7点的合成运动1
- 格式:ppt
- 大小:1.80 MB
- 文档页数:57
专题23曲线运动运动的合成与分解考点一物体做曲线运动的条件1.曲线运动的速度方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.曲线运动的条件:物体所受合外力(加速度)的方向跟速度方向不在同一条直线上.根据曲线运动的条件,判断物体是做曲线运动还是做直线运动,只看合外力(加速度)方向和速度方向的关系,两者方向在同一直线上则做直线运动,有夹角则做曲线运动.3.物体做曲线运动时,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧,轨迹一定夹在合外力方向与速度方向之间.4.(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变.1.关于做曲线运动的物体,下列说法正确的是()A.曲线运动一定是变速运动,变速运动一定是曲线运动B.速度一定在变化C.所受的合外力一定在变化D.加速度方向一定垂直于速度方向【答案】B【解析】A.曲线运动一定是变速运动,但变速运动不一定是曲线运动,A错误;B.做曲线运动的物体速度方向一定在发生变化,B正确;C.做曲线运动的物体,合外力不一定在变化,C错误;D.做曲线运动的物体,合力方向与速度方向不在同一条直线上,但不一定垂直,所以加速度方向不一定与速度方向垂直,D错误。
2.在2022年北京冬奥会自由式滑雪女子大跳台决赛中,运动员谷爱凌摘得金牌。
如图所示是谷爱凌滑离跳台后,在空中实施翻滚高难度动作时,滑雪板(视为质点)运动的轨迹,a、b是轨迹。
上的两点,不计空气阻力。
则()A.谷爱凌上升到最高点时,整体速度为零B.谷爱凌离开跳台后,整体做自由落体运动C.滑雪板经过a、b两点时的速度方向相反D.谷爱凌处于完全失重状态【答案】DA.谷爱凌上升到最高点时,整体还有水平速度,则速度不为零,选项A错误;B.谷爱凌离开跳台后,整体做斜上抛运动,然后做曲线运动,不是自由落体运动,选项B错误;C.滑雪板经过a、b两点时的速度方向均向上,方向相同,选项C错误;D.谷爱凌在空中加速度始终为g,处于完全失重状态,选项D正确。
一、概念题1.动点的牵连速度是指该瞬时牵连点的速度,它所相对的坐标系是( )。
① 动坐标系 ② 不必确定的③ 定坐标系 ④ 都可以2.点的速度合成定理v a = v e + v r 的适用条件是( )。
① 牵连运动只能是平动 ② 各种牵连运动都适合③ 牵连运动只能是转动 ④ 牵连运动为零3.两曲柄摇杆机构分别如图(a )、(b )所示。
取套筒A为动点,则动点A 的速度平行四边形( )。
① 图(a )、(b )所示的都正确② 图(a )所示的正确.,图(b )所示的不正确③ 图(a )所示的不正确.,图(b )所示的正确④ 图(a )、(b )所示的都不正确4.图示偏心凸轮如以匀角速度ω绕水平轴O 逆时针转动,从而推动顶杆AB 沿铅直槽上下移动,AB 杆的延长线通过O 点。
若取凸轮中心C 为动点,动系与顶杆AB 固连,则动点C 的相对运动轨迹为( )。
① 铅直直线② 以O 点为圆心的圆周③ 以A 点为圆心的圆周④ 无法直接确定5.在图示机构中,已知s = a + b sin ωt ,且φ = ωt (其中a 、b 、ω均为常数),杆长为L ,若取小球A 为动点,动系固连于物块B ,定系固连于地面,则小球A 的牵连速度v e 的大小为( );相对速度v r 的大小为( )。
① L ω ② b ωcos ωt③ b ωcos ωt + L ωcos ωt④ b ωcos ωt + L ω6.图示偏心轮摇杆机构中,ω、α为已知,要求摇杆的角加速度α1,应取( )。
① 杆上的M 为动点,轮为动系② 轮上的M 为动点,杆为动系 ③ 轮心C 为动点,杆为动系④ 轮心C 为动点,轮为动系7.如图所示,直角曲杆以匀角速度ω绕O 轴转动,套在其上的小环M 沿固定直杆滑动。
取M 为动点,直角曲杆为动系,则M 的( )。
① v e ⊥CD ,a C ⊥CD② v e ⊥OM ,a C ⊥CD③ v e ⊥OM ,a C ⊥OMα α18.平行四边形机构如图。
一、运动的合成与分解研究运动的合成与分解,目的在于把一些复杂的运动简化为比较简单的直线运动。
运动合成与分解的内容:位移、速度、加速度。
运动合成与分解的方法——平行四边形法则。
一、 知识点巩固 1.运动的合成轮船渡河的运动可以看作轮船同时参与了两个运动:一是假设河水不动,轮船在静水中沿0A 方向过江的运动;另一是假设轮船不开,它被河水冲向下游沿0B 方向的运动。
