正比例的性质和反比例的性质分析
- 格式:docx
- 大小:196.83 KB
- 文档页数:6
正反比例的定义和判断方法
一、正比例和反比例的定义和判断方法
1、比例
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项,两端的两项叫做外项,中间的两项叫做内项。
2、比例的意义
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
3、比例的基本性质
两个外项的积等于两个内项的积。
4、解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例的另外一个未知项。
求比例中的未知项,叫做解比例。
5、正比例和反比例
(1)正比例
正比例是指两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例关系可以用下面式子表示:$\frac{y}{x}=k$(一定)。
(2)反比例
反比例是指两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例关系可以用下面式子表示:$xy=k$(一定)。
6、判断正、反比例的方法
可总结为“一找、二看、三判断”,即
找变量:分析数量关系,确定哪两种量是相关联的量。
看定量:分析这两种相关联的量,它们之间的关系是商一定还是积一定。
判断:如果商一定,就成正比例;如果积一定,就成反比例;如果商和积都不是定量,就不成比例。
正比例与反比例-反比例教案一、教学目标:1. 让学生理解反比例的概念,掌握反比例的定义和性质。
2. 能够判断两个量是否成反比例,并能运用反比例解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 反比例的定义:如果两个量的乘积是一个常数,这两个量就成反比例。
2. 反比例的性质:当一个反比例关系的两个量增大时,另一个量会减小;当一个反比例关系的两个量减小时,另一个量会增大。
3. 判断两个量是否成反比例的方法:观察两个量的乘积是否是一个常数。
三、教学重点与难点:1. 教学重点:反比例的定义和性质,判断两个量是否成反比例的方法。
2. 教学难点:理解反比例的概念,判断两个量是否成反比例。
四、教学方法:1. 采用问题驱动法,引导学生通过观察、分析、归纳反比例的性质。
2. 利用实例讲解,让学生更好地理解反比例的概念。
3. 开展小组讨论,培养学生的合作能力和解决问题的能力。
五、教学步骤:1. 引入新课:通过展示一个实例,引导学生思考两个量之间的关系。
2. 讲解反比例的定义:解释反比例的概念,让学生理解反比例的内涵。
3. 分析反比例的性质:通过示例,引导学生观察、分析反比例的性质。
4. 判断两个量是否成反比例:教授判断方法,让学生学会如何判断两个量是否成反比例。
5. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。
7. 布置作业:布置一些有关反比例的练习题,让学生巩固所学知识。
六、教学活动:1. 实例分析:提供一些实际问题,让学生运用反比例知识解决,如化学反应中物质的浓度与时间的关系等。
2. 小组讨论:让学生分组讨论反比例在实际问题中的应用,分享解题过程和心得。
3. 课堂演示:教师通过演示实验或动画,直观地展示反比例关系,加深学生对反比例概念的理解。
七、教学评估:1. 课堂问答:教师通过提问,检查学生对反比例概念的理解程度。
2. 练习题:布置不同难度的练习题,评估学生对反比例知识的掌握情况。
初中数学知识归纳正比例函数与反比例函数初中数学知识归纳—正比例函数与反比例函数正比例函数与反比例函数是初中数学中常见且重要的概念。
本文将对这两种函数进行归纳和总结。
一、正比例函数正比例函数指的是当自变量x的取值不同时,函数值与自变量的关系保持不变的函数。
正比例函数通常使用y=kx表示,其中k为比例常数。
1. 特征正比例函数的特征在于函数图象为经过原点的直线;而且,随着自变量的增大或减小,函数值也相应地增大或减小。
2. 例子例如,假设有一家超市销售的香蕉,单价为2元/斤。
若购买的香蕉重量为x斤,总价格为y元,则可表示为y=2x。
这个函数表达式就是一个正比例函数,其中比例常数k=2。
3. 性质正比例函数具有以下性质:(1)随着自变量的增大,函数值也随之增大;(2)随着自变量的减小,函数值也随之减小;(4)函数图象为直线;(5)不存在与x轴和y轴交点。
二、反比例函数反比例函数指的是当自变量x的取值不同时,函数值与自变量的乘积保持不变的函数。
反比例函数通常使用y=k/x表示,其中k为比例常数。
1. 特征反比例函数的特征在于函数图象为一个关于坐标轴交于原点的双曲线;而且,随着自变量的增大,函数值呈现下降趋势,反之亦然。
2. 例子例如,假设一辆汽车以60km/h的速度行驶,从A地到B地需要2小时。
如果车速不变,以相同的速度行驶,则从A地到C地需要3小时。
此时,行驶路程d与时间t的关系可以表示为d=60/t。
这个函数表达式就是一个反比例函数,其中比例常数k=60。
