水电站的技术供水系统
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
第39卷第3期红水河Vol.39No.32020年6月HongShuiRiverJune.2020岩滩水电站2号机组技术供水控制系统优化改造王妍祯(大唐岩滩水力发电有限责任公司,广西㊀大化㊀530811)摘㊀要:岩滩水电站技术供水控制系统已投运多年,但监控系统无主要阀门远方控制功能㊂系统存在因滤水器进口阀偷关㊁滤水器堵塞而导致冷却水中断的安全隐患㊂监控系统信号不完善,无法对设备运行状态做出准确判断㊂为了解决影响机组安全稳定运行的隐患,提高自动化控制水平,笔者在对岩滩水电站2号机组技术供水控制系统现状进行分析后,通过改进系统远方控制功能及备用水源自动切换功能,通过优化控制逻辑㊁增设监控信号,实现了技术供水远方控制,并解决了安全隐患㊂实践证明文章中所论述的优化方法切实可行㊂改造后设备运行安全㊁可靠,满足电厂实际运行要求㊂关键词:技术供水控制系统;远方控制;优化;改造;岩滩水电站中图分类号:TV734;TV736文献标识码:A文章编号:1001-408X(2020)03-0079-051㊀项目背景岩滩水电站位于广西大化瑶族自治县内岩滩镇的红水河中游河段,一期工程安装4台(1号㊁2号㊁3号㊁4号机组)单机容量为302.5MW的混流式水轮发电机组,二期工程安装2台(5号㊁6号机组)单机容量为300MW的发电机组,总装机容量为1810MW㊂水电厂技术供水系统的主要任务是对发电机上导㊁推力㊁下导㊁水导轴承及发电机空气冷却器等进行冷却㊂如果机组冷却水中断将导致导轴承及发电机空气冷却器冷却效果下降,瓦温升高,出现机组瓦温过高保护动作,造成机组事故停机,严重时甚至会烧瓦,对机组安全构成很大的威胁㊂岩滩水电站机组技术供水主供水源采用蜗壳取水方式,每台机组蜗壳均设有取水口,供本机组技术供水专用,坝前取水为备用水源㊂一期设有2个坝前取水口,共用1根备用水管㊂一般情况下,1号坝前取水源供1号㊁2号机组使用,2号坝前取水源供3号㊁4号机组使用,两者通过联络阀连接㊂2号机技术供水系统的系统图(局部)见图1㊂图2㊀2号机技术供水系统的系统图(局部)㊀㊀收稿日期:2019-08-06;修回日期:2020-01-15㊀㊀作者简介:王妍祯(1992),女,广东河源人,助理工程师,主要从事电气二次自动化专业工作,E-mail:794013452@qq.com㊂97㊀红水河2020年第3期㊀㊀机组正常工况下,2201㊁2206㊁2208㊁2209㊁2213阀在开启状态,2210阀为四通阀,通过控制2210阀实现技术供水正向或反向供水,技术供水的主水源通断由滤水器进口阀2202阀的开关状态决定,2207备用水源供水阀在正常情况下处于全关状态㊂2㊀存在硬件配置问题及改进措施岩滩水电站技术供水控制系统配备独立的控制柜,采用西门子S7-200可编程控制器及PROFACE触摸屏相结合的控制方式,触摸屏与PLC通过串口通信,这种方式的优点是操作简单,在触摸屏上可以直接查看流程执行情况㊂现地控制模式下,可通过触摸屏进行电动阀门的开启/关闭/停止操作,控制命令经过地址转换后由PLC进行逻辑判断开出动作;远方控制模式下,2202阀的开关由机组开/停机流程启动,机组开/停机时,由监控系统下发2202阀开/关指令至现地PLC进行2202阀开关控制㊂2.1㊀远方控制功能改进2.1.1㊀存在问题目前的技术供水控制系统存在两个问题:1)阀门不能远控㊂在计算机监控系统无法直接控制阀门(2202阀的开关由机组开/停机工况决定,不能独立控制),切换正反向冷却水需要在现地控制柜或机组LCU触摸屏进行操作,备用水源切换或机组紧急控制只能在现地控制柜触摸屏对各电动阀门进行操作,不满足 