我们把这两个运动都叫做分运动,而把轮船沿OC 方向的实际运动叫做这两个分运动的合运动,如图所示。
从已知的分运动求合运动,叫做运动的合成。
一个物体同时参与两个分运动,其表现出来的结果可以用合运动来描述。
2.运动的分解在实际问题中,有时需要把一个已知的合运动进行分解,应用平行四边形定则求出两个分运动。
这种已知合运动求分运动,叫做运动的分解。
已知两个分运动,其合运动是唯一的。
而将一个已知的运动分解为两个分运动,可以有无数种分法,研究问题时一般根据运动的实际情况分解到某两个方向上。
3.运动的合成及分解规则:平行四边形定则(矢量三角形法)(1)合运动一定时物体的实际运动。
(2)分运动之间是相互不相干的,具有独立性。
(各分运动是相互独立的,某分运动的情况并不因为有其他分运动的存在而发生改变, 但其它分运动的存在或变化将使合运动的情况发生改变。
)(3)合运动和各分运动具有等时性。
(4)合运动和分运动的位移合成、速度合成和加速度合成都遵循平行四边形定则。
特征:① 等时性;② 独立性;③ 等效性;④ 同一性。
矢量运算规律小结:F1 F F F1 F1 F2 FF2 F2(1)两矢量A 与B 相加,即是两矢量的 首尾相接,合矢量即为 A 矢量的尾 指向 B 矢量的首的有向线段。
(2)物体受力平衡,其力矢量图必为:首尾依次相接的封闭多边形。
4. 运动的合成与分解的几种情况:① 两个任意角度的匀速直线运动的合运动为匀速直线运动。
OA BC水② 一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。
相对运动.牵连运动.绝对运动●点和刚体相对一个定参考系的运动。
●点的运动用直角坐标和弧坐标描述;●刚体简单运动为:平动和定轴转动。
●物体相对于不同参考系的运动是不相同的。
运动的分解与合成:研究物体相对于不同参考系的运动,分析物体相对于不同参考系运动之间的关系,称为复杂运动或合成运动。
本章分析点的合成运动分析运动中某一瞬时点的速度合成和加速度合成的规律。
xO y O ′x ′y ′M对地面上的观察者:M点的轨迹是旋轮线对车上的观察者:M点的轨迹则是一个圆。
2 ) 图示车床在工作时,车刀刀尖MωO M 相对于旋转的工件:相对于地面:直线运动在圆柱面螺旋运动zy x z ′yx ′3)图示桥式吊车,卷扬小车A 边垂直起吊重物边行走。
重物作曲线运动 随小车一起运动的观察者:重物在垂直方向作直线运动地面观察者: A MM ′O ′x ′y ′有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)4)回转仪的运动分析动点:M点动系:框架CAD 相对运动:圆周运动牵连运动:定轴转动绝对运动:空间曲线运动车轮上M点:对于地面,M沿旋轮线运动;以车厢为参考体,点M对于车厢的运动是简单的圆周运动;车厢对于地面的运动是简单平动。
M点的运动就可以看成两个简单运动的合成.即点M相对于车厢作圆周运动;同时车厢对地面作平动. C xOy O ′x ′y ′M 合成运动:相对某一参考体的运动可由相对于其它参考体的几个运动组合而成,称这种运动为合成运动观察发现:点在一个参考体中的运动可以由几个运动组合而成。
相对运动.牵连运动.绝对运动有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)三种运动 (1)动点相对于定参考系的运动称为绝对运动 (2)动点相对于动参考系的运动称为相对运动 (3)动参考系相对于定参考系的运动称为牵连运动 两个参考系: 一般把固定在地球上的坐标系称为定参考系; 用 O xyz 表示;z y x O ′′′′固定在相对地球运动的参考体上的坐标系称为动参考系; 用表示。
高考物理一轮基础复习:5.2运动的合成与分解一、一个平面运动的实例1.蜡块的位置:如图所示,蜡块沿玻璃管匀速上升的速度设为v y,玻璃管向右匀速移动的速度设为v x,从蜡块开始运动的时刻开始计时,在某时刻t,蜡块的位置P可以用它的x、y两个坐标表示:x=v x t,y=v y t.2.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=vyvx .3.蜡块运动的轨迹:y=vyvxx,是一条过原点的直线.二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫运动的合成;已知合运动求分运动的过程,叫运动的分解.3.运动的合成与分解实质是对运动的位移、速度和加速度的合成和分解,遵循矢量运算法则.1.