飞剪电控原理
- 格式:docx
- 大小:36.49 KB
- 文档页数:1
飞锯控制原理飞锯控制原理简介飞锯是现代木材加工行业中常见的一种设备,它可以高效地将原木切割成木材板材、木条等木材制品。
飞锯控制原理是指对飞锯设备进行精确、稳定的控制以实现所需的切割操作。
飞锯控制系统通常由硬件和软件两部分组成。
硬件部分主要包括传感器、执行器和控制器,而软件部分则负责采集、处理和控制信号。
传感器常用于检测原木的尺寸、形状和位置等信息,常见的传感器包括光电传感器、激光测距仪等。
这些传感器能够实时地将检测到的信息转换为电信号,并输入给控制器进行处理。
控制器是飞锯控制系统的核心部分,它负责根据传感器输入的信号进行判断和计算,并控制执行器进行相应的动作。
控制器通常采用嵌入式系统,内部包含了运算单元、存储单元和输入输出接口等。
执行器是飞锯控制系统中的执行部分,它负责根据控制器的指令实施相应动作。
常见的执行器包括电动机、气动元件等。
通过控制执行器的工作状态和动作时间,可以实现对飞锯设备的精确控制。
飞锯控制系统的软件部分主要包括采集、处理和控制信号的算法和逻辑。
常见的算法包括图像处理算法、运动控制算法等。
通过这些算法,可以准确地识别原木的形状和位置,计算出最佳的切割方案,并生成对应的控制信号。
飞锯控制原理的核心思想是将传感器采集到的信息转化为控制信号,通过控制器对执行器进行精确的控制,从而实现对飞锯设备的精确控制。
这种控制原理不仅可以提高飞锯设备的加工效率和质量,还可以减少人工操作的错误和劳动强度。
总结起来,飞锯控制原理是通过传感器采集信息、控制器计算和控制、执行器实施动作的方式,实现对飞锯设备的精确控制。
它的实现离不开硬件和软件的配合,其中软件部分扮演着重要角色。
通过飞锯控制原理,我们可以实现高效、精确的木材加工,提升生产效率和产品质量。
飞剪的工作原理吕建东2014年3月18号飞剪的逻辑控制过程由PLc系统实现,在上位机系统可设定定尺剪的控制参数(其中包括定尺的长度Ll、定尺数量N、剪切因子等)、启动,停止,测试定尺剪,在生产过程中,由18#机架后面的热金属探测器检测到钢材头部的时间Tn,同时开始计时,根据时问和成品机架的线速度S、热金属探测器到定尺剪交叉位之间的距离LO 可以计算出定尺剪启动剪切的时间点Tn+1。
其中:Tn+1=Tn+(LO+L1‘N)/SPLC系统根据不同的速度、品种规格计算和优化出最佳的剪切曲线㈣,通过DP总线把速度的给定值传送到定尺剪的直流传动系统,完成每一个剪切周期。
1硬件构成及功能棒材生产线一般配置三台剪子,本生产线根据实际的需要增加了一台飞剪,因此本系统又四台飞剪,分别为1#、2#、3#、3B#剪,l#、2#飞剪用于生产过程的切头、切尾、碎断,3#、3B#剪根据上位机系统的设定完成不同规格品种的定尺剪切,把轧件跟据预先设定的长度按不同的倍数进行剪切,分段送到冷床,确保定尺的精度,以提高定尺率,优化产品的技术经济指标。
飞剪动作执行过程包括剪切及定位。
飞剪在正常剪切过程下有三个可能运行状态(运行速度):自动速度、碎断速度、测试速度。
在生产过程中使用最多的之中状态是自动状态。
碎断速度的使用是轧件在生产过程如果出现不正常现象,需要对轧件进行碎断处理时用到。
测试速度主要是作为准备生产前对设备时候正常状态的测试。
飞剪系统由两部分组成:一是直流传动装置,二是逻辑控制单元(属于基础自动化级)。
飞剪的自动速度匹配信号是基础自动化级给定的。
飞剪在剪刀位置安装由位置检测编码器和定位接近开关,在剪机前有热会属探测器。
它的基本原理是:当有轧件来时,热金属检测器HMD检测到轧件信号后,飞剪电机经过启动延时,以超前于前一架轧机线速度一定量的速度启动,达到自动剪切速度值,先加速后匀速,运行至剪切点时,剪刃闭合,对轧件进行剪切。
