正比例和反比例的意义
- 格式:doc
- 大小:43.54 KB
- 文档页数:19
比例的意义性质和正反比例比例是指两个或多个量之间的关系,它们之间存在倍数关系。
比例具有广泛的应用,能够帮助我们理解和解决各种实际问题。
1.描述事物的量与数值关系:比例能够描述两个或多个事物之间的数量关系,通过比例可以清晰地了解它们的数量差异和相对大小。
2.便于比较和分析:比例可以将不同事物之间的数量关系转化为一个统一的比较标准,方便进行比较和分析。
3.预测和推测:通过已知的比例关系,可以预测或推测未知量的数值,比例可以提供一种有效的量化推测方法。
比例的性质:1.传递性:如果两个比例相等,那么它们的对应项也相等。
例如,如果a:b=c:d,且b:c=e:f,则根据传递性可得a:d=e:f。
2.反比例的倒数性质:如果两个量成反比例关系,那么它们的倒数也成反比例关系。
例如,如果a:b=c:d,则根据反比例的倒数性质可得1/a:1/b=1/c:1/d。
3.乘法性质:如果两个比例的对应项分别相等,那么它们的乘积也相等。
例如,如果a:b=c:d,且b:c=e:f,则根据乘法性质可得(a/b)×(b/c)=(c/d)×(e/f)。
正比例:正比例是指两个量之间的关系是正相关的,即随着一个量的增大,另一个量也相应地增大。
正比例可以用一个常数来表示,该常数称为比例系数。
正比例关系可以表示为a=k×b,其中a和b是两个量,k是比例系数。
例如,如果速度和时间成正比例关系,则速度的变化与时间的变化是成比例的。
反比例:反比例是指两个量之间的关系是反相关的,即随着一个量的增大,另一个量相应地减小。
反比例关系可以用一个常数来表示,该常数称为比例常数。
反比例关系可以表示为a=k/b,其中a和b是两个量,k是比例常数。
例如,如果光的强度和距离成反比例关系,则光的强度的变化与距离的变化是成反比的。
正比例和反比例的区别在于它们表示的数量关系不同。
正比例关系表示随着一个量的增大,另一个量也增大;而反比例关系表示随着一个量的增大,另一个量减小。
正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
正比例和反比例的意义一、正比例的意义正比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量也随之增大,并且两个变量之间的比值保持不变。
正比例关系在许多领域具有重要意义。
1. 实际应用正比例关系在实际应用中得到广泛应用。
例如,速度与时间的关系通常是正比例关系。
在物理学中,我们可以根据物体的速度和时间来计算物体所走的距离。
又如,成员数量与总费用之间的关系通常也是正比例关系。
在经济学中,企业的成本和产量之间的关系通常被描述为正比例关系。
2. 权衡和计划正比例关系的存在使得我们能够在做出决策时进行权衡和计划。
通过观察两个变量之间的正比例关系,我们可以预测其中一个变量的变化对另一个变量的影响。
这对于制定有效的计划和做出明智的决策至关重要。
3. 图表和图形正比例关系可以通过制作图表和图形来可视化。
例如,我们可以用散点图来表示两个变量之间的正比例关系。
通过观察散点图,我们可以更直观地理解和分析两个变量之间的关系,并且可以预测和推断未来的变化。
二、反比例的意义反比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量相应地减小,并且两个变量之间的乘积保持不变。
反比例关系也在许多领域中具有重要意义。
1. 逆向依赖关系反比例关系在一些情况下可以表示逆向依赖关系。
例如,时间和速度之间的关系通常是反比例关系。
在运动学中,我们知道物体的速度等于它所走过的距离除以所花费的时间。
当时间增加时,速度减小;而当时间减小时,速度增加。
这种反比例关系为我们理解和研究物体的运动提供了重要的数学工具。
2. 优化和最佳化反比例关系也在优化和最佳化问题中发挥重要作用。
在一些情况下,我们需要通过调整一个变量来最大化或最小化另一个变量。
反比例关系使得我们可以通过增加一个变量来减少另一个变量,或者通过减少一个变量来增加另一个变量。
这种关系对于优化问题的求解非常有用。
3. 比例转换反比例关系可以通过比例转换来应用到实际问题中。
例如,一个过程中的速度和所需时间之间的反比例关系可以通过比例转换为速度和所走距离之间的正比例关系。
正、反比例的意义引言正、反比例是数学中常见且重要的概念。
它们在实际生活、自然科学、工程技术等领域中具有广泛的应用。
本文将探讨正比例和反比例的意义及其在不同领域中的应用。
正比例的意义正比例是指两个变量之间的关系满足:当一个变量增加时,另一个变量也相应地增加,并且它们的比值保持不变。
在数学中,正比例可以用以下形式表示:y = kx其中,y和x分别表示两个变量,k为常数,表示比例系数或比例常数。
正比例的意义在于,它描述了一种直接的、线性的关系。
当x增加时,y会按照一定的比例增加,这种关系可以帮助我们理解现象和问题,方便进行计算和预测。
在实际生活中,正比例的意义体现在许多方面。
例如,当我们购买商品时,价格和数量往往是正比例关系。
当我们购买的商品数量增加时,总价格也会相应地增加,这样可以帮助我们合理规划预算。
另外,正比例也可以用于计算物体的速度、功率、电流等各种物理量,从而更好地了解和控制物理现象。
反比例的意义反比例是指两个变量之间的关系满足:当一个变量增加时,另一个变量相应地减小,并且它们的乘积保持不变。
在数学中,反比例可以用以下形式表示:y = k / x其中,y和x分别表示两个变量,k为常数,表示比例系数或比例常数。
反比例的意义在于,它描述了一种相互制约的关系。
当一个变量增加时,另一个变量必然会减小,这种关系在许多情况下能够揭示事物之间的内在规律。
反比例在实际生活和科学研究中有着广泛的应用。
例如,当我们在做实验时,有些现象可能遵循反比例关系。
例如,当我们测量一个物体的质量和体积时,其密度通常是一个常数,即质量与体积成反比。