思考判断(正确的打“√”,错误的打“×”)(1)合运动与分运动是同时进行的,时间相等.(√)(2)合运动一定是实际发生的运动.(√)(3)合运动的速度一定比分运动的速度大.(×)(4)两个互成角度的匀速直线运动的合运动,一定也是匀速直线运动.(√)2.雨滴由静止开始下落,遇到水平方向吹来的风,下述说法中正确的是( )①风速越大,雨滴下落时间越长②风速越大,雨滴着地时速度越大③雨滴下落时间与风速无关④雨滴着地速度与风速无关A.①②B.②③C.③④ D.①④B [将雨滴的运动在水平方向和竖直方向分解,两个分运动相互独立,雨滴下落时间与竖直高度有关,与水平方向的风速无关,故①错误,③正确.风速越大,落地时,雨滴水平方向分速度越大,合速度也越大,故②正确,④错误,故选B.]3.如图所示,在玻璃管的水中有一红蜡块正在匀速上升,若红蜡块在A点匀速上升的同时,使玻璃管从AB位置水平向右做匀加速直线运动,则红蜡块实际运动的轨迹是图中的( )A.直线P B.曲线QC.曲线R D.三条轨迹都有可能B [红蜡块参与了竖直方向的匀速直线运动和水平方向的匀加速直线运动这两个分运动,实际运动的轨迹即是合运动的轨迹.由于它在任意一点的合速度方向是向上或斜向右上的,而合加速度就是水平方向的加速度,方向是水平向右的,合加速度和合速度之间有一定夹角,故轨迹是曲线.又因为物体做曲线运动的轨迹总向加速度方向偏折(或加速度方向总指向曲线的凹侧),故选项B正确.]运动的合成与分解[观察探究]如图所示,跳伞运动员打开降落伞后正在从高空下落.(1)跳伞员在无风时竖直匀速下落,有风时运动员的实际运动轨迹还竖直向下吗?竖直方向的运动是跳伞员的合运动还是分运动?(2)已知跳伞员的两个分运动速度,怎样求跳伞员的合速度?提示:(1)有风时不沿竖直向下运动.无风时跳伞员竖直匀速下落,有风时,一方面竖直匀速下落,一方面在风力作用下水平运动.因此,竖直匀速下落的运动是跳伞员的分运动.(2)应用矢量运算法则求合速度.[探究归纳]1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.(1)运动的合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解.(2)运动合成与分解的法则:合成和分解的对象是位移、速度、加速度,这些量都是矢量,遵循的是平行四边形定则.【例1】竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.1 m/s的速度匀速上浮.在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管水平向右匀速运动,测得蜡块实际运动方向与水平方向成30°角,如图所示.若玻璃管的长度为1.0 m,在蜡块从底端上升到顶端的过程中,下列关于玻璃管水平方向的移动速度和水平运动的距离计算结果正确的是( )A.0.1 m/s,1.73 m B.0.173 m/s,1.0 mC.0.173 m/s,1.73 m D.0.1 m/s,1.0 mC [由题图知竖直位移与水平位移之间的关系为tan 30°=y x由分运动具有独立性和等时性得:y=v y t、x=v x t联立解得:x=1.73 m,v x=0.173 m/s.故C项正确.]上例中,若将玻璃管水平向右匀速运动改为从静止开始匀加速运动;将蜡块实际运动方向与水平方向成30°角改为蜡块最终位移方向与水平方向成45°角,其他条件不变,则玻璃管水平方向的加速度多大?提示:由tan 45°=yx,则x=1.0 m,由x=12at2,y=vyt得t=10 s,a=0.02 m/s2.“三步走”求解合运动或分运动(1)根据题意确定物体的合运动与分运动.(2)根据平行四边形定则作出矢量合成或分解的平行四边形.(3)根据所画图形求解合运动或分运动的参量,求解时可以用勾股定理、三角函数、三角形相似等数学知识.1.两个互成角度的匀变速直线运动,初速度分别为v1和v2,加速度分别为a1和a2,它们的合运动的轨迹( )A.如果v1=v2≠0,那么轨迹一定是直线B .如果v 1=v 2≠0,那么轨迹一定是曲线C .如果a 1=a 2,那么轨迹一定是直线D .如果a 1a 2=v 1v 2,那么轨迹一定是直线D [本题考查两直线运动合运动性质的确定,解题关键是明确做曲线运动的条件是合外力的方向(即合加速度的方向)与速度的方向不在一条直线上.如果a 1a 2=v 1v 2,那么,合加速度的方向与合速度的方向一定在一条直线上,所以D 正确.]小船渡河问题[观察探究]小船渡河问题中,小船渡河参与了哪两个运动?