3. 性质反比例函数具有以下性质:(1)随着自变量的增大,函数值呈现下降趋势;(2)随着自变量的减小,函数值呈现上升趋势;(4)函数图象为一个关于坐标轴交于原点的双曲线。
三、正比例函数与反比例函数的对比1. 图形特点正比例函数图象为通过原点的直线,而反比例函数图象为一个关于坐标轴交于原点的双曲线。
2. 函数关系正比例函数的函数值随着自变量的增大或减小而相应地增大或减小;反比例函数的函数值与自变量的乘积保持不变。
正比例反比例讲解
正比例和反比例是数学中常见的两个概念,它们描述了两个变量之间的关系。
理解这两个概念对于解决实际问题非常重要。
正比例:
当两个变量的值随着彼此的变化而同步增加或减少时,我们说它们成正比例关系。
换句话说,如果一个变量增加或减少了一定数量,另一个变量也会按相同的比例增加或减少,那么这两个变量就成正比例。
例如:
- 如果一个人的工资与工作时间成正比例,那么工作时间增加10%,工资也会增加10%。
- 如果一辆汽车的行驶距离与油箱中汽油量成正比例,那么油箱中汽油量增加20%,行驶距离也会增加20%。
数学上,如果y = kx,其中k是一个非零常数,那么y与x成正比例关系。
反比例:
当一个变量的值增加时,另一个变量的值减少,反之亦然,我们说它们成反比例关系。
也就是说,如果一个变量增加了一定数量,另一个变量会按相同的比例减少,那么这两个变量就成反比例关系。
例如:
- 如果一个人完成一项工作所需的时间与工人数量成反比例,那么工人数量增加25%,完成工作所需时间会减少25%。
- 如果一个圆的面积与半径的平方成反比例,那么半径增加10%,面积会减少19%(因为面积与半径的平方成反比)。
数学上,如果y = k/x,其中k是一个非零常数,那么y与x成反比例关系。
理解正比例和反比例关系对于解决许多实际问题非常有帮助,如计算工资、距离、面积等。
掌握这些概念有助于我们更好地分析和解决现实生活中的问题。
正比例关系的知识点总结正比例关系有很多实际生活中的应用,可以帮助我们更好地理解和分析各种现象。
本文将从数理知识、实际应用和解题技巧三个方面总结正比例关系的知识点。
数理知识1. 正比例关系的定义在数学中,我们使用 y=kx(k≠0)表示正比例关系,其中x和y分别表示两个变量,k表示比例系数。
比例系数k表示了两个变量之间的比例关系:当x增加一定比例时,y也会增加相应的比例。
这种关系可以用图像表示为一条直线,直线的斜率就是比例系数k。
2. 正比例关系的图像表示在坐标平面上,正比例关系可以用一条通过原点的直线来表示。
直线的斜率等于比例系数k,斜率越大表示y随着x的增加变化得越快,反之亦然。
3. 正比例关系的性质正比例关系具有以下性质:(1)两个变量之间存在着恒定的比例关系,即y=kx;(2)直线的斜率等于比例系数k,斜率越大表示两个变量之间的比例关系越大;(3)正比例关系在坐标平面上表示为通过原点的直线。
4. 正比例关系与反比例关系的区别正比例关系和反比例关系都是描述两个变量之间的数学关系,但它们有着不同的特点:(1)正比例关系描述的是两个变量之间的增长趋势一致,即一个变量增加时,另一个变量也随着增加;(2)反比例关系描述的是两个变量之间的增长趋势相反,即一个变量增加时,另一个变量减少,反之亦然。
实际应用1. 实际生活中的正比例关系正比例关系在我们的日常生活中有着广泛的应用,例如:(1)时间与距离:当我们以恒定的速度行驶时,时间与距离之间就是正比例关系,时间增加时,行驶的距离也随之增加;(2)成本与产量:在生产过程中,成本与产量之间也存在着正比例关系,成本增加时,产量也随之增加;(3)人数与食物消耗:在聚会或宴会中,人数与食物的消耗也是正比例关系,人数增加时,所需食物的数量也相应增加。
2. 正比例关系的应用举例(1)根据某种规律,小明每天以相同的速度跑步,那么他所跑的距离与跑步时间之间就是一个正比例关系;(2)某个工厂每生产1000个产品,需要花费1000元,那么生产产品的数量与成本之间就是一个正比例关系;(3)在一条河流中,水的流速与河道的宽度成正比,河道越宽,水流速度也越快。
正比例函数、一次函数、反比例函数的性质及图象、一次函数的性质和图象:概念:一般地,形如y=kx+b(k , b是常数,且k z0 的函数,叫做一次函数。
图像和性质:①k>0,b>0,则图象过___________________________ 象限②k>0,b<0,则图象过___________________________ 象限当k>0时,y随x的增大而____________________________③k<0,b>0,则图象过________________________ 象限④k<0,b<0,则图象过________________________ 象限当k v 0时,y 随x的增大而 ______________________________________三、反比例函数性质和图象:1. ______________________ 定义:形如 (k为常数,k z0的函数称为反比例函数。
其他形式________________________________________________________2. 图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
