦 AC 对应的圆心角ADC 的度数减去切线 AB 与弦 AC 间夹角的度数,即 135 - 90 = 45 度。
通过以上的练习题,我们可以灵活运用圆切线的性质和定理来解决问题。
九年级数学圆的切线知识点《九年级数学圆的切线知识点》圆的切线在九年级数学里可是个很有趣的知识点呢。
咱先来说说圆的切线的定义。
切线就是和圆只有一个公共点的直线。
想象一下,圆就像一个超级圆润的小皮球,切线就像一把小剑,刚刚好刺到这个皮球上,就只碰到那么一个点,多神奇呀。
这个公共点就叫做切点。
圆的切线有个超级重要的性质哦。
切线是垂直于经过切点的半径的。
这就像是小皮球上插着那把剑,剑和从球心到切点的那根半径是垂直的关系呢。
这个性质在解题的时候可好用啦。
比如说,要是知道一条直线是圆的切线,还知道切点,那就可以得出垂直的关系,这样就能在三角形里用勾股定理之类的知识来求线段的长度啦。
那怎么判定一条直线是不是圆的切线呢?有两种常见的方法。
一种是定义法,就看这条直线和圆是不是只有一个公共点。
不过这个有时候不太好判断呢。
还有一种更常用的方法,就是经过半径的外端并且垂直于这条半径的直线是圆的切线。
就像你先找到圆的一条半径,然后有一条直线,它经过这个半径的外端,还和这个半径垂直,那这条直线就是圆的切线啦。
这就像是给小皮球的半径外面找了个保镖,这个保镖站得笔直,那他就是切线啦。
圆的切线长定理也很有意思。
从圆外一点引圆的两条切线,它们的切线长相等。
这就像是从外面一个地方向小皮球射出两支箭,这两支箭在皮球上的切点到外面那个点的距离是一样长的呢。
而且圆心和这一点的连线平分两条切线的夹角。
这就好像是给这两支箭做了个平衡的规划。
在做关于圆的切线的题目时,我们要学会灵活运用这些知识点。
有时候要先证明切线,再利用切线的性质去解题。
有时候又要根据已知条件去求出切线的长度或者其他相关的量。
这就像是在玩一个解谜游戏,要把这些知识点像拼图一样组合起来。
我觉得圆的切线知识点虽然有点小复杂,但只要理解了它的定义、性质和判定方法,就像掌握了打开宝藏的钥匙一样。
在做数学题的时候,就能顺利地解决那些和圆的切线有关的难题啦。