典型相关分析的基本理论及方法
- 格式:ppt
- 大小:2.06 MB
- 文档页数:72
统计学中常用的数据分析方法
典型相关分析
相关分析一般分析两个变量之间的关系,而典型相关分析是分析两组变量(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。
典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了原变量组所包含的全部相应信息。
R0C分析
R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线
用途:
1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力用途;
2、选择最佳的诊断界限值。
R0C曲线越靠近左上角,试验的准确性就越高;
3、两种或两种以上不同诊断试验对疾病识别能力的比较,一股用R0C曲线下面积反映诊断系统的准确性。
典型相关分析典型相关分析(Canonical Correlation Analysis)什么是典型相关分析典型相关分析是指利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。
它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。
典型相关分析基本思想典型相关分析方法canonical correlation analysis最早源于荷泰林H,Hotelling 。
他所提出的方法于1936 年在《生物统计》期刊上发表的一篇论文《两组变式之间的关系》经过多年的应用及发展,逐渐达到完善,在70 年代臻于成熟。
由于典型相关分析涉及较大量的矩阵计算,其方法的应用在早期曾受到相当的限制。
但随着当代计算机技术及其软件的迅速发展,弥补了应用典型相关分析中的困难,因此它的应用开始走向普及化。
典型相关分析是研究两组变量之间相关关系的一种统计分析方法。
为了研究两组变量X 1 ,X 2 ,…,X p 和Y1 ,Y2 ,…,Yq 之间的相关关系,采用类似于主成分分析的方法,在两组变量中,分别选取若干有代表性的变量组成有代表性的综合指标,通过研究这两组综合指标之间的相关关系,来代替这两组变量间的相关关系,这些综合指标称为典型变量。
[编辑]典型相关分析的应用典型相关分析的用途很广。
在实际分析问题中,当我们面临两组多变量数据,并希望研究两组变量之间的关系时,就要用到典型相关分析。
例如,为了研究扩张性财政政策实施以后对宏观经济发展的影响,就需要考察有关财政政策的一系列指标如财政支出总额的增长率、财政赤字增长率、国债发行额的增长率、税率降低率等与经济发展的一系列指标如国内生产总值增长率、就业增长率、物价上涨率等两组变量之间的相关程度。
又如,为了研究宏观经济走势与股票市场走势之间的关系,就需要考察各种宏观经济指标如经济增长率、失业率、物价指数、进出口增长率等与各种反映股票市场状况的指标如股票价格指数、股票市场融资金额等两组变量之间的相关关系。
典型相关分析方法研究摘要:典型相关分析是研究两组变量(或两个随机向量)之间的相关关系的一种统计方法。
与仅研究二个变量间线性关系的简单相关分析相比,典型相关分析能揭示出两组变量之间的内在联系,且两组变量的数目可以改变,这确定了它的重要性。
随着计算机技术的发展,典型相关分析在各个行业试验研究中应用日渐广泛.本文主要介绍典型相关分析的基本原理与步骤并举例说明其应用.关键词:典型相关分析;基本原理;步骤;应用Abstract:Canonical correlation analysis is the study of two groups of variables (or two random vectors)a statistical method the relationship between the. Compared with only the simple correlation analysis of linear relationship between two variables and canonical correlation analysis can reveal the internal relations between two sets of variables,and the number of two groups of variables can change,this determines the importance of it. With the development of computer technology, the canonical correlation analysis system has been widely used in various industries in experimental study。