,在每个象限内y,在每个象限内y一、正比例函数性质和图象:概念:一般地,形如______________ (k是常数,且k z0的函数,叫做正比例函数。
当k>0时,图象过 __________________ 象限;y随x的增大而__________________________________ 。
3. _________________________________________________ 性质:当k >0时双曲线的两支分别位于_______________________________________值随x值的增大而减小。
正比例与反比例函数的性质正比例函数和反比例函数是数学中常见的两种函数类型。
它们在数学和实际生活中都有着重要的应用。
本文将详细介绍正比例函数和反比例函数的性质,并探讨它们在不同领域的用途。
1. 正比例函数的性质正比例函数是指两个变量之间存在线性关系,其中一个变量的值是另一个变量的常数倍。
形式上,正比例函数可以表示为 y = kx,其中 k 是常数。
1.1 直线关系正比例函数的图像是一条直线,且经过原点。
这意味着函数中的变量之间的关系是直接的,一方增大,另一方也相应增大。
1.2 斜率正比例函数的斜率是常数 k。
斜率表示了函数的增长速率,正比例函数的斜率恒定。
1.3 比例常数比例常数 k 是正比例函数的一个重要特征。
它体现了两个变量之间的比例关系。
当 k > 1 时,随着 x 的增加,y 的增加幅度更大;当 0 < k < 1 时,随着 x 的增加,y 的增加幅度更小。
2. 反比例函数的性质反比例函数是指两个变量之间存在反比关系,其中一个变量的值是另一个变量的倒数。
形式上,反比例函数可以表示为 y = k / x,其中 k是常数。
2.1 反比例关系反比例函数的图像通常是一个超越原点的曲线。
这意味着函数中的变量之间的关系是间接的,一方增大,另一方相应减小。
2.2 渐近线反比例函数的图像具有渐近线,其中一条渐近线为横轴 (x 轴),另一条渐近线为纵轴 (y 轴)。
这意味着当 x 趋近于正无穷大或负无穷大时,函数的值趋近于 0。
2.3 比例常数比例常数 k 是反比例函数的一个重要特征。
它体现了两个变量之间的反比关系。
当 k > 0 时,随着 x 的增加,y 的值减小;当 k < 0 时,随着 x 的增加,y 的值增大。
3. 应用领域正比例函数和反比例函数在各个领域都有广泛的应用。
3.1 正比例函数的应用正比例函数常常用于计算比例、比率和百分比。
在经济学中,正比例函数可以用于描述成本、收入和利润之间的关系。
正比例和反比例的比较数学教案第一章:正比例的概念和性质1.1 引入正比例的概念:介绍两个变量之间的关系,当一个变量的值增加或减少时,另一个变量的值也按照一定的比例增加或减少。
1.2 讲解正比例的表示方法:用比例式表示两个变量之间的关系,如y=kx(k 为比例常数)。
1.3 分析正比例的性质:当x增加m倍时,y也增加m倍;当x减少m倍时,y也减少m倍。
第二章:反比例的概念和性质2.1 引入反比例的概念:介绍两个变量之间的关系,当一个变量的值增加时,另一个变量的值减少,它们的乘积保持不变。
2.2 讲解反比例的表示方法:用反比例式表示两个变量之间的关系,如y=k/x (k为比例常数)。
2.3 分析反比例的性质:当x增加m倍时,y减少m倍;当x减少m倍时,y 增加m倍。
第三章:正比例和反比例的图像表示3.1 讲解正比例的图像表示:通过绘制y=kx的图像,展示正比例关系,图像为一条通过原点的直线。
3.2 讲解反比例的图像表示:通过绘制y=k/x的图像,展示反比例关系,图像为一条双曲线。
第四章:正比例和反比例的应用4.1 介绍正比例的应用:解决与比例有关的问题,如计算比例尺、利润率等。
4.2 介绍反比例的应用:解决与反比例有关的问题,如计算速度、电阻等。
第五章:正比例和反比例的鉴别5.1 介绍正比例和反比例的鉴别方法:通过观察两个变量的变化关系,判断它们是成正比例还是反比例。
5.2 提供一些实际问题,让学生练习鉴别正比例和反比例关系。
第六章:正比例和反比例的运算6.1 复习正比例的运算规则:介绍如何进行正比例的加、减、乘、除运算。
6.2 复习反比例的运算规则:介绍如何进行反比例的加、减、乘、除运算。
6.3 提供一些练习题,让学生练习正比例和反比例的运算。
第七章:正比例和反比例的解决实际问题7.1 介绍如何使用正比例解决实际问题:通过比例关系来计算成本、价格、距离等。
7.2 介绍如何使用反比例解决实际问题:通过反比例关系来计算速度、面积、浓度等。
正比例关系与反比例关系正比例关系与反比例关系是数学中常见的两类函数关系,它们在实际生活和科学研究中都具有重要的意义。
本文将对正比例关系与反比例关系进行介绍,分析其定义、性质及应用。
一、正比例关系正比例关系是指两个变量之间的关系可以用一个恒定的比例因子来表示。
具体而言,如果两个变量x和y满足等式y=kx,其中k为一个恒定的数值,则称x和y之间存在正比例关系。
正比例关系可以用图像来表示,其图像将始终是一条经过原点且通过所有第一象限内的点的直线。