远程集控,无人值班,少人值守 管理模式㊂2)控制系统无冗余设计㊂技术供水控制系统为PLC与触摸屏综合控制,未采用双套PLC冗余控制,远方㊁现地控制均必须通过PLC实现[1],一旦PLC或触摸屏出现故障,只能手动操作阀门,既浪费人力与时间,又给设备的安全稳定运行带来了诸多不确定性㊂2.1.2㊀改进措施之一经过一段时期的研讨论证,只需在监控系统增加2202阀㊁2207阀㊁2210阀远方控制即可实现岩滩水电站技术供水正反向水切换㊁备用水源自动切换㊁机组紧急控制(如开/停机流程启动后未成功开启/关闭2202阀)等远方控制功能㊂原2202阀的开关通过开/停机流程控制㊁正反向冷却水切换2210阀可在机组LCU触摸屏操作,因此2202阀㊁2210阀在监控系统及现地控制单元LCU有相应的开/关阀门控制开出点,具备远方控制条件,可直接在监控系统增加阀门操作画面及控制开出指令来实现远方控制功能,而2207阀不具备远方控制功能㊂在计算机监控系统及2号机现地控制单元LCU中新增加2207阀控制开出点:DO48(2号机开2207阀)㊁DO49(2号机关2207阀),在技术供水控制柜增加一块PLC输入模块(I4.0 I4.7);增加输入点:I4.0远方开2207阀㊁I4.1远方关2207阀,在监控系统增加2202阀㊁2210阀㊁2207阀操作画面,在机组LCU程序中增加2202阀㊁2210阀㊁2207阀控制开出指令㊂2207阀控制开出指令如下㊂(∗∗∗∗∗∗∗2207阀开启∗∗∗∗∗∗∗∗)㊀701:㊀㊀IFDI[337]THEN㊀㊀CTL_P.ALM_CODE:=2216;㊀㊀CTL_P.FAIL:=1;㊀㊀ELSE㊀㊀CTL_INF[object].CSTEP:=704;㊀㊀END_IF;㊀704:㊀㊀DOUT[48]:=-1;㊀㊀CTL_INF[object].CSTEP:=711;㊀711:㊀㊀CTON[46].IN:=DI[337];㊀㊀CTON(CTON[46],120000);㊀㊀IFCTON[46].DNTHEN㊀㊀CTL_P.SUCC:=1;㊀㊀END_IF;㊀㊀IFCTON[46].OTTHEN㊀㊀CTL_P.ALM_CODE:=2217;㊀㊀CTL_P.FAIL:=1;㊀㊀END_IF;(∗∗∗∗∗∗∗∗2207阀关闭∗∗∗∗∗∗∗)㊀㊀401:㊀㊀IFDI[338]THEN㊀㊀CTL_P.ALM_CODE:=2218;㊀㊀CTL_P.FAIL:=1;㊀㊀ELSE㊀㊀CTL_INF[object].CSTEP:=404;㊀㊀END_IF;㊀404:㊀㊀DOUT[49]:=-1;㊀㊀CTL_INF[object].CSTEP:=411;㊀411:㊀㊀CTON[46].IN:=DI[338];㊀㊀CTON(CTON[46],120000);㊀㊀IFCTON[46].DNTHEN㊀㊀CTL_P.SUCC:=1;㊀㊀END_IF;08王妍祯:岩滩水电站2号机组技术供水控制系统优化改造㊀㊀㊀IFCTON[46].OTTHEN㊀㊀CTL_P.ALM_CODE:=2219;㊀㊀CTL_P.FAIL:=1;㊀㊀END_IF;㊀ELSE㊀㊀CTL_P.ALM_CODE:=8;㊀㊀CTL_P.FAIL:=1;㊀㊀END_CASE;㊀㊀(∗∗流程中有非法步数∗∗)㊀㊀技术供水PLC及触摸屏控制系统在正常运行状态下,在监控系统远方操作2202阀㊁2210阀㊁2207阀时,控制指令通过现地控制LCU下发传送至技术供水控制柜PLC[2],PLC接收控制指令后经过内部逻辑判断开出