然后,飞剪进入定位过程。
飞锯控制原理飞锯控制原理是指对飞锯进行操控和控制的方法和技术。
飞锯是一种高速旋转的锯片,广泛应用于木材、金属等材料的切割加工中。
飞锯控制原理的主要目的是实现对飞锯的启停、速度调节、切割深度控制等功能,以保证切割效果的质量和安全性。
飞锯控制原理的核心在于电机控制和锯片传动控制。
在电机控制方面,通常使用变频器来控制电机的转速,通过改变电机的频率来调节飞锯的转速。
锯片传动控制主要是指通过传动系统来传递电机的动力到飞锯上,一般采用皮带传动或直接联轴器传动的方式,以确保电机的转速能够稳定地传递到锯片上。
另外,飞锯控制原理还包括对飞锯启停的控制,通常采用控制电机的电源开关来实现对飞锯的启停控制。
同时,还需要添加一些安全保护装置,如断电保护开关和缓冲装置,以保证在发生异常情况时能够及时停止飞锯的运行,保护操作人员的安全。
在切割深度控制方面,飞锯控制原理通常采用机械或电子方式来实现。
机械控制方式主要是通过调节锯架的高度来改变切割深度,通常使用螺杆或气动装置来完成。
电子控制方式则是通过传感器来检测锯片与工件之间的距离,当达到设定的切割深度时,控制系统会自动停止锯片的下降运动,以达到精确控制切割深度的目的。
此外,飞锯控制原理还可以根据不同的应用需求进行技术改进。
例如,可以添加电子控制系统来实现对飞锯的远程控制,实现自动化生产;还可以通过添加传感器和反馈装置来实现对飞锯的负荷监测和自适应调节,以保证切割效果的质量和效率。
综上所述,飞锯控制原理是指对飞锯进行操控和控制的方法和技术,核心包括电机控制和锯片传动控制。
同时,还涉及到对飞锯启停、切割深度控制和安全保护等方面的控制。
飞锯控制原理的目的是实现对飞锯的高效、精准和安全的控制,以满足不同应用场景的需求。
横切飞剪控制系统分析1.飞剪剪切过程控制在横切飞剪控制系统中, 飞剪的剪切过程可分为四个阶段: 启动、加速、同步(剪切) 和回零。
飞剪剪切周期及飞剪速度控制曲线见图1:图1 飞剪速度控制曲线(1) 剪切开始飞剪剪刃在0°位置, 速度为0。
此时喂料辊以Vs 机列线速度送料。
在飞剪控制器计算的启动控制下, 飞剪开始启动, 进入加速阶段, 以一个恒定加速度A 加速到与机列线速度Vs 同步, 进入同步阶段, 保持剪刃速度与机列线速度Vs 同步, 即在160°~200°区保持Vs 速度, 在180°时剪刃重合剪切。
过200°以后进入回零阶段, 进行剪刃回原点控制, 原点时剪刃速度为零, 此时飞剪完成一个剪切周期。
(2) 剪切启动控制在控制系统中, 剪刃开始启动, 加速到与机列线速度同步, 剪刃的加速度是一个恒定不变的量A ,所以对于相同的机列线速度V s, 加速所需的时间t是相等的, 也即是对于不同的板材长度剪切, 飞剪何时启动是一个关键量, 可直接影响成品板材的剪切精度, 飞剪的启动点是一个用长度来描述的量。
(3) 飞剪加速控制在控制系统中, 飞剪的加速控制是整个剪切过程控制系统的核心。
加速过程是指从剪刀以零速度启动, 以一个恒定的加速度A 加速到与机列速度V s 同步,在工艺上要求刀刃重合时的剪刃线速度也就是剪切速度VBCU T 必须与机列线速度V s 相等。
在加速控制中采用的是速度控制和位置控制的综合控制, 也就是在速度目标值的基础上附加上对位置偏差的调节, 从而有效地提高了剪刀的控制精度, 提高了板片的剪切精度。
(4) 飞剪同步控制其控制思想在剪刃位置到达160°以前与加速控制过程相似, 只在控制参数方面有所不同; 进入剪切前后(160°~200°) 在同步控制上采用的方式是保持原有的速度目标值, 只进行速度控制, 取消附加电流, 目的仍是保持剪刃线速度与机列速度同步,180°时, 上下剪切重合为剪切点。