直观地说,正比例关系意味着两个变量的增加或减少是相互关联的,当一个变量增加时,另一个变量也会按照相同的比例增加;当一个变量减少时,另一个变量也会按照相同的比例减少。
正比例关系不仅存在于数学领域,还广泛应用于各个学科和实际生活中。
例如,速度与时间的关系、长与宽的关系等都可以表示为正比例关系。
在实际问题中,我们可以通过建立正比例模型来进行预测和计算,进而得出定量的结论和解决问题。
二、反比例关系反比例关系是指两个变量之间的关系可以用一个恒定的倒数来表示。
具体而言,如果两个变量x和y满足等式y=k/x,其中k为一个恒定的数值,则称x和y之间存在反比例关系。
与正比例关系不同,反比例关系在图像上的表现形式是一个经过坐标轴第一象限和第三象限的曲线,称为双曲线。
直观地说,反比例关系意味着两个变量的变化趋势是相反的,当一个变量增加时,另一个变量会按照相同的比例减少;当一个变量减少时,另一个变量会按照相同的比例增加。
反比例关系的应用也非常广泛。
例如,电阻与电流的关系、密度与体积的关系等都属于反比例关系。
在实际问题中,我们可以通过建立反比例模型来解决各种比例变化和相关问题,为科学研究和实际应用提供便利。
三、正比例关系与反比例关系的应用举例1. 正比例关系的应用举例:假设一个物体在匀速直线运动中,其速度与所用时间之间存在正比例关系。
当已知运动时间,可以通过建立y=kx的模型,求解速度;或者已知速度,通过求解k的值,推导出对应的时间。
正比例函数:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。
正比例函数属于一次函数,是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k代表斜率)设该正比例函数的解析式为 y=kx(k≠0),将已知点的坐标带入上式得到k,即可求出正比例函数的解析式。
另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。
反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k 为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数性质1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.k>0时,函数为减函数;k<0时,函数为增函数。
定义域为x<0或x>0;值域为R。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S25. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点..抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
第21课 正比例函数和反比例函数二、【考点整合举例】正比例函数的概念.用待定系数法求函数解析式的方法.如果正比例函数的图像经过点(2,4),那么这个函数的解析式为 .如图1,正比例函数图像经过点A ,该函数解析式是 . 1、如果正比例函数的图像经过点(-2,5),那么这个函数的解析式为 .2、如果反比例函数的图像经过点(2,4),那么这个函数的解析式为 .反比例函数)0(>=k xky 的性质及数形结合的能力 在直角坐标系内,从反比例函数)0(>=k xky 的图像上的一点分别作x,y 轴的垂线段,与x 、y 轴所围成的矩形的面积是12,那么该函数解析式是 .1、已知y 与x-1成正比例,且图像经过(2,-3)求y 与x 之间的函数解析式 ___。
2、下列函数中,y 随着x 的增大而减少的是 ( )(A ) x y 4= (B )x y 4-= (C )xy 4=(D )x y 4-=反比例函数图像的性质及从图上获取信息的能力。
(多选题)在函数y=xk(k>0)的图像上有三点),(111y x A 、),(222y x A 、),(333y x A ,已知3210x x x <<<,则下列各式中,正确的是( )(A )310y y << (B )130y y << (C )312y y y << (D )213y y y <<图1(多选题)若点(-1,y 1),(-2,y 2),(2,y 3)在反比例函数y=-x1的图像上,则下列结论中错误的是 ( )(A )321y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >> 例1.反比例函数y =xk 的图像经过点P (m ,n ),其中m 、n 是一元二次方程x 2+kx +4=0的两个根,求点P 的坐标.例2. 如图,正比例函数y =kx (k >0)与反比例函数y =x1的图像相交于A 、B 两点,过A 作x 轴的垂线交x 轴于点C ,连结BC ,设△ABC 的面积为S ,求S .