阀门控制指令,实现2202阀㊁2210阀㊁2207阀远方开/关控制㊂2.1.3㊀改进措施之二技术供水PLC或触摸屏控制系统在故障情况下,PLC无法接收远方控制指令控制阀门,为确保技术供水控制系统异常情况时仍能进行远方控制,需增设技术供水应急冗余控制回路㊂以西门子PLC特殊标志位存储器SM0.0作为PLC正常的判断条件,增加技术供水PLC输出点Q3.2:PLC正常,增加PLC正常继电器,继电器的常闭接点作为PLC故障扩展接点,2202阀㊁2207阀㊁2210阀远方控制信号经PLC故障接点闭锁后驱动扩展继电器,使用扩展继电器接点直接控制阀门㊂远控信号开出回路简图如图2所示㊂图2㊀远控信号开出回路简图2.2㊀备用水源自动切换功能改进2.2.1㊀存在问题岩滩水电站所在红水河流域含沙量较多,易造成滤水器堵塞,从而导致冷却水水压不足㊁机组导轴承及发电机空气冷却器冷却效果不佳,因此机组技术供水系统设有备用水源㊂主用水源的通断由滤水器进口阀2202阀控制,备用水源的通断由备用水源供水阀2207阀控制㊂2202阀为水力控制阀,水力控制阀以管道本身介质压力作为动力源,进行启闭和调节,利用上下控制腔压力差来驱动主阀阀盘,从而实现阀门的开闭[3],如果阀门控制腔下腔的压力超过上腔的压力,阀门将自动关闭㊂在机组运行过程中,2202阀曾在未收到关闭令的情况下自动关闭,这直接影响机组安全运行[4]㊂2.2.2㊀改进措施为了保证机组运行情况下技术供水系统稳定可靠,增加技术供水备用水源自动切换功能㊂在技术供水主用水源滤水器前后及2207阀前管路增加压力传感器(见图1,LQSY202为2号机滤水器前压力传感器,LQSY203为2号机滤水器后压力传感器,LQSY204为2号机备用水压力传感器),压力测值接入监控系统,监控系统增加主备用水切换软压板㊂在软压板投入且机组运行状态时,以管路水压及2202阀㊁2207阀位置接点作为控制流程逻辑判断条件,当2202阀偷关或滤水器堵塞导致主用冷却水水源水压不足时,自动切换至备用水源供水㊂技术供水备用水切换流程如图3所示㊂图3㊀技术供水备用水切换流程图18㊀红水河2020年第3期2.3㊀监控信号完善2.3.1㊀存在问题岩滩水电站原技术供水系统已有监控系统信号不全,只有2202阀全关㊁2210阀正向㊁反向供水与2213冷却水排水阀全开㊁全关信号,缺乏2207阀的全开㊁全关位置信号及PLC故障信号,且技术供水系统没有设置设备实时状态监控系统,无法对设备状况进行实时的掌控,一旦PLC故障或者阀门控制异常监控系统没有报警信息,运行人员无法及时掌握设备异常情况并做出快速准确的判断,更不利于维护人员对故障的分析和处理㊂2.3.2㊀改进措施增加技术供水PLC输出点Q3.2:PLC正常,增加PLC正常继电器,使用继电器的常闭接点引入监控系统作为PLC故障报警信号;从2207阀本体引出2207阀全开㊁全关位置信号,利用硬接线接入监控系统,实现2207阀的位置判断㊂为实现技术供水系统实时监测,根据岩滩水电站的设备现状,采用原技术供水可编程控制器PLC与SJ30通信管理装置相配合,通过SJ30通信管理装置与现地控制单元LCU通信,将所有信号以通信量方式上送监控,在机组技术供水监控画面统一显示㊂这种方式既节约资源㊁保持了技术供水控制回路的独立性,又利用了可编程控制器抗干扰性强㊁环境要求低㊁可扩展性强的特点[5],不仅能将PLC的开入㊁开出量上送监控,还能监测程序中如阀门开启/关闭失败等重要中间变量㊂监控画面实时显示设备监测状态,当设备状态发生改变或出现异常时,监控画面相应测点变位并发出报警信号,提醒监视人员发现故障问题并采取相应措施,且设备的正常运行和事故等信息