另外,反比例还可以用于计算电阻和电容等电路中的物理量,从而更好地设计和优化电子设备。
正、反比例在不同领域中的应用正、反比例在各个领域中都有着重要的应用。
下面将分别介绍它们在实际生活、自然科学和工程技术中的应用。
实际生活中的应用在实际生活中,我们经常会遇到正比例和反比例的关系。
比如,当我们在超市购买商品时,价格与数量之间往往是正比例关系。
正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:y=k (一定)x例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。
工总=工效(一定)工总和工时是成正比例的量工时路程=速度(一定)所以路程与时间成正比例。
时间(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x × y = k (一定)例如,长×宽=面积(一定)长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定)每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。
不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。
(2)反比例关系的量是一条不过原点的曲线。
知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。
(2)若符合y=k (一定),则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反x比例;否则,这两种量就不成比例关系。
【典型例题】题型一:根据图标填写信息例 1 :购买面粉的重量和钱数如下表,根据表填空。
正比例和反比例的意义知识点一:正比例和反比例的意义 (1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:()一定k xy= 例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。
工总工时 =工效(一定) 工总和工时是成正比例的量路程时间 =速度(一定) 所以路程与时间成正比例。
(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x ×y =k (一定)例如,长×宽=面积(一定) 长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定) 每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。
不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。
(2)反比例关系的量是一条不过原点的曲线。
知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。
(2)若符合()一定k xy=,则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反比例;否则,这两种量就不成比例关系。
【典型例题】题型一:根据图标填写信息例1 :购买面粉的重量和钱数如下表,根据表填空。
正比例1.、正比例用文字来描述:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像时是直线;反比例是曲线。
2、正比例用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:y:x=k(一定)。
3、正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。
4、比值=比的前项除以后项。
反比例1.、反比例用文字来描述:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.反比例的图像是曲线。
2、反比例用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:x×y=k (一定)3、反比例关系两种相关联的量的变化规律:“一扩一缩(或一缩一扩)”相同倍数,积不变.反比例是一个数缩小,另一个数就扩大。
一个数扩大另一个数就缩小。
一、填空1.在圆柱体积、底面积和高这三个量中,当圆柱体积一定是,底面积和高成()比例;当()一定时,()和()成()比例。
2.全班的人数一定,每组的人数和组数成()比例;3.小麦每公顷产量一定,小麦的公顷数和总产量成()比例;4.圆柱的侧面积一定,底面周长和高成()比例;5.小星跳高的高度和它的身高()比例;6.步测一段距离,每部的平均长度和步数成()比例。
二、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()9.被减数一定,差和减数成反比例。
第06讲正比例和反比例知识盘点一、正比例的意义1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就叫作成正比例关系。
2.如果用x和y表示两种相关联的量,用k表示它们的比值,则正比例关系可=k(一定)。
以表示为yy3.有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但是它们相对应的数的比值不一定,它们就不成正比例。
4.正比例关系的判断方法。
(1)首先判断这两种量是不是相关联的量。
(2)再看这两种量相对应的两个数的比值是否一定。
比值一定,这两种量成正比例;反之,不成正比例。
5.正比例图像。
(1)表示成正比例的两种量中相对应的各点在同一条直线上,即正比例的图像是一条经过原点的直线。