怎样过河时间最短?怎样过河位移最短?提示:小船渡河参与了相对于静水的运动和随河水漂流的运动;船头垂直河岸渡河时时间最短,合位移垂直河岸时位移最短.[探究归纳]1.模型特点:小船参与的两个分运动:小船在河流中实际的运动(站在岸上的观察者看到的运动)可视为船同时参与了这样两个分运动:(1)船相对水的运动(即船在静水中的运动),它的方向与船身的指向相同. (2)船随水漂流的运动(即速度等于水的流速),它的方向与河岸平行.船在流水中实际的运动(合运动)是上述两个分运动的合成.2.两类最值问题(1)渡河时间最短问题:若要渡河时间最短,由于水流速度始终沿河道方向,不能提供指向河对岸的分速度.因此,只要使船头垂直于河岸航行即可.由图可知,t短=dv船,此时船渡河的位移x=dsin θ,位移方向满足tan θ=v船v水.(2)渡河位移最短问题甲情况一:v水<v船最短的位移为河宽d,此时渡河所用时间t=dv船sin θ,船头与上游河岸夹角θ满足v船cos θ=v水,如图甲所示.情况二:v水>v船如图乙所示,以v水矢量的末端为圆心,以v船的大小为半径作圆,当合速度的方向与圆相切时,合速度的方向与河岸的夹角最大(设为α),此时航程最短.由图可知sin α=v船v水,最短航程为x=dsin α=v水v船d.此时船头指向应与上游河岸成θ′角,且cos θ′=v船v水.乙【例2】一小船渡河,河宽d=180 m,水流速度为v1=2.5 m/s.船在静水中的速度为v2=5 m/s,求:(1)小船渡河的最短时间为多少?此时位移多大?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?[解析] (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图甲所示,甲合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv⊥=dv2=1805s=36 sv合=v21+v22=525 m/sx=v合t=90 5 m.(2)欲使船渡河的航程最短,船的合运动方向应垂直河岸.船头应朝上游与河岸成某一角度β.如图乙所示,由v2sin α=v1得α=30°.所以当船头朝上游与河岸成一定角度β=60°时航程最短.乙x=d=180 mt=dv′⊥=dv2cos 30°=180523s=24 3 s.[答案] (1)36 s 90 5 m(2)偏向上游与河岸成60°角24 3 s小船渡河问题要注意三点(1)研究小船渡河时间时→常对某一分运动进行研究求解,一般用垂直河岸的分运动求解.(2)分析小船速度时→可画出小船的速度分解图进行分析.(3)研究小船渡河位移时→要对小船的合运动进行分析,必要时画出位移合成图.2.一艘船的船头始终正对河岸方向行驶,如图所示.已知船在静水中行驶的速度为v1,水流速度为v2,河宽为d.则下列判断正确的是( )A.船渡河时间为d v 2B.船渡河时间为dv21+v22C.船渡河过程被冲到下游的距离为v2v1·dD.船渡河过程被冲到下游的距离为dv21+v22·dC [船正对河岸运动,渡河时间最短t=dv1,沿河岸运动的位移s2=v2t=v2v1·d,所以A、B、D选项错误,C选项正确.]“绳联物体”的速度分解问题[观察探究绳联物体问题中,如何判断合速度和分速度?速度怎样分解?提示:物体的实际运动是合运动;将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量.[探究归纳]1.“绳联物体”指物体拉绳(杆)或绳(杆)拉物体的问题(下面为了方便,统一说“绳”),要注意以下两点:(1)物体的实际速度一定是合速度,分解时两个分速度方向应取沿绳方向和垂直于绳方向.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量相等.2.常见的速度分解模型【例3】如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为( )A.vB.v sin θC.v cos θD.v sin θD [将A的速度分解为沿绳子方向和垂直于绳子方向,如图所示,根据平行四边形定则得,v B=v sin θ,故D正确.]上例中,若物体B以速度v向左匀速运动,则物体A做什么运动?提示:v A′=v sin θ由于θ变小,故v A′变大,故物体A向上做加速运动.3.