能保存在监控系统事件记录中,方便维护人员对设备异常进行快速准确的分析㊁处理,保持设备的正常㊁稳定运行,避免事故的扩大蔓延㊂技术供水监控画面见图4㊂图4㊀技术供水监控画面图3㊀系统控制逻辑问题及优化3.1㊀阀门控制限位闭锁优化为防止电动阀门远方控制时开/关过头,损坏阀门,在控制回路中增加阀门限位闭锁条件㊂PLC内部控制逻辑增加2202阀全关㊁2210阀正向全开/反向全开㊁2207阀全开/全关闭锁条件(2202阀为水力控制阀,不用考虑阀门全开超过限位的问题),技术供水控制系统在正常状态下,PLC接收计算机监控系统下发的2202阀㊁2207阀㊁2210阀控制指令,经过PLC逻辑判断后对阀门进行控制㊂开启2207阀控制逻辑如图5所示㊂因PLC故障情况下远方控制回路不经过PLC逻辑判断,所以在硬接线控制回路中串接了阀门全开/全关限位接点㊂2202阀为水力控制阀,不用考虑阀门全开过限问题;2207阀为进口阀门,开/关28王妍祯:岩滩水电站2号机组技术供水控制系统优化改造㊀图5㊀开启2207阀控制逻辑图阀门控制已在阀门内部设计有全开㊁全关接点闭锁;在2210阀正向开回路中串入正向全开限位接点进行闭锁,反向开回路中串入反向全开限位接点进行闭锁,保证技术供水远方控制回路在PLC控制系统正常/故障情况下限位保护均能可靠动作㊂3.2㊀阀门控制流程优化根据技术供水设备运行情况,对2202阀㊁2207阀㊁2210阀开启/关闭失败信号进行了优化㊂根据多次统计2202阀㊁2207阀㊁2210阀全开㊁全关时间后对远方控制指令的开出脉冲时间进行了整定,整定时间在阀门动作时间上预留了约30%的裕度:2202阀开启㊁关闭令保持180s后复归,2207阀开启㊁关闭令保持120s后复归,2210阀正向㊁反向令保持60s后复归㊂在PLC控制程序中也作了相应的时间设定,若接收阀门开/关指令(包括远方㊁现地控制模式)后没有在相应的时间内收到阀门全开/全关限位信号,则触摸屏报此阀门开启/关闭失败信号㊂4㊀结语岩滩水电站在原2号机技术供水控制系统的基础上增加了2202阀㊁2207阀㊁2210阀远方控制功能,并增设技术供水应急冗余控制回路㊁备用水源自动切换功能,实现了技术供水远方控制,在信号采集㊁控制逻辑方面更是力求完善,提升了岩滩水电站综合自动化控制水准,向 无人值班,少人值守 的目标迈进了坚实的一步㊂参考文献:[1]㊀宋艳伟,徐刚.浅析水电厂辅助控制设备自动控制[J].科技致富向导,2013(30):126-127.[2]㊀刘岂,尹永双,刘希涛,等.小浪底电厂机组技术供水控制改造[J].水电厂自动化,2006(1):68-71.[3]㊀胡宗邱,涂阳文.向家坝左岸电站技术供水系统水力控制阀运行分析及对策[J].水电与新能源,2017(2):64-66.[4]㊀李汶青,韩明勇,丁德忠,等.关于水泵出口水力控制阀在控制中存在的问题探讨[J].水电厂自动化,2008(1):81-82.[5]㊀姜方红.乌溪江水电厂的辅机智能化改造[J].水电厂自动化,2000(3):69-71.OptimizationandTransformationofCoolingWaterControlSystemforUnit2inYantanHydropowerStationWANGYanzhenDatangYantanHydropowerCo. Ltd. Dahua Guangxi 530811Abstract ThecoolingwatercontrolsysteminYantanHydropowerStationhasbeenputintooperationformanyyears