(2)从图像中可以直观地看出两种量的变化情况。
(3)借助图像,可以由一个量的值找到对应的另一个量的值。
二、认识成反比例的量1.反比例的意义。
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就是成反比例的量,它们的关系就叫作成反比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的积,则反比例关系可以表示为x×y=k(一定)。
2.反比例关系的判断方法。
(1)看这两种量是不是相关联的量。
(2)再看这两种量中相对应的两个数的积是否一定。
积一定,这两种量就成反比例,否则就不成反比例。
三、成反比例的两种量,也可以在方格纸上画图来表示例:速度/(千米/150 100 75 60 50时)时间/时 2 3 4 5 6(1)纵轴表示速度,单位是“千米/时”,每1小格表示25千米/时。
横轴表示时间,单位是“时”,每1小格表示1小时。
表格中的每一组数据都可以用一个点表示。
(2)画反比例图像时,先根据每一组数据描点,然后顺次连接,画的线要流畅。
典型精讲知识点一认识正比例的量1.下面说法中,不正确的有()句。
正比例和反比例的意义知识点正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
用字母 x 和y表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:y k一定x例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。
工总=工效(一定)工总和工时是成正比工时例的量路程=速度(一定)所以路程与时间成时间正比例。
(2)反比例2两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母 x 和y表示两种相关联的量,用k表示一定的量,那么反比例关系可以写成:x× y =k (一定)例如,长×宽=面积(一定)长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定)每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。
3正比例反比例相同点不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。
(2)反比例关系的量是一条不过原点的曲线。
4知识点四:正比例和反比例的判断(1)先判断两种量x和y是不是相关联的量,即一种量变化,另一种量也随着变化。
(2)若符合y k 一定,则 x 和y成正比例;若符合 xx×y =k(一定),则x和 y 成反比例;否则,这两种量就不成比例关系。
【典型例题】题型一:根据图标填写信息例 1 :购买面粉的重量和钱数如下表,根据表填空。
正比例和反比例的意义篇一:六年级数学正比例和反比例的意义性质+练习+总结正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。
行数就少了。
生活中还有哪些成正比例的量?如:A.长方形的宽一定,面积和长成正比例。
b.每袋牛奶质量一定,牛奶袋数和总质量成正比例。
c.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
D.地砖的面积一定,教室地板面积和地砖块数成正比例。
2.例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米??时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
根据计算,你发现了什么?相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
即:路程/时间=速度(一定)2、例2:(1(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?x/y=k(一定)ps:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三、两个量的比值一定。
相对应的点一定在这条直线上。
(作图)一、观下图表,回答问题:()和()是两种相关联的量,()随着()的变化而变化的,(时间和米数是()的量。
作图:二、判断下面各题中的两种量是不是成正比例关系,并说理。
1、白糖单价一定,白糖数量和总价;2、稻谷的出米率一定,碾成大米重量和稻谷重量;3、一个人的身长和体重;4、长方形的长一定,宽和面积;5、长方形的面积一定,长和宽。
三、练习:1、请举出成正比例关系的量。
⑴、圆周长与圆半径;⑵、圆面积与圆半径;⑶、正方形的周长与边长。
2、说一说成正比例关系的量的变化特征。
)一定,正比例和反比例的意义二、成反比例的量成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母表示。
如果用字母x和Y表示两种相关联的量,用K表示它们的乘积(一定),反比例关系的式子可以表示为x?Y=K(一定)2.生活中还有哪些成反比例的量?举例(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
反比例关系也可以用图像来表示。
表示两个量的点不在同一条直线上,点所连接起来是一条曲线。
图像特征不要求掌握。
4.小结。
说一说成反比例关系的量的变化特征。
例1、(反比例的意义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。
这两种分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。
(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。
