选择性集成算法分类与比较
- 格式:pdf
- 大小:507.69 KB
- 文档页数:5
机器学习中的集成学习算法一、集成学习简介集成学习(Ensemble Learning)是机器学习中的一种重要算法。
它的主要思想是将多个弱学习算法集合起来形成一个强学习算法。
二、集成学习分类按照分类器的生成方式可将集成学习分类为Bagging算法、Boosting算法和Stacking算法。
1. Bagging算法Bagging全称为Bootstrap AGGregating,是自举聚合的缩写。
它的基本思想是采用自助法来产生k个新的训练集,在每个训练集上训练出一个基学习器,然后将这k个基学习器的结果进行平均或多数表决等方式来得到最终的结果。
2. Boosting算法Boosting算法基本思想是将一系列弱分类器相互结合,构成一个强分类器的过程。
它的主要特点是每一轮都学习一个新的分类器,并使得之前所有分类器的分类准确率加权相加。
3. Stacking算法Stacking算法是一种用来组合多个学习器的方法。
与传统的集成学习方法不同,Stacking算法通过加入一个“次级学习器”来对多个基学习器进行组合,从而构建出一个强学习器。
三、集成学习的优点1. 集成学习可显著提高机器学习算法的准确率和性能,并且对于许多不同类型的学习算法均有效。
2. 集成学习能够减轻模型过拟合问题,提高模型鲁棒性和泛化能力。
3. 集成学习能够减少各个单个模型产生的误差或者偏差,从而提高模型的精度。
四、集成学习案例1. 随机森林(Random Forest)随机森林是一种集成学习方法,它基于决策树算法创建多个随机子集的基学习器,最终将这些基学习器合并成一个强学习器。
2. AdaBoostAdaBoost是一种常见的Boosting算法,它通过不断调整训练样本的权重来训练机器学习模型,从而提高模型准确率。
3. Gradient Boosting Machines(GBM)GBM也是一种常见的Boosting算法,它采用一种梯度下降算法来学习弱学习器的加权。
集成学习算法总结1、集成学习概述1.1 集成学习概述集成学习在机器学习算法中具有较⾼的准去率,不⾜之处就是模型的训练过程可能⽐较复杂,效率不是很⾼。
⽬前接触较多的集成学习主要有2种:基于Boosting的和基于Bagging,前者的代表算法有Adaboost、GBDT、XGBOOST、后者的代表算法主要是随机森林。
1.2 集成学习的主要思想集成学习的主要思想是利⽤⼀定的⼿段学习出多个分类器,⽽且这多个分类器要求是弱分类器,然后将多个分类器进⾏组合公共预测。
核⼼思想就是如何训练处多个弱分类器以及如何将这些弱分类器进⾏组合。
1.3、集成学习中弱分类器选择⼀般采⽤弱分类器的原因在于将误差进⾏均衡,因为⼀旦某个分类器太强了就会造成后⾯的结果受其影响太⼤,严重的会导致后⾯的分类器⽆法进⾏分类。
常⽤的弱分类器可以采⽤误差率⼩于0.5的,⽐如说逻辑回归、SVM、神经⽹络。
1.4、多个分类器的⽣成可以采⽤随机选取数据进⾏分类器的训练,也可以采⽤不断的调整错误分类的训练数据的权重⽣成新的分类器。
1.5、多个弱分类区如何组合基本分类器之间的整合⽅式,⼀般有简单多数投票、权重投票,贝叶斯投票,基于D-S证据理论的整合,基于不同的特征⼦集的整合。
2、Boosting算法2.1 基本概念Boosting⽅法是⼀种⽤来提⾼弱分类算法准确度的⽅法,这种⽅法通过构造⼀个预测函数系列,然后以⼀定的⽅式将他们组合成⼀个预测函数。
他是⼀种框架算法,主要是通过对样本集的操作获得样本⼦集,然后⽤弱分类算法在样本⼦集上训练⽣成⼀系列的基分类器。
他可以⽤来提⾼其他弱分类算法的识别率,也就是将其他的弱分类算法作为基分类算法放于Boosting 框架中,通过Boosting框架对训练样本集的操作,得到不同的训练样本⼦集,⽤该样本⼦集去训练⽣成基分类器;每得到⼀个样本集就⽤该基分类算法在该样本集上产⽣⼀个基分类器,这样在给定训练轮数 n 后,就可产⽣ n 个基分类器,然后Boosting框架算法将这 n个基分类器进⾏加权融合,产⽣⼀个最后的结果分类器,在这 n个基分类器中,每个单个的分类器的识别率不⼀定很⾼,但他们联合后的结果有很⾼的识别率,这样便提⾼了该弱分类算法的识别率。
