- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阀门定 位器
阀体
5
执行机构 阀门定位器 阀
公称直径Dg
阀座直径dg
6
7
§4-1 气动调节阀的结构
气动调节阀由执行机构和阀两部分组成. 执行机构: 按照控制信号的大小产生相应的输出力, 带动阀杆移动. 阀: 直接与介质接触, 通过改变阀芯与阀座间的节流面积调节流体介质 的流量
一 气动执行机构
气动执行机构有薄膜式和活塞式两种.常 见的气动执行机构均为薄膜式,它结构简 单,价廉,输出行程小. 气动薄膜式执行机构作用型式: 正作用: 信号压力增加时,推杆向下移动 (ZMA)
对于一个给定的调节阀,FL为一个固定常数,它只与阀结构,流路形式有关, 与阀口径大小无关. 查表4.3可得到. 流量(液体)系数C的计算: 运算时单位: ① 判断是否产生阻塞流,判别条件按上式 QL---m3/h
② 如果未发生阻塞流,则△p=p1-p2
发生了阻塞流,则△p=FL2(p1-FFpv) ③ 按公式计算
19
由上两式可得调节阀流量方程
Q
当 ( p1 p2 )
AF
p1 p2
v
(4-3)
A---与单位制有关的常数
不变时,流量Q随 F
F
v-p2=1, ρ=1可得
CA
v
因此, 对于其它的阀前后压降和介质密度, 则有 Q C (4-4) ( p1 p2) 注意: 流量系数C不仅与流通截面积F(或阀公称直径Dg)有关,而且 还与阻力系数ξv有关.同类结构的调节阀在相同的开度下具有相近 的阻力系数,因此口径越大流量系数也随之增大; 口径相同类型不 同的调节阀,阻力系数不同,流量系数也各不相同.
图
角型控制阀
图
隔膜控制阀
14
(6)蝶阀. 蝶阀又名翻板阀, 如图所示. 蝶阀具有结构简单, 重量 轻, 价格便宜, 流阻极小的优点, 但泄漏量大, 适用于大口径,大 流量,低压差的场合,也可以用于含少量纤维或悬浮颗粒状介质 的控制。
(7)球阀. 球阀的阀芯与阀体都呈球形体, 转动阀芯使之处于不 同的相对位置时, 就具有不同的流通面积, 以达到流量控制的 目的, 如图所示。
比较项目 气动执行器 电动执行器 液动执行器
结构 体积 推力 配管配线 动作滞后 频率响应 维护检修 使用场合 温度影响 成本
简单 中 中 较复杂 大 狭 简单 防火防爆 较小 低
复杂 小 小 简单 小 宽 复杂 隔爆型才防火防爆 较大 高
简单 大 大 复杂 小 狭 简单 要注意火花 较大 高
4
气动薄膜调节阀 电动调节阀 执行 机构
ⅰ) 产生阻塞流的原理
23
产生的条件: p
p1 p2 FL2 ( p1 FF pv )
pc---介质临界压力
p1---调节阀进入端压强, FF---液体临界压力比系数
pv---入口温度下流体介质饱和蒸汽压
FF 0.96 0.28 pv pc
FL---压力恢复系数 F p p ( p p ) ( p p ) L cr vcr 1 2 cr 1 vcr
图
蝶阀
图
球阀
15
三、阀门定位器
气动阀门定位器是一种辅助装置, 根据调节器来的气动信号控制气动调 节阀门部件, 使阀门开度处于精确位置. 其应用场合为: (1) 提高系统控制精度. (2) 系统需要改变调节阀的流量特性. (3) 组成分程控制系统 并不是任何情况下采用阀门定位器都是合理的.在如液体压力和流量 这样的快速控制过程,使用阀门定位器可能对控制质量有害.
pcr 时, 就会出现
P1恒定时Q与 p 的关系
阻塞流, 此时按4--4计算出的流量 会大大超过阻塞流Qmax, 因此在计 算C值时首先要确定调节阀是否处 于阻塞流情况.