所以它们是两种相关联的量。
(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240??而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=K (一定)。
例2、(判断是否成反比例)总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:每公顷的产量×公顷数=总产量(一定)所以每公顷的产量和公顷数成反比例。
例3、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。
很明显,和一定,两个加数的积是变化的,所以它们不成反比例。
和一定,一个加数和另一个加数不成反比例。
因为它们的积不一定。
点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。
像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例4、(综合题1)(1)长方形的面积一定,长和宽成反比例吗?为什么?(2)长方形的周长一定,长和宽成反比例吗?为什么?分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。
(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。
例5、(综合题2)分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;(2)每天吃的千克数一定,大米的总千克数和天数;(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。
可以根据数量关系式来判断。
(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。
(2)因为大米的总千克数=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天天数数成正比例。
(3)因为大米的总千克数=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正每天吃的千克数比例。
练习:1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?表格1表格2表格3用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:2、用一批纸装订练习本,每本25页,可以装订400本。
如果要装订500本,每本有x页。
题中()量一定,关系式:()○()=()(一定),()和()成()比例。
3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。
如果改用边长0.4米的正方形地砖,需要Y块。
题中()量一定,关系式:()○()=()(一定),()和()成()比例。
4、在圆柱的侧面积、底面周长、高这三种量中当底面周长一定时,()与()成()比例;当高一定时,()与()成()比例;当侧面积一定时,()与()成()比例。
5、在被除数、除数、商这三种量中,当()一定时,()与()成正比例;当()一定时,()与()成反比例;6、当a×b=c(a、b、c为三种量,且均不为0)。
()一定,()与()成()比例;()一定,()与()成()比例;()一定,()与()成()比例;篇二:正比例和反比例的意义练习及答案正比例和反比例的意义⑤⑥1根据你的经验,判断下面各题中的两个量是否成正比例,是的打“√”,不是的打“×”。
(1)汽车行驶的路程和时间。
()(2)人的年龄和身高。
()1(3)x与y的比值是x与y。
()(4)被除数一定,除数和商。
()5(5)做一项工程,工作效率与完成的时间。
()2根据下面的关系式,说出哪种量一定,哪两种量成正比例。
(1)总价=单价×数量。
(2)长方形面积=底×高。
()一定,()和()成正比例。
()一定,()和()成正比例。
(3)xy=z。
(4)铺地面积=方砖面积×方砖块数。
()一定,()和()成正比例。
()一定,()和()成正比例。
(5)路程=速度×时间。
()一定,()和()成正比例。
3根据表中两种量相对应的比值,判断它们是不是成正比例,并说明理由。
(1)(2)4小英和妈妈的年龄变化情况如下,把表填写完整。
5已知ab=c,a、b都不为0。
先写两个正比例关系式,再填空。
______()一定,()和()成正比例。
______()一定,()和()成正比例。
6填空:(1)每公顷的施肥量一定,施肥总量与公顷数成()比例。
(2)要修的路程一定,每天修的路程与天数成()比例。
(3)肥料总数一定,每平方米施肥量和平方米成()比例。
(4)钱的总数一定,铅笔数量和单价成()比例。
(5)制造一批零件的个数一定,制造一个零件的时间和需要的总时间成()比例。
7下面常用的一些相关联的量成什么比例。
(1)速度×时间=路程。
速度一定,()和()成()比例。
时间一定,()和()成()比例。
路程一定,()和()成()比例。
(2)单价×数量=总价。
单价一定,()和()成()比例。
数量一定,()和()成()比例。
总价一定,()和()成()比例。
8选择正确答案的字母填入括号内。
A.成正比例b.成反比例c.不成比例(1)平行四边形的底一定,高和面积。
()(2)积一定,一个因数与另一个数。
()(3)一本书的页数一定,已看的页数和没看的页数。
()(4)工作效率一定,工作总量和工作时间。
()9糖果厂包装一批糖果,每袋糖果的粒数和装的袋数如下表:10判断下面的两种量成不成比例?成正比例画“○”,成反比例画“△”,不成比例画“×”。
(1)每小时织布米数一定,织布的总时间和总米数。