(1) 反比例函数x2y =,当x=-2时,y 的值为 ( ) (A )-2 (B )-1 (C )1 (D )2 (2) 如图,A 、C 是函数y =x1的图像上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,设Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则 ( )(A )S 1>S 2 (B )S 1<S 2(C )S 1=S 2(D )S 1和S 2的大小关系不能确定(3) 在同一直角坐标系中,函数y =3x 与y =-x1的图像大致是 ( )(A )(B )(C )(D )(4) 已知正比例函数y =(2m -1)x 的图像上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是 ( ) (A )m <21(B )m >21 (C )m <2 (D )m >02、填充题:(1) 已知y 与x +1成正比例,当x =5时,y =12,则y 关于x 的函数解析式是________. (2) 一个反比例函数在第二象限的图像如图所示,点A 是图像上任意一点,AM ⊥x 轴,垂足为M ,O 是原点,如果△AOM 的面积为3,那么这个反比例函数的解析式是y =___________. (3) 已知反比例函数y =(m -1)23m x -的图像在第二、四象限,则m 的值为_________.(4) 点A (a ,b )、B (a -1,c )均在函数y =x1的图像上若a <0,则b ____c (填“>”或“<”或“=”).1、选择题:(1)已知反比例函数y =xm21-的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 ( ) (A )m <0(B )m >0(C )m <21 (D )m >21 (2)若点(3,4)是反比例函数y =kx图像上一点,则此函数图像必经过点 ( ) (A )(2,6)(B )(2,-6) (C )(4,-3) (D )(3,-4)(3)在同一直角坐标系中,正比例函数y =x 与反比例函数y =-x1的图像大致是 ( )(A ) (B ) (C ) (D )2、填充题:(1) 已知函数y =kx 的图像经过(2,-6),则函数y =xk的解析式可确定为____________. (2) 点A (1,m )在函数y =2x 的图像上,则点A 关于y 轴的对称的点的坐标是______________. (3) 设有反比例函数y =xk 1,(x 1,y 1)、(x 2,y 2)为其图像上的两点,若x 1<0<x 2时,y 1>y 2,则k 的取值范围是________.3、解答题:(1) 正比例函数y=kx 的图像与反正比例函数y=x 21的图像交于A (21,m ),正比例函数y=kx 的图像与反比例函数y=x'k 的图像相交于点B (n,4),求k 和k ’. (2) 已知正比例函数y =kx 与反比例函数y =x3的图像都过A (m ,1)点.求:①正比例函数的解析式;②正比例函数与反比例函数的另一个交点的坐标. (3) 已知正比例函数y =4x ,反比例函数y =xk . ①求:k 为何值时,这两个函数的图像有两个交点?k 为何值时,这两个函数的图像没有交点?②这两个函数的图像能否只有一个交点?若有,求出这个交点坐标;若没有,请说明理由.考点一:y =2x ;y =3x .变式演练:1.y =5x 2-;2.y =8x.考点二:y =12x.变式演练:1.y=-3x+3;2.B.考点三:A 、C . 变式演练:B 、C 、D.(二)综合例题:例1:P 点的坐标为(-2,-2) 例2: S △ABC =S △AOC +S △BOC =1.【双基热身反馈】 1. 选择题:(1) B ;(2)C ;(3)D ;(4)A2、填充题:(1)y =2x +2;(2)y =6x.;(3)-2;(4)<【复习巩固自测】 1、选择题:(1)C ;(2)A ;(3)D2、填充题:(1)y =3x-.;(2)(-1,2);(3)k <-13、解答题:(1)解:∵A(21,m)在y=x 21图像上,∴得m=1, A(21,1).∵A 又在y=kx 图像上,∴得k=2.∵B (n ,4)在y=2x 图像上,∴4=2·n ,n=2,∴B(2,4).而B 点又是y=x'k 的图像上,∴4=2'k ,k ’=8.(2)①y =1x 3;.②(-3,-1)(3)①解:把y =4x 代入y =x k ,得 4x 2-k =0, ∴ x 2=4k ;由已知,k ≠0,且(ⅰ)当k >0时,有x =2k 或x =-2k; 所以,两函数图像有两个交点(2k ,2k )和(2k,-2k ); (ⅱ)当k <0时,4k<0,x 的值不存在,所以两函数图像没有交点; ②若两个图像只有一个交点,只需方程x 2=4k 有唯一解,即仅当k =0时两个图像只有一个交点.但由已知函数y =xk可知,应有k ≠0,所以两个图像只有一个交点是不可能存在的.。
正比例的性质和反比例的性质正比例的性质和反比例的性质,是相反的两个性质,在学习和运用时,由于表述形式近似,只是个别关键词语的不同,极容易相互混淆,必须正确地加以区分。
正比例的性质是:两种相关联的量,其中一种量的任意两个数值的比,等于另一种量对应的两个数值的比。