飞锯控制原理飞锯是一种常见的工业设备,主要用于木材加工过程中的切割和切割木材。
它具有高效、精确和安全等优势,被广泛应用于木材加工、建筑材料加工等领域。
飞锯的控制原理是确保飞锯的稳定运行和安全操作的重要基础。
飞锯的控制系统主要包括电气控制系统、液压系统和机械传动系统。
下面将逐个介绍这些系统的控制原理。
1. 电气控制系统是整个飞锯的核心控制部分,它负责监测和控制飞锯的运行状态。
电气控制系统主要包括电机控制、切割长度控制和安全保护控制等。
- 电机控制: 飞锯通常采用电动机驱动锯片旋转,电气控制系统可通过控制电机的启停、正反转和转速等来实现对飞锯切割的控制。
- 切割长度控制: 飞锯需要根据要求切割出特定长度的木材,在控制系统中设置切割长度参数,通过计数器或编码器实时监测切割行程,当达到设定的切割长度时,控制系统将自动停止飞锯的运行。
- 安全保护控制: 飞锯需要具备多重安全保护装置,如过载保护、缺相保护、断电保护等。
电气控制系统通过感知电流、电压和电源状态等信息,当发生异常情况时,自动切断电源,确保操作人员和设备的安全。
2. 液压系统是飞锯的动力来源,它负责提供足够的切割压力和调节驱动系统的运行速度。
- 切割压力控制: 飞锯在切割木材时需要提供足够的切割压力,液压系统可通过调节液压泵的输出压力和流量来控制切割压力的大小。
- 驱动速度控制: 飞锯的运行速度需要根据切割木材的硬度和切割要求进行调节。
液压系统通过调节液压泵的流量和液压阀的开度,控制驱动系统的运行速度。
3. 机械传动系统是飞锯的核心部分,它将电气和液压系统的动力传递给切割部件,实现木材的切割。
- 锯片驱动: 机械传动系统通过电动机输出的动力,将转动运动传递给切割部件,切割部件通过液压系统提供的切割压力实现对木材的切割。
- 行程控制: 机械传动系统通过传感器或编码器感知锯片的行程和位置,反馈给电气控制系统,实现切割长度的控制。
除了上述的基本控制原理,飞锯的控制系统还可以根据实际需求添加其他功能,如切割角度控制、自动送料等。
CERI起停式飞剪控制原理(培训提纲)PRELOA D STROB1.1STROB1.2OUT1HSCAPMDRIVEA B ZG E90-30 PLCA B ZMM MHMD-1HMD-2REF A OA B ZPGPGPG飞剪控制柜飞 剪夹送辊M HMD-0上游机架起停式飞剪控制系统示意图1.CERIS飞剪系统主要特点:•操作简单•维护方便•工作稳定•剪切精度高•最大的产品收得率2.飞剪控制系统配置2.1 机械部分:•由电机、齿轮减速箱、剪机以及碎料收集装置组成。
•剪机为组合式结构,分三种形式:回转式、曲柄式,曲柄+飞轮。
•碎料收集装置:带有剪前转辙器,带有剪后切废导板,左右料箱,料箱切换溜槽。
2.飞剪控制系统配置2.2 电气部分•检测元件:–HMD-0、HMD-1、HMD-2–轧线出口脉冲编码器–电机轴脉冲编码器–原位接近开关–润滑油压力开关–飞轮投入接近开关–曲柄投入接近开关2.飞剪控制系统配置•PLC–CPU–高速计数器模块HSC–轴定位模块APM–数字输入输出模块DI/DO•全数字直流传动•集中操作台(含HMI)CS,机旁操作箱CB3.轧件长度测量及剪切长度控制•脉冲数与长度的关系—脉冲当量轧件通过长度L=N*LPP–N: 成品轧机编码器输出脉冲增量–LPP:脉冲当量,即单位脉冲对应的轧件长度 mm, 当成品轧机工作辊径不变时,LPP基本为常数。
–L与N成正比,长度测量变成脉冲计数。