butthereisnoremotecontrolfunctionofthemainvalveinthemonitoringsystem.Therearehiddendangersuchasstealclosureoffilterinletvalveandblockageofwaterfilterwhichmayleadtointerruptionofcoolingwater.Moreover thesignalfromthemonitoringsystemisnotenough soitisdifficulttomakeaccuratejudgmentontheoperatingstateoftheequipment.Inordertosolvethehiddendangerwhichmayaffectthesafeandstableoperationoftheunitandimproveautomaticcontrol theauthoranalyzesthepresentsituationofcoolingwatercontrolsystemforunit2inYantanHydropowerStation addsremotecontrolandautomaticswitchingofwatersource.Byoptimizingofcontrollogicandaddingthemonitoringsystemsignals theremotecontrolofcoolingwaterisrealizedandthehiddensafetyhazardsissolved.Thepracticeprovesthattheoptimizationmethodisfeasible themodifiedequipmentoperatessafelyandreliably whichmeetstheactualoperationrequirementsofthepowerplant.Keywords coolingwatercontrolsystem remotecontrol optimization transformation YantanHydropowerStation38。
水系统水系统包括技术供水系统和排水系统。
一、技术供水系统:水电站的供水包括:技术供水、消防供水和生活供水。
技术供水主要是对运行的主机及辅助设备进行冷却和润滑,有时宜可作为操作能源(对射流泵、高水头进水阀等的操作)。
消防供水是为厂房、发电机、变压器及油库等提供消防用水,以便火灾时进行灭火。
1、技术供水的对象:机组轴承油冷却器(推力、上下导、水导轴承)、发电机空气冷却器、水冷式空气压缩机、油压装置的水冷却(控制油温,在回油箱中设置冷却水管,对油进行冷却)、水冷式变压器、深井泵导轴承水润滑(导轴承为橡胶轴瓦,启动前需提供润滑水润滑)2、用水设备对技术供水的基本要求:水量、水压、水温(水温过高,冷却器尺寸加大,进出口水温变化不宜过大,以免沿管长方向因温度变化过大而产生裂缝)、水质3、技术供水的净化和处理:拦污栅、滤水器(对水中化学杂质的清除称为水的处理)4、技术供水的水源及供水方式:4.1水源:A、上游取水:蜗壳取水、压力引水管取水、坝前取水B、下游取水:上游取水不能满足水压要求或能源利用不合理时,常用水泵从下游尾水抽水,再送至各用水设备。
C、地下水源:当河水不能满足水质要求时,可采用地下水作为供水水源。
4.2供水方式A、自流供水:水头为20~80m的水电站,当水质、水温均符合要求,或水质经简单净化能满足要求时,一般都采用从上游取水的自流供水方式。