例如:一列火车的速度每小时60千米,如果所行时间与所行路程成正比例关系,那么所行时间的任意两个数值的比,必须与对应所行路程的两个数值的比相等。
如下表:从顺向看:时间上2小时与4小时的比为2 : 4=0.5 ;路程上2小时所行的千米数与4小时所行的千米数的比120:240=0.5。
这两个比的比值相等,具备了正比例的性质。
从逆向看’时间上外时与3小时的比为5^ 3=1^;路程上印卜时所行的千狀数与3小时所行千米数的比为颈;180 = 1|,这两个比的比值相搴具备了正比例的性质。
反比例的性质是:两种相关联的量,其中一种量的任意两个数值的比等于另一种量对应的两个数值比的反比。
例如:完成1200台电视机的生产任务,每天生产的台数和完成的天数成反比例关系,每天产量中任意两个数值的比,等于所对应完成天数的两个数值比的反比。
如下表:从顺向看』台数上侦台与300台的比^100* 300 = L耳所对应天数比的反比为4; 12 = L两个比的比值相等”具备了反比例的性质°从逆向看:台数上400台与200台的比为400:200=2;其对应天数比的反比为6 : 3=2。
两个比的比值相等,具备了反比例的性质。
在比和比例这部分知识中,反比、反比例和反比例关系也是容易混淆的。
_]不正确区分三者的确切含义,就会在凭借概念进行判断和依据性质进行计算上,产生“后遗症”,最后还得溯本求源,从基本概念上进行澄清。
因此,从防微杜渐的角度上,一开始就结合教材进行正确区分,是非常必要的。
“反比”是与正比相对而言的,它们都不属于比例的范畴。
在两个比中,如果一个比的前项和后项,分别是另一个比的后项和前项,这两个比就叫做互为反比。
六年级数学下册正比例和反比例复习教案苏教版教学内容:一、正比例和反比例的定义及判定1. 正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2. 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
二、正比例和反比例的性质1. 正比例的性质:成正比例的两种量,它们的比值始终保持不变。
2. 反比例的性质:成反比例的两种量,它们的乘积始终保持不变。
三、正比例和反比例的运用1. 根据正比例关系,可以通过已知的一种量来计算另一种量。
2. 根据反比例关系,可以通过已知的一种量来计算另一种量。
四、正比例和反比例的图像表示1. 正比例的图像表示:一条通过原点的直线,斜率表示比值。
2. 反比例的图像表示:两条通过原点的直线,分别位于第一和第三象限,斜率表示乘积的倒数。
五、正比例和反比例的解决问题1. 运用正比例关系解决问题:已知两种量成正比例,可以通过已知的一种量来计算另一种量。
2. 运用反比例关系解决问题:已知两种量成反比例,可以通过已知的一种量来计算另一种量。
教学目标:1. 理解正比例和反比例的定义及判定。
2. 掌握正比例和反比例的性质。
3. 学会运用正比例和反比例解决问题。
4. 能够通过图像理解正比例和反比例的关系。
5. 提高解决实际问题的能力。
六、正比例和反比例的实际应用案例1. 案例分析:通过生活中的实际例子,如购买物品时的价格与数量关系,来理解和应用正比例和反比例关系。
2. 案例解决:引导学生运用正比例和反比例的知识,解决实际问题,如计算购买一定数量的物品所需的总价。
七、正比例和反比例的计算练习1. 计算练习:提供一系列计算题目,让学生运用正比例和反比例的知识进行计算,巩固所学内容。
2. 答案解析:对学生的计算结果进行解析,纠正错误,并解释正确答案的得出过程。
正比例和反比例的概念详解分享数学知识点
正比例和反比例的概念正比例概念:正比例是两种相关联的量,一种量变化,另一种量也随着变化。
假如这两种量中相对应的两个数比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
反比例概念:反比例是两种相关联的变量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系叫做反比例关系。
反比例性质:
假如用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:x×y=k(一定) 成反比例的量包括三个数量,一个定量和两个变量。
研究两个变量之间的扩大(或缩小)的变化关系。
一种量发生变化,引起另一种量发生相反的变化。
这两种量是反比例的量,它们的关系成反比例关系。
正比例性质:
假如用x和y来表示两个相关联的量,用k表示它们的比值(商)正比例关系式可以用下面关系式表示:x÷y=k(一定)在
判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例。
例如:一个人的年龄和他的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系,行驶的路程和时间是成正比例的量。
正比例的性质和反比例的性质正比例的性质和反比例的性质,是相反的两个性质,在学习和运用时,由于表述形式近似,只是个别关键词语的不同,极容易相互混淆,必须正确地加以区分。