22
① 气体的阻塞流条件: 压差比x= △p/p1 ≥xTFk xT---空气在某一调节阀时的临界压 差比,决定于调节阀结构(表4.3) Fk---比热比系数,气体与空气的绝热 指数之比, Fk=k/kair (kair=1.4) (表4.9) ② 液体(不可压缩流体)的阻塞流 调节阀内流体压力梯度图 p1 p2
11
“气开”与“气关”的选择原则
基本原则: 根据安全生产的要求选择控制阀的气开气关。 若无气源时, 希望阀全关, 则应选择气开阀; 若无气源时,希望 阀全开,则应选择气关阀. 实际应用:
当气源中断或电源中断时,
•进入装置的原料、热源应切断: 进料阀选气开 •切断装置向外输出产品: 出料阀选气开 •精馏塔回流应打开: 回流阀选气关
p1 p2 2 h v g 2g
(4-1)
式中,ξv为调节阀阻力系数;g为重力加速度;ρ为流体密度;p1, p2为 调节阀前后压力;ω为流体平均速度. 因为
Q F
(4-2)
p1 Q
p2
Q—流体体积流量, F---调节阀流通截面积
F:阀通流截面积 ξν :阀阻力系数
ρ:流体密度 g:重力加速度
第四章
§4-1 §4-2 §4-3 §4-4
调节阀
气动调节阀结构 调节阀的流量系数 调节阀结构特性和流量特性 气动调节阀选型
1
简单控制系统组成:
被控对象,测量变送装置,调节器和调节阀组成. 其中调节阀主要包括执行机构和阀体两部分. 调节阀的作用: 接受调节器送来的控制信号, 调节管道中介质的流量(即改变调节量), 从 而实现生产过程的自动化. 本章学习目的: 了解调节阀的结构原理, 掌握 调节阀流通系数和流量特性等概念, 最终通过 计算选择合适的调节阀。 电磁阀 阀 调节阀
Re 70700
QL C
② 对于直通双座阀,蝶阀,偏心旋转阀等具有两个平行流路的调节阀
f : 相对流通面积;
阀 体
q : 受调节阀影响的管路相对流量。
9
二 阀
阀(或称阀体组件)是一个局部阻力可变的节流元件.普通阀包括阀芯, 阀座和阀杆等. 根据流体通过调节阀时对阀芯作用方 向分为流开阀和流闭阀. 流开:介质的流动方向有推动阀门打 开的趋势,称流开 . 流闭:介质的流动方向有推动阀门关 闭的趋势,则称流闭. 流开阀稳定性好,有利于调节,一般多 采用流开阀 阀的作用: 阀杆位移L---调节流量Q
20
由于采用的单位制有公制和英制之分,国际上通用两种不同的流量系数 Kv和Cv, 通过单位制变换它们与C的关系为:
Kv C;
二 流量系数计算公式
Cv 1.167C
(4-5)
流量系数的计算是选定调节阀口径的最主要的理论依据.表4.2列举了 液体,气体和蒸汽等常用流体C值的计算公式. 注意事项:
17
补充知识: 伯努利方程
1 2 p v gh const 2
1)伯努利方程表述的是理想 流体作定常流动时,流体 中压强和流速的规律。 2)在流动的流体中,流速大 的地方压强小;流速小的 地方压强大。 3)伯努利方程阐明的位能、 动能、静压能相互转换的 原理.
18
调节阀是一个局部阻力可变的节流元件.对于不可压缩的流体,由能量 守恒(伯努利方程)可知,调节阀上的压力损失为:
反作用: 信号压力增大时,推杆向上移动 (ZMB)
执行机构作用:将气压p--->阀杆位移L
8
pc 执 行 机 构
u(t)
电气 转换器
pc
执行 l 机构
阀体
f
管路 系统
q
....... .......
u(t): 控制器输出( 4~20 或 0~10 mA DC) pc : 调节阀气动控制信号;
l: 阀杆相对位置;
C 10QL L p 10QL L 100 QL L
使用工程单位制计算为:
C QL L p QL L 1 QL L
25
2. 低雷诺数修正
当雷诺数Re<2300时, 不能按式4-4计算C值, 必须加以修正. 修正后的流 量系数C’为: '
C C FR
FR---雷诺修正系数, 根据雷诺数Re由图4.10查得 雷诺数Re的计算: ① 对于直通单座阀,套筒阀, 球阀等只有一个流路的调节阀, 雷诺数为
12
阀的结构形式及选择
(1)直通单座控制阀。阀体内只有一个阀芯和阀座, 如图所示。其特点是结构简单,泄漏量小,易于保 证关闭甚至完全切断。但是在压差较大的时候,流 体对阀芯上下作用的推力不平衡,这种不平衡推力 会影响阀芯的移动。因此直通单座控制阀一般应用 在小口径、低压差的场合。
(2)直通双座控制阀。阀体内有两个阀芯和阀座, 由 于流体流过的时候,作用在上、下两个阀芯上的推 力方向相反而大小近于相等,可以相互抵消,所以 不平衡力小。但是由于加工的限制,上、下两个阀 芯和阀座不易保证同时密闭,因此泄漏量较大。直 通双座控制阀适用于阀两端压差较大、对泄漏量要 求不高的场合,但由于流路复杂而不适用于高黏度 和带有固体颗粒的液体。
16
§4-2 调节阀的流量系数
流量系数是表示调节阀流通能力的参数. 它根据流量、阀两端的差压和 流体的密度等确定。是选择阀口径的参数.
1kgf/cm2
一 流量系数的定义及其物理意义
我国规定的流量系数C为: 在给定行程下, 阀两端压差为0.1Mpa, 水密 度为1g/cm3时, 流经调节阀的水的流量, 以m3/h表示 (体积流量). 阀全 开时的流量系数为调节阀额定流量系数, 以C100表示. 它作为阀的基本 参数由制造厂家提供给用户。 表4.1为根据C100选择阀门直径表 例如一台额定流量系数为32的调节阀, 表示阀全开且两端的压差为 0.1 MPa时,每小时最多能通过32m3的水量.
10
阀芯的正装和反装: 正装阀:阀芯下移,阀芯与阀座间的流通截面积减小
反装阀:阀芯下移,阀芯与阀座间的流通截面积增大
阀的开关方式: 无气压时关闭