B、水泵供水:一般水头高于80m或低于12m的电站多采用水泵供水方式。
C、混合供水:既有自流供水又有水泵供水的供水方式。
4.3设备配置方式A、集中取水:所有用水设备都由一个或几个共用的取水设备取水,再经过共用的干管供给各用水设备。
B、单元供水:每台机组自设取水口、设备和管道,自成体系,独立运行。
C、分组供水:机组台数多,可将机组分成若干组,每组构成一个完整的供水体系。
二、排水系统1、排水系统的分类和对象A、生产用水的排水:发电机空冷器排水、发电机推力轴承和上、下导轴承油冷却器的冷却水、水轮机水导轴承冷却器的冷却水B、渗漏排水:机械设备的漏水(顶盖自流排水、固定导叶排水、蜗壳鼻端排水等)、设备的生产排水(冲洗滤水器的污水、气水分离器及储气罐的排水、空气冷却器壁外的冷凝水、水冷空压机的冷却水等)、厂房水工建筑物的渗水,低洼处积水和地面排水、厂房生活用水的排水C、检修排水:检查、维护机组或者厂房水工建筑物的水下部分时,用来排空水轮机蜗壳、尾水管和压力钢管的水2、排水方式:集水井排水、直接排水,廊道排水云鹏水电站技术供水系统运行规定:1、技术供水正常运行时,一路工作,一路备用。
水电站供、排水和油系统第一节供水系统的分类和作用一、概述:水电站的供水系统包括技术供水、消防供水及生活供水。
消防供水作用是主厂房、发电机、变压器、油库等处的灭火。
生活供水主要为正常生活用水提供水源,如饮用、厕所用水。
二、技术供水的主要作用1.冷却:主要有发电机的推力轴承、导轴承、空气冷却器、水轮机导轴承、主变压器的冷却。
(1)推力轴承及导轴承油冷却:机组运行时轴承处产生的机械摩擦损失,以热能形式聚集在轴承中。
由于轴承是浸在透平油中的,油温升高将影响轴承寿命及机组安全,并加速油的劣化。
因此,将冷却器浸在油槽内,通过冷却器内的冷水将热量带走,达到将油加以冷却并带走热量的目的。
(2)变压器油的冷却:一些水电厂主变压器采用外部水冷式(即强迫油循环水冷式),是利用油泵将变压器油箱内的油送至通入冷却水的油冷却器进行冷却,为防止冷却水进入变压器油中,应使冷却器中的油压大于水压。
变压器的冷却方式有油浸自冷式、油浸风冷式、内部水冷式和外部水冷式等。
内部水冷式是将冷却器装置在变压器的绝缘油箱内;外部水冷式是强迫循环水冷式,用油泵抽出变压器油箱中的运行油,加压送入设置在变压器外的油冷却器进行冷却。
此方法散热能力强,使变压器尺寸缩小,便于布置,但需设置一套水冷却系统。
(3)发电机冷却:发电机运行时产生电磁损失及机械损失,这些损失转化为热量,影响发电机出力,甚至发生事故,需要及时进行冷却将热量散发出去。
大型水轮发电机采用全封闭双闭路自循环空气冷却,利用发电机转子上装设的风扇,强迫空气通过转子线圈,并经定子的通风沟排出。
吸收了热量的热空气再经设置在发电机定子外围的空气冷却器,将热量传给冷却器中的冷却水并带走,然后冷空气又重新进入发电机内循环工作,保持定子线圈、转子线圈温度在正常范围,一些小容量的发电机(汉坪咀水电站)转子上没有装设的风扇,但装设上、下挡风板,使冷、热风在密闭的空间内进行交换,热量由空气冷却器带走。
空气冷却器是一个热交换器,它是由许多根黄铜管组成,冷却水由一端进入空气冷却器,吸收热空气的热量变成温水,从另一端排出。
JC水电站技术供水系统设计本文介绍了JC电站的技术供水系统的设计原则和方法,以及对泥沙问题的解决方案,为其他同类型的电站技术供水系统的设计提供参考。
标签:自流供水;二次循环供水;尾水冷却器1、引言水电站技术供水系统的主要供水对象是水轮发电机组、水冷式变压器、水冷式空压机及其他采用水冷却的附属设备。
技术供水的主要作用是解决用水设备的冷却和润滑。