如图所示,AB杆和墙的夹角为θ时,杆的A端沿墙下滑的速度大小为v1,B端沿地面的速度大小为v2,则v1、v2的关系是( )A.v1=v2B.v1=v2cos θC.v1=v2tan θD.v1=v2sin θC [可以把A、B两点的速度分解,如图所示,由于杆不能变长或变短,沿杆方向的速度应满足v1x=v2x,即v1cos θ=v2sin θ,v1=v2tan θ,C正确.]课堂小结知识脉络1.物体实际发生的运动是合运动,参与的几个运动是分运动,合运动与分运动遵循平行四边形定则.2.小船渡河问题中,船头垂直河岸渡河时间最短,合速度垂直河岸位移最小.3.“绳联物体”问题中,将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量.【课堂同步练习】1.关于合运动与分运动的关系,下列说法正确的是( )A.合运动速度一定不小于分运动速度B.合运动加速度不可能与分运动加速度相同C.合运动的速度与分运动的速度没有关系,但合运动与分运动的时间相等D.合位移可能等于两分位移的代数和D [根据平行四边形定则,作出以两个互成角度的分速度为邻边的平行四边形,过两邻边夹角的对角线表示合速度,对角线的长度可能等于邻边长度,也可能小于邻边长度,也可能大于邻边长度,选项A错误;合运动的加速度可能大于、等于或小于分运动的加速度,选项B错误;合运动与分运动具有等效性、同体性、等时性等关系,选项C错误;如果两个分运动在同一直线上,且方向相同,其合位移就等于两分位移的代数和,选项D正确.]2.(多选)已知河水自西向东流动,流速为v1,小船在静水中的速度为v2,且v2>v1,用小箭头表示船头的指向及小船在不同时刻的位置,虚线表示小船过河的路径,则下图中可能正确的是( )A BC DCD [小船的路径应沿合速度方向,不可能与船头指向相同,故A、B错误,C、D正确.]3.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动到如图所示位置时,物体P的速度为( )A.v B.v cos θC.vcos θD.v cos2θB [如图所示,绳子与水平方向的夹角为θ,将小车的速度沿绳子方向和垂直于绳子方向分解,沿绳子方向的速度等于P的速度,根据平行四边形定则得vP=v cos θ,故B正确,A、C、D错误.]4.飞机在航行时,它的航线方向要严格地从东到西,如果飞机的速度是160 km/h,风从南面吹来,风的速度为80 km/h,那么:(1)飞机应朝哪个方向飞行?(2)如果所测地区长达80 3 km,飞机飞过所测地区所需时间是多少?[解析] (1)根据平行四边形定则可确定飞机的航向,如图所示,有sin θ=v1v2=80160=12,θ=30°即西偏南30°.(2)飞机的合速度v=v2cos 30°=80 3 km/h所需时间t=xv=1 h.[答案] (1)西偏南30°(2)1 h《5.2 运动的合成与分解》专题训练一、一个平面运动的实例——观察蜡块的运动1.建立坐标系研究蜡块在平面内的运动,可以选择建立平面直角坐标系.如图1所示,以蜡块开始匀速运动的位置为原点O,以水平向右的方向和竖直向上的方向分别为x轴和y轴的方向,建立平面直角坐标系.图12.蜡块运动的位置:玻璃管向右匀速平移的速度设为v x,蜡块沿玻璃管匀速上升的速度设为v y,在某时刻t,蜡块的位置P的坐标:x=v x t,y=v y t.3.蜡块运动的轨迹:将x、y消去t,得到y=vyvxx,可见蜡块的运动轨迹是一条过原点的直线.4.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=vyvx .二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,同时参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫作运动的合成;已知合运动求分运动的过程,叫作运动的分解.3.运动的合成与分解遵循矢量运算法则.1.判断下列说法的正误.(1)合运动与分运动是同时进行的,时间相等.( √)(2)合运动一定是实际发生的运动.( √)(3)合运动的速度一定比分运动的速度大.( ×)(4)两个夹角为90°的匀速直线运动的合运动,一定也是匀速直线运动.( √)2.竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.3 m/s的速度匀速上浮.在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管沿水平方向匀速向右运动,测得蜡块实际运动方向与水平方向成37°角,如图2所示.若玻璃管的长度为0.9 m,在蜡块从底端上升到顶端的过程中,玻璃管水平方向的移动速度和沿水平方向运动的距离分别约为________m/s和________m.