正比例的性质是:两种相关联的量,其中一种量的任意两个数值的比,等于另一种量对应的两个数值的比。
例如:一列火车的速度每小时60千米,如果所行时间与所行路程成正比例关系,那么所行时间的任意两个数值的比,必须与对应所行路程的两个数值的比相等。
如下表:从顺向看:时间上2小时与4小时的比为2∶4=0.5;路程上2小时所行的千米数与4小时所行的千米数的比120∶240=0.5。
这两个比的比值相等,具备了正比例的性质。
具备了正比例的性质。
反比例的性质是:两种相关联的量,其中一种量的任意两个数值的比等于另一种量对应的两个数值比的反比。
例如:完成1200台电视机的生产任务,每天生产的台数和完成的天数成反比例关系,每天产量中任意两个数值的比,等于所对应完成天数的两个数值比的反比。
如下表:从逆向看:台数上400台与200台的比为400∶200=2;其对应天数比的反比为6∶3=2。
两个比的比值相等,具备了反比例的性质。
在比和比例这部分知识中,反比、反比例和反比例关系也是容易混淆的。
不正确区分三者的确切含义,就会在凭借概念进行判断和依据性质进行计算上,产生“后遗症”,最后还得溯本求源,从基本概念上进行澄清。
因此,从防微杜渐的角度上,一开始就结合教材进行正确区分,是非常必要的。
“反比”是与正比相对而言的,它们都不属于比例的范畴。
在两个比中,如果一个比的前项和后项,分别是另一个比的后项和前项,这两个比就叫做互为反比。
例如:3∶4的反比是4∶3;反过来,4∶3的反比是3∶4。
“反比例”是对两种相关联的量对应数值组成比的顺序而言的。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,据此写出的比例式称为反比例。
例如:有一堆煤,每天烧煤2吨,可烧12天,如果每天烧煤4吨,可以烧6天,每天烧6吨,可以烧4天。
从条件中的规律可见,煤的总重量一定,每天烧煤量与烧得天数成反比例。
“反比例关系”是成反比例的两种量之间的数量关系。
如果用字母x 、y 表示两种相关联的量,用k 表示积(一定),其关系式为:x ×y=k (一定),在这个式子中,x 与y 的关系,就是反比例关系。
在八年级数学中,学生第一次遇到了函数――正、反比例函数图像和性质,在这个知识点的学习中,学生碰到了与以前截然不同的困难。
如:函数图像和性质不能很好匹配,即学生对于函数解析式和图像性质不能熟练转化;不知何时要分类讨论,导致漏解;不会用反比例函数的“面积不变性”;不能完全解读题目中蕴含的信息,找不到或不理解图像语言;对于综合题不知如何入手解题。
解决这些困难,教师就要在教学中充分运用数形结合,使学生能够逐一突破函数学习中的难关。
一、引导学生熟练掌握正、反比例函数图像和性质,突破“数形结合”认识关。
传统的教学中通过画一画特殊的正比例函数图像,如2y x =,得到一般情况下正比例函数图像,这里的画一画是特殊情况,是必要的,但是由于学生动手能力不同,往往整节课的重点偏移到画图的操作细节上。
如:如何找点,如何用平滑曲线连线等,而忽略了解析式与图像性质对应关系的探知。
如何来解决呢?教学中①首先可以通过“猜一猜”,看正比例函数解析式y kx =(k ≠0)能不能用图像表示,它的图像是怎样的,从而引导学生发现函数中每一对x 、y 的值与坐标系中的点坐标的联系。
②然后通过“想一想”,思考2y x =当x 的值大于、等于或小于0时y 值的情况,引导学生认识解析式对图像分布与增减性的影响。
③再通过“画一画”,利用画图验证猜想,从图像上形象地认识性质。
通过这三步的探究,得出一般情况下正比例函数图像是过点(0,0)和(1,k )的一条直线。
然后进一步引导学生从函数图像的形态发现图像的性质,进而归纳函数的性质,建立起数学符号与图像性质之间的联系。
同样地反比例函数图像也可以通过“猜一猜”,得出一般情况下的图像。
再通过“想一想”和“画一画”,逐步认识函数图像和性质。
以此类推,在后面的函数学习中,都可以用这样的方法和步骤来进行函数图像和性质的教学。
在教学中,得到函数性质后,要把函数解析式、图像和性质用各种不同的方法加以对比、联系,如可以列出下面的表格,让学生来填写内容。
当学生充分熟悉和掌握了以后,他们就能意识到研究函数可以从解析式、图像和性质入手,而性质通常是研究系数的符号、函数的增减性等等。
这样学生可以掌握一点研究函数的一般方法。
函数解析式(数) 图像(形) 性质k >0 k <0y kx =(k ≠0) 过(0,0)和(1,k )的一条直线过一、三象限,y 随x 增大而增大。
过二、四象限,y 随x 增大而减小。
k y x=(k ≠0) (xy k =) 双曲线 图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交过一、三象限,在每个象限内,y 随x 增大而减小。
过二、四象限,在每个象限内,y 随x 增大而增大。
用数形结合的思想方法,看到图像过什么象限,马上想到k 的符号,强化从图象性质到解析式的逆向思维,使解析式(数学符号语言)和图象性质(图像语言)能熟练地互相转化。
2、要使学生熟知已知哪些条件可以求解析式解析式往往是函数类题目的“入口”或“出口”,所以要熟练掌握解析式的求法。