各种用水设备对水量、水压及水质等都有一定的要求,因此,需结合电站的具体条件进行技术供水系统的设计。
2、基本资料2.1 工程概况JC水电站是西藏自治区境内的重点开发工程。
本电站总装机容量为360MW,年发电量17.045亿kW.h,具有日调节性能,共装设3台单机容量为120MW的轴流转桨式水轮发电机机组。
枢纽布置方案为主河床布置泄洪建筑物,左岸布置河床式地面发电厂房,右岸布置导流明渠,两岸布置挡水建筑物。
JC水电站的主要开发任务为发电,电能送入西藏中部电网。
电站按“无人值班、少人值守”原则设计。
按照工程进度计划,JC电站将于2020年6月底实现第一台机组并网发电。
2.2 基本参数2.3 技术供水对象3、技术供水系统设计3.1 供水方案电站的供水方案的选择应与水源的选择统一考虑,一般根据电站电站的的水头范围和水质,进行综合比较后确定。
应用较多的技术供水方案有自流供水、自流减压供水、水泵供水、顶盖取水、二次循环供水等方式。
本电站机组水头范围为26.00m~43.80m,根据《水力发电厂水力机械辅助设备系统设计技术规定》,第3.1.7条“工作水头为15m~80m 时,宜采用自流供水方式。
”因此,本电站优先考虑自流供水方式作为主供水源。
另外,由于本电站汛期泥沙含量大,且输沙量年内分配不均匀,主要集中在汛期(6~9月),占全年输沙量的96.9%,其中7、8两月占全年的75.9%。
为避免泥沙磨损及堵塞机组冷却器,影响机组长期稳定运行,本电站以蜗壳自流供水作为枯期主供水源,二次循环供水方式为汛期主供水源。
水电站的技术供水系统
水电站的供水包括技术供水、消防供水及生活供水。
技术供水又称生产供水,主要对象是各种机电运行设备,主要有发电机空气冷却器、发电机推力轴承和导轴承、水轮机导轴承冷却和润滑、水冷式变压器冷却器、水冷式空气压缩机等;主要作用是对运行设备进行冷却,有时也用来进行润滑(如水轮机橡胶瓦导轴承)及水压操作(如高水头电站主阀)。
3.1。
2 技术供水系统的组成
(1)水源、取水和净化设备、用水设备由取水设备(如水泵)从水源(如水库、尾水渠等)取水,经水处理设备(如拦污栅、滤水器等)净化,使所取的水符合用水设备对水量、水压、水温和水质的要求。
(2)管网由取水干管、支管、管路附件等组成.干管直径较大,把水引到厂内用水区。
支管直径较小,把水从干管引向用水设备。
管路附件包括弯头、三通、法兰等,也是管网不可缺少的组成部分。
(3)量测控制元件用以监视、控制和操作供水系统的有关设备,保证供水系统正常运行,如阀门、压力表、温度计、示流信号器等。
3。
2 用水设备对供水的要求
用水设备对水量、水质、水压、水温有一定要求,总的原则是:水量足够,水压合适,水质良好,水温适宜.
3。
3。
1 水的净化
(一)除污物
(1)拦污栅.拦污栅用以阻拦较大的悬浮物。
(2)滤水器。
滤水器用来清除水中的悬浮物。
按滤网的形式分固定式和旋转式两种。
(二)除泥沙
(1)水力旋流器.水力旋流器是利用离心力来分离泥沙的装置.
(2)沉淀池。
沉淀池用以分离水中颗粒和密度较大的沙等物体。
3。
3.2 水生物的防治
(1)用药物毒杀。
(2)提高管内水温和流速.
3。
4.1 水源
(一)上游取水
(1)坝前取水。
从坝前水库直接取水,地域广,水量丰富,取水设备简单且可靠,布置方式也最灵活.
(2)压力钢管取水。
取水口通常在进水阀前面(当装设进水阀时),它由两种不同的运用条件。
1)各机组均设置取水口。
2)全站设置统一的取水口。
(3)蜗壳取水。
在每台机组的蜗壳设取水口,各机组供水可以自成体系。
也可以将各取水口用干管联系起来,组成全站的技术供水系统.