选择性集成*周志华南京大学软件新技术国家重点实验室,南京2100931 引言一个好的机器学习系统应该有较强的泛化能力,简单的说,就是其根据已有数据建立的模型应该能够很好地处理新的数据。
因此,泛化能力一直是机器学习关心的一个根本问题。
由于集成学习(ensemble learning)可以有效地提高泛化能力,因此从20世纪90年代开始,对集成学习理论和算法的研究成为了机器学习的一个热点。
早在1997年,国际机器学习界的权威T.G. Dietterich就将集成学习列为机器学习四大研究方向之首 [Die97],而在今天,集成学习仍然是机器学习中最热门的研究领域之一,研究人员众多、成果层出不穷。
由于集成学习是一个仍在迅速发展中的研究领域,因此关于“什么是集成学习”,机器学习界目前还没有最终达成共识。
狭义地说,集成学习是指利用多个同质的学习器来对同一个问题进行学习,这里的“同质”是指所使用的学习器属于同一种类型,例如所有的学习器都是决策树、都是神经网络等等。
广义地来说,只要是使用多个学习器来解决问题,就是集成学习。
在集成学习的早期研究中,狭义定义采用得比较多,而随着该领域的发展,越来越多的学者倾向于接受广义定义。
例如,以神经网络集成为例,P. Sollich和A. Krogh [SK96] 在1996年给出的定义就采用了狭义定义,而Opitz和Maclin [OM99] 在1999年给出的定义则采用了广义定义。
采用广义定义有一个很大的好处,就是以往存在的很多名称上不同、但本质上很接近的分支,例如多分类器系统(multi-classifier system)、基于委员会的学习(committee-based learning)等,都统一地归属到集成学习之下进行研究,由于这些子领域之间有很多共通性,因此把它们放到一起,不再强调各自之间的区别,反倒会对更深入的理论、算法、应用研究带来一些好处。
所以在今天来看,集成学习已经成为了一个包含内容相当多的、比较大的研究领域。
第22卷第5期重庆科技学院学报(自然科学版)2020年10月常用的三种分类算法及其比较分析肖铮(四川工商职业技术学院,成都611830)摘要:做好数据分析处理工作,必需掌握几种分类算法。
介绍了决策树算法、朴素贝叶斯算法和最近邻算法的基本思想和分类流程,给出了应用实例,比较分析了它们各自具有的优势和存在的局限。
采用数据挖掘技术进行大数据分析要选择最合适的算法,才能获得更有效的结果(关键词:数据挖掘%决策树算法;朴素贝叶斯算法%最近邻算法中图分类号:TP301文献标识码:A文章编号:1673-1980(2020)05-0101-06数据挖掘就是通过算法从海量数据中搜索获取有用知识和信息的过程。
数据挖掘的任务主要表现为预测和描述:预测性任务就是根据其他属性的值来预测特定属性的值;描述性任务就是概括数据中潜在的联系模式(如相关性、趋势、聚类、轨迹和异常等)。
分类属于预测任务。
分类算法的目的就是构造一个分类函数或者分类模型,然后由这个模型把数据库中的数据映射到某一个给定的类别中⑷(决策法、素法最邻法的分类算法。
下面,我们将结合实例对这3种算法进行比较分析。
1决策树算法决策树算法是数据挖掘中常见且实用的分类方法,经常被用于规则提取和分类预测等领域。
J.R. Quinlan于1979年提出并在之后逐渐修正完善的ID3算法[2],是经典的决策树算法。
后来有学者在ID3的基础之上推出了效率更高、适用范围更广的C4.5算法,它既适用于分类问题,又适用于回归问题。
近几年,有南京大学周志华教授提出的“选择性集成”[3]概念被学术界所接受,并有基于遗传算法的选择性集成算法GASEN-b用于集成C4.5决策树⑷(1.〔基本思想和分类过程决策树算法在决策分类时整个过程都非常清晰。
在判断类别时,首先通过计算选择一个属性,把它放在决策树的顶端,称它为根节点;接下来从这个点分出若干个分支,任何一个分支都代表一个不同的分类特征,每个分支的另一端都连接一个新的点,称为决策点。