3.轧件长度测量及剪切长度控制•从工作辊径计算脉冲当量—辊径优先(理论计算法)LPP= *Dw/(PPR*i)–LPP—脉冲当量–Dw—工作辊径–PPR—编码器每转脉冲数–i—轧机减速箱速比3.轧件长度测量及剪切长度控制•通过两个HMD测量脉冲当量—测量优先(直接测量法)LPP=L/N–LPP—脉冲当量–L—HMD-1~HMD-2之间的距离–N—轧机头部通过HMD-1~HMD-2时记录的脉冲数•计算工作辊径:Dw=LPP*PPR*i/3.轧件长度测量及剪切长度控制•以上两种方法的优缺点:–辊径优先:LPP值稳定不变(优)辊径估计不准,辊径变化不能自(缺)。
追剪飞剪控制原理Understanding the principles of chase cutting and flying cutting is essential to achieving effective control over cutting processes.了解追剪和飞剪的原理对于有效控制剪切过程至关重要。
Chase cutting involves the use of a cutting tool that follows a predetermined path to remove material from a workpiece. This technique is commonly used in CNC machining to create intricate shapes and patterns with precision and accuracy. The tool moves along the workpiece, removing material as it follows the specified path.追剪涉及使用一个剪切工具,该工具沿着预定的路径移动,从工件上移除材料。
这种技术通常用于数控加工,以精确和准确地创建复杂的形状和图案。
工具沿着工件移动,沿着指定的路径移除材料。
Flying cutting, on the other hand, involves the use of a cutting tool that moves at a high speed to quickly remove material from the workpiece. This technique is commonly used in industries thatrequire high-speed cutting, such as the production of plastic, rubber, and metal components. The tool moves swiftly across the workpiece, producing precise cuts in a short amount of time.另一方面,飞剪涉及使用一个高速移动的剪切工具,以快速地从工件上移除材料。
飞剪电控原理
飞剪电控原理指的是飞剪机器中的电子控制系统所采用的原理。
飞剪是一种常用的金属切割机器,它使用刀具来割裁金属材料。
飞剪电控系统主要由感应器、处理器、执行器等几个主要部分组成。
感应器是飞剪电控系统中最重要的部分之一。
它通过传感器来监测切割刀和切割区域的位置和状态变化,并将这些信息传送到处理器。
处理器将感应器收集到的信息进行处理、分析,然后用控制电路来控制执行器的运动。
执行器执行处理器发送的指示,根据指示来控制刀头的上下运动,以实现金属材料的切割。
执行器一般采用电动机、液压缸等实现。
飞剪电控系统的设计必须考虑到刀具的材料、物理结构、运动速度和切割的质量等因素。
通过优化电子控制系统的设计和参数设置,可以提高飞剪的效率、降低切割误差和保证切割的精度。