在正、反比例函数中,由于只有一个待定系数,所以一对x 、y 的值或图像上一个点的坐标,就可以完全确定正比例函数或反比例函数,反之亦然。
解题中看到图像过某点,则常常要把这点的坐标代入函数解析式。
二、引导学生解读题目中蕴含的信息,熟练掌握数学符号语言和图像的互化,根据题目中的信息画出图像——突破“形数”画图关。
1、函数题中往往伴有图像,题中若没有图像,则先要从已知条件出发,根据函数性质画出图像或草图,再求出系数k 。
通常当学生面对K 确定的函数题时,图像基本都会画,但当面对K 不确定的函数题时,往往会漏画、少画,从而造成漏解。
这时教师可设计合理问题,用课堂提问的方法引导学生正确画出图形。
若题目中k 的符号不能确定,或已知条件给出的长度、距离、面积等是非负的,转化为点坐标却可正、可负,所以要考虑进行分类讨论,这时题目往往可能有多解,而画出的满足条件的图像也应该有多个。
例1:正比例函数y kx =中,图像上一点A (a ,3)与y 轴的距离为2,求此函数的解析式。
xO xyO分析提问: 点A 可以在直角坐标系中的什么位置?学生回答出来后再问:与Y 轴距离为2的点A 有几个?k 符号不能确定,由已知“图像上一点A (a ,3)与y 轴的距离为2”,得到点A 可以在第一象限和第二象限,因此函数的大致图像有两个,如图1。
解:过点A 作AB ⊥x 轴,AC ⊥y 轴因为图像上一点A (a ,3)与y 轴的距离为2所以AC =2,(把已知条件转化为数学符号语言)所以BO=AC=2(隐含条件BO=AC )所以a =-2或a =2。
(线段长转化为点的坐标,这里学生常常会漏解)得A (-2,3)或(2,3)。
解得k=32-, 或k=32此函数解析式有两个:32y x =-或32y x =。
2、反比例函数具有“面积的不变性”。
从已知条件出发,先根据反比例函数画出图像,再根据矩形面积公式求出系数k 。
经过计算可知,反比例函数ky x =上任意一点P (a , b ),都有k ab =。
从图像上来看,反比例函数上任意一点对x 轴、y 轴做垂线所构成的矩形,其面积都与k 的绝对值相等,即k S =矩形根据这一性质解题往往可以简洁。
三、引导学生把问题转换化归――突破“数形”综合运用关正反比例函数综合运用对于学生来说比较困难,可以按以下方法解决。
若题目本身有图像的。
1、先通过观察函数图像,留心图形的特点,同时在图形中标注已知条件。
再仔细读题,从图形和题目两方面找出蕴含的信息,发掘图形和题目中的隐含条件。
2、根据已知条件及隐含条件,得出函数性质。
3、一般已知正反比例函数解析式,可以先求出交点。
4、要熟练地把点的坐标和线段长度、面积互相转化。
5、将题中用到的直线或双曲线用正比例函数或反比例函数表达出来。
6、根据图形找出已知条件和所求目标之间的联系,常常要用到几何方法和一些公式,从而列出方程。
若题目本身没有图像的,则首先根据条件画出图像,再按照上述步骤来做。
总之,要使学生善于选择信息,善于运用直觉思维,善于把问题转换化归。
例2、如图2,P 是反比例函数ky x =图像上一点,矩形APBO的面积是8,PB=2PA.(1) 求反比例函数的解析式。
(2)若正比例函数图像经过P 点,求正比例函数解析式。
例题设计的目的是要使学生明确掌握反比例函数的面积不变性,掌握由已知条件转化为线段长再转化为点坐标再用待定系数法求解的一般步骤。
分析:(1)先观察函数图像在二、四象限,则k<0 (直接由函数图像得出函数性质)因为矩形APBO 的面积是8,所以得k =-8,(运用反比例函数面积不变性) 所以反比例函数的解析式为8y x =-。
(2)设正比例函数解析式为y mx = 因为矩形APBO 的面积是8, 所以PA ×PB =8,由条件PB=2PA ,得PA=2,PB=4(运用矩形面积公式求得线段长)根据图像,点P 在第二象限,则P 的坐标为(-2,4)(线段的长度转化为点的坐标)把x =-2,y =4代入y mx =,得m =-2。
(一个点的坐标,就可以确定正比例函数解析式)所以正比例函数解析式为2y x =-例3、如图,正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数xk y =的图像上,已知正方形OAPB 的面积为9.(1) 求k 的值和直线OP 的解析式;(2)求正方形ADFE 的边长.例题的设计目的在于如何在复杂背景条件下,从已知条件适当地设点坐标,进而列出方程得解。
分析:(1)因为正方形OAPB 的面积为9,点P 在函数xk y =的图像上且根据图形点P 在第一象限, 所以k =9。
(反比例函数面积不变性)因为OAPB 是正方形,所以OA=PA ,得到P (3,3),代入y kx =,可得k=1 所以直线OP 的解析式为y x =.(其实根据图形不求点P 坐标,也可直接得出直线OP 函数解析式)(2)因为点F 在函数9y x =的图像上,可设F(x , 9x),(利用点F 特征设元) 所以OD =x ,FD =9x(点的坐标转化为线段长) 因为正方形OAPB 的面积为9,所以OA =3,所以EF=33x x -=-因为ADFE 是正方形,所以EF=FD 。