常用分类算法的比较与选用建议数据分析技术的广泛应用,已经成为企业决策过程中必不可少的一环。
其中,分类算法是数据分析中最基础也是最重要的一种技术,被广泛应用于预测、识别、过滤等方面。
现在,我们将比较几种常用的分类算法,介绍它们在各种情况下的优缺点以及选用建议。
1. 决策树算法决策树是一种基于属性推理的分类算法,该算法根据训练数据集生成一棵树形结构,每一个叶子结点代表一个类别。
在生成过程中,算法不断地选择最能区分不同类别的属性作为节点,并在此基础上不断分类。
最终生成的决策树可以用于对未知数据的分类。
决策树算法的优点在于,生成的决策树易于理解、解释,并且可以处理具有缺失数据的情况。
但是,决策树算法容易产生过拟合的问题,需要进行剪枝来解决。
2. 朴素贝叶斯算法朴素贝叶斯是一种基于贝叶斯定理的分类算法,该算法假设所有属性相互独立,计算每个属性在类别中出现的概率,并用贝叶斯定理计算给定属性值时每个类别出现的概率,从而进行分类。
朴素贝叶斯算法的优点在于处理大量属性时效率高、易于实现,并且对于少量训练数据也能够获得较好的分类效果。
但是,朴素贝叶斯算法假设所有属性相互独立,在实际情况中不一定成立,因此会产生一定的误判。
3. 支持向量机算法支持向量机算法是一种基于最大间隔分类的分类算法,该算法寻找特征空间中最佳超平面来对数据进行分类。
支持向量机算法的优点在于,可以处理高维数据、非线性数据,并且在数据量较小的情况下效果很好。
但是,支持向量机算法对于噪声和非线性的情况需要进行特殊处理,并且对训练数据的选择比较敏感。
4. KNN算法KNN算法是一种基于邻居寻址的分类算法,该算法通过比较未知数据和已知数据的距离来进行分类。
该算法找出最接近未知数据的K个已知数据,然后根据这K个数据的类别来确定未知数据的类别。
KNN算法的优点在于,可以适用于多种数据类型,并且不需要进行训练。
但是,该算法需要存储所有的训练数据,并且对于大量数据,计算距离的过程会较为耗时。
机器学习中的集成学习算法机器学习是目前非常热门的研究领域。
在机器学习中,集成学习算法尤为重要。
集成学习算法是指通过将多个不同的学习算法结合起来,来提高模型的性能和泛化能力。
本文将会介绍集成学习算法的概念、分类以及具体应用等内容。
一、集成学习算法的概念集成学习算法是一种将多个分类器组合起来,以提高学习算法的性能和泛化能力的方法。
其根据不同的机器学习算法,通过实现不同的策略来改进分类器的准确性。
这些算法的主要目的是减少过拟合和提高鲁棒性,它们通过整合来自不同算法的信息,从而提高整体性能。
二、集成学习的分类根据集成学习算法的实现原理,可以将其划分为三类:bagging(套袋法)、boosting(提升法)和stacking(堆叠法)。
1. BaggingBagging是一种并行的集成学习方法。
它的原理是基于不同的训练集对分类器进行训练,并对结果进行平均(以分类问题为例),以提高分类器的准确性。
Bagging依赖于构造大量的分类器并将它们的结果合并,从而使得模型更具鲁棒性和泛化能力。
2. BoostingBoosting是目前应用最广泛的集成学习方法之一。
Boosting的工作原理是一种按序列引入数据的方法。
它的实现方法是生成一系列的基分类器,并将它们按照一定的权重组合来提高模型的准确性。
Boosting技术就是不断得学习如何在错误中提高模型的准确性的过程。
缺点是Boosting几乎总是会导致过度拟合问题,而且对训练数据过于敏感。
3. StackingStacking是一种堆叠的学习方法,它通过堆叠不同分类器的输出来构建一个新的分类器。
Stacking的实现方法是基于不同的学习算法来生成若干个分类器。
这些分类器由不同的特征子集和训练数据子集构成。
最终,在训练数据上生成的分类器组成一个新的分类器来提高分类的准确性。
三、集成学习算法的具体应用集成学习算法可以应用于各种机器学习问题,包括分类和回归。
以下是一些常见的应用:1. 图像识别图像识别是一个受欢迎的研究领域。