(二)下游取水
当电站上游水头过低不能满足水压要求,或水头很高取水不经济时,可考虑从下游尾水抽水作为技术供水水源。
(三)地下取水
如果电站附近有可利用的地下水源时,在水量和水质能够满足要求的条件下,也可以用来作为技术供水水源。
3。
4。
2 供水方式
通常,供水方式按水电站水头、水源类型、机组容量等条件确定。
(一)自流供水
水头在15~80m的电站(小型水电站一般在12m以上),当水温、水质符合要求时,一般采用自流供水。
(二)水泵供水
当电站水头低于15m时,自流供水水压难以满足要求;当电站水头高于80~90m(对于小型水电站,水头大于120m)时采用自流减压供水往往不经济.因此,在这两种情况下,一般采用水泵供水,来保证所要求的水量和水压。
(三)混合供水
混合供水是由自流供水和水泵供水相混合的供水方式。
水头为12~20m的电站,单一供水往往不能满足要求,需采用混合供水。
一般由以下三种方式:
(1)自流供水与水泵供水交替使用的系统。
(2)自流与水泵按用户同时供水的系统.
(3)水塔(中间水池)供水系统.用水泵抽水至水塔(中间水池),再由水塔(中间水池)向设备自流供水的系统. (四)其他供水方式
(1)射流泵供水。
当水电站水头为80~160m时,可考虑射流泵供水。
(2)水轮机顶盖供水。
对中高水头混流式机组,还可以从水轮机顶盖排水管上取水。
3。
4。
3 设备配置方式
(1)集中供水。
全站所有用水设备都由一个或几个共用的取水设备取水,再经共用的干管供给各用水设备。
(2)单元供水。
全站没有共用的供水设备和管道,每台机组自设取水口、设备和管道,自成体系,独立运行。
(3)分组供水。
当电站机组台数较多时,可将机组分成若干组,每组构成一个完整的供水系统。
3。
5。
1 泵的类型
(1)叶片式泵。
叶片式泵是利用叶片的旋转运动来输送液体的。
按叶轮旋转时使水产生的力的不同,又可分为离心泵、轴流泵和混流泵三种。
(2)容积式泵。
容积式泵依靠工作室容积周期性变化输送液体。
容积式泵根据工作室容积改变的方式又分为往复泵和回转泵两种。
(3)其它类型泵。
除叶片式和容积式泵以外,在灌排泵站中有射流泵、水锤泵、气升泵(又称空气扬水机)、螺旋泵、内燃泵等。
3。
5.2 离心泵的工作原理和基本参数
(一)离心泵的工作原理
由物理学可知,若一物体绕轴旋转时会产生一定的离心力,旋转速度越快,离心力就越大,离心泵就是基于这个原理工作的。
这种由旋转的离心力作用得到压力能的水泵,称为离心泵。
水泵启动之前,泵壳内和吸水管内都要充满水。
(二)离心泵工作的基本参数
离心泵工作的基本参数主要有扬程、流量、转速、功率、效率和允许吸上真空高度。
(1)扬程.扬程是指单位质量的水从水泵进口到泵出口所增加的能量,用H表示,单位是m。
(2)流量。
流量是指水泵在单位时间内抽出的液体体积,以Q表示,单位m3/s或m3/h。
(3)转速。
转速是指泵轴每分钟旋转的次数,用n表示,单位是r/min。
(4)功率。
功率是指泵在单位时间内所做功的大小,用P表示,单位是kW。
1)有效功率。
有效功率又称输出功率,是指泵传递给输出液体的功率,用Pu表示,计算式:Pu=ρgQH/1000
式中ρ——液体的密度,kg/m3
2)轴功率.轴功率又称输入功率,是指泵轴所接受的功率,用P表示.
(5)效率。
泵有效功率与轴功率之比称为水泵的效率,用η表示。
η=Pu/P*100%.
(6)几何安装高度。
1)允许吸上真空高度[Hs]。
水泵允许吸上真空度表示水泵不发生汽蚀时能够吸上水的最大吸上真空度。
2)空蚀余量(NPSH)。
3.5.3 离心泵启动前的充水
离心泵有空气存在不能正常工作,甚至发生空转,因此水泵启动前必须充水排气.
3。
5.4 常用水泵
(1)离心式水泵
(2)深井泵
(3)潜水泵
3。
7.2 水电站消防对象
(1)厂房消防
(2)发电机灭火
(3)油系统消防。