This paper mainly introduces the basic principle and procedure of canonical correlation analysis and examples of its application.Key words:Canonical correlation analysis; basic principle;step; application一、引言典型相关分析(Canonical Correlation Analysis 简称CCA)是处理两个随机矢量之间相关性的统计方法,在多元统计分析中占有非常重要的地位。
如何在SPSS中实现典型相关分析?SPSS 11.015.1典型相关分析15.1.1方法简介在相关分析一章中,我们主要研究的是两个变量间的相关,顶多调整其他因素的作用而已;如果要研究一个变量和一组变量间的相关,则可以使用多元线性回归,方程的复相关系数就是我们要的东西,同时偏相关系数还可以描述固定其他因素时某个自变量和应变量间的关系。
但如果要研究两组变量的相关关系时,这些统计方法就无能为力了.比如要研究居民生活环境与健康状况的关系,生活环境和健康状况都有一大堆变量,如何来做?难道说做出两两相关系数?显然并不现实,我们需要寻找到更加综合,更具有代表性的指标,典型相关(CanonicalCorrelation)分析就可以解决这个问题。
典型相关分析方法由Hotelling提出,他的基本思想和主成分分析非常相似,也是降维.即根据变量间的相关关系,寻找一个或少数几个综合变量(实际观察变量的线性组合)对来替代原变量,从而将二组变量的关系集中到少数几对综合变量的关系上,提取时要求第一对综合变量间的相关性最大,第二对次之,依此类推。
这些综合变量被称为典型变量,或典则变量,第1对典型变量间的相关系数则被称为第1典型相关系数.一般来说,只需要提取1~2对典型变量即可较为充分的概括样本信息。
可以证明,当两个变量组均只有一个变量时,典型相关系数即为简单相关系数;当一组变量只有一个变量时,典型相关系数即为复相关系数。
故可以认为典型相关系数是简单相关系数、复相关系数的推广,或者说简单相关系数、复相关系数是典型相关系数的特例。
15。
1。
2引例及语法说明在SPSS中可以有两种方法来拟合典型相关分析,第一种是采用Manova过程来拟合,第二种是采用专门提供的宏程序来拟合,第二种方法在使用上非常简单,而输出的结果又非常详细,因此这里只对它进行介绍。
该程序名为Canonical correlation。
sps,就放在SPSS的安装路径之中,调用方式如下:INCLUDE ’SPSS所在路径\Canonical correlation.sps’。
多元统计分析——典型相关分析典型相关分析(Canonical correlation analysis)是一种多元统计分析方法,用于研究两组变量之间的关联性。
与传统的相关分析不同,典型相关分析可以同时考虑多组变量,找出最佳的线性组合,使得两组变量之间的相关性最大化。
它主要用于探索一组自变量与另一组因变量之间的线性关系,并且可以提供详细的相关性系数、特征向量和特征值等信息。
典型相关分析的基本原理是将两组变量分别投影到最佳的线性组合上,使得投影后的变量之间的相关性最大。
这种投影是通过求解特征值问题来实现的,其中特征值表示相关系数的大小,特征向量表示两组变量的线性组合。
通常情况下,我们希望保留具有最大特征值的特征向量,因为它们对应着最强的相关性。
典型相关分析的应用广泛,可以用于众多领域,如心理学、社会科学、经济学等。
例如,在心理学研究中,我们可能对人们的人格特征和行为方式进行测量,然后使用典型相关分析来探索它们之间的关系。
在经济学研究中,我们可以将宏观经济指标与企业盈利能力进行比较,以评估它们之间的相关性。
典型相关分析的步骤如下:1.收集数据:首先,我们需要收集两组变量的数据。
这些数据可以是定量数据(如收入、年龄)或定性数据(如性别、职业)。
2.建立模型:然后,我们需要建立一个数学模型,用于描述两组变量之间的关系。
这可以通过线性回归、主成分分析等方法来实现。
3.求解特征值问题:接下来,我们需要求解特征值问题,以获得相关系数和特征向量。
在实际计算中,我们可以使用统计软件来完成这一步骤。
4.解释结果:最后,我们需要解释典型相关分析的结果。
通常情况下,我们会关注最大的特征值和对应的特征向量,因为它们表示着最强的相关性。
典型相关分析的结果提供了一组线性组合,这些组合可以最大化两组变量之间的相关性。
通过分析这些组合,我们可以洞察两组变量之间的潜在关系,并提供有关如何解释和预测这种关系的指导。
总结而言,典型相关分析是一种强大的多元统计分析方法,可以用于研究两组变量之间的关联性。