(sin 37°=0.6,cos 37°=0.8)图2答案0.4 1.2解析设蜡块沿玻璃管匀速上升的速度为v1,位移为x1,蜡块随玻璃管水平向右移动的速度为v2,位移为x2,如图所示,v2=v1tan 37°=0.334m/s=0.4 m/s.蜡块沿玻璃管匀速上升的时间t=x1v1=0.90.3s=3 s.由于两分运动具有等时性,故玻璃管水平移动的时间为3 s.水平运动的距离x2=v2t=0.4×3 m=1.2 m.一、运动的合成与分解1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.运动的合成与分解(1)运动的合成与分解是指位移、速度、加速度的合成与分解.其合成、分解遵循平行四边形定则.(2)对速度v进行分解时,不能随意分解,应按物体的实际运动效果进行分解.跳伞是人们普遍喜欢的观赏性体育项目,当运动员在某高度从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是( )A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关答案 B解析运动员同时参与了两个分运动:竖直方向向下落的运动和水平方向随风飘的运动.这两个分运动同时发生,相互独立.所以水平风力越大,运动员着地速度越大,但下落时间由下落的高度决定,与风力无关,故选B.针对训练1 竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.如图3所示,当红蜡块从玻璃管的下端匀速上浮的同时,第一次使玻璃管水平向右匀速运动,测得红蜡块运动到顶端所需时间为t1;第二次使玻璃管水平向右加速运动,测得红蜡块从下端运动到顶端所需时间为t2,则( )图3A.t1=t2B.t1>t2C.t1<t2D.无法比较答案 A解析由于分运动的独立性,故玻璃管水平向右的分运动不影响红蜡块向上的运动,t1=t2,所以A正确.(多选)玻璃生产线的最后有一台切割机,能将一定宽度但很长的原始玻璃板按需要的长度切成矩形.假设送入切割机的原始玻璃板的宽度是L=2 m,它沿切割机的轨道(与玻璃板的两侧边平行)以v1=0.15 m/s的速度水平向右匀速移动;已知割刀相对玻璃板的切割速度v2=0.2 m/s,为了确保割下的玻璃板是矩形,则相对地面( )A.割刀运动的轨迹是一段直线B.割刀完成一次切割的时间为10 sC.割刀运动的实际速度大小为0.057 m/sD.割刀完成一次切割的时间内,玻璃板的位移大小是1.5 m 答案 ABD解析 为了使割下的玻璃板都成规定尺寸的矩形,割刀相对玻璃板的运动速度应垂直于玻璃板侧边,割刀实际参与了两个分运动,即沿玻璃板侧边方向的运动和垂直于玻璃板侧边方向的运动.两个分运动都是匀速直线运动,则合运动为匀速直线运动,故A 正确;对于垂直于玻璃板侧边方向的运动,运动时间t =20.2s =10 s ,故B 正确;割刀运动的实际速度v =v 21+v 22=0.152+0.22 m/s =0.25 m/s ,故C 错误;10 s 内玻璃板沿轨道方向的位移x =v 1t =1.5 m ,故D 正确.二、合运动的性质与运动轨迹1.分析两个互成角度的直线运动的合运动的性质时,应先求出合运动的合初速度v 和合加速度a ,然后进行判断.(1)是否为匀变速的判断: 加速度或合力⎩⎨⎧变化:变加速运动不变:匀变速运动(2)曲、直判断:加速度或合力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动2.两个互成角度的直线运动的合运动轨迹的判断:轨迹在合初速度v 0与合加速度a 之间,且向加速度一侧弯曲.(多选)质量为2 kg 的质点在xOy 平面内做曲线运动,在x 方向的速度-时间图像和y 方向的位移-时间图像如图4所示,下列说法正确的是( )图4A.质点的初速度为5 m/sB.质点所受的合外力为3 N,做匀变速曲线运动C.2 s末质点速度大小为6 m/sD.2 s内质点的位移大小约为12 m答案ABD解析由题图x方向的速度-时间图像可知,在x方向的加速度为1.5 m/s2,x方向受力Fx=3 N,由题图y方向的位移-时间图像可知在y方向做匀速直线运动,速度大小为v y=4 m/s,y方向受力F y=0.因此质点的初速度为5 m/s,A 正确;受到的合外力恒为3 N,质点初速度方向与合外力方向不在同一条直线上,故做匀变速曲线运动,B正确;2 s末质点速度大小为v=62+42 m/s=213m/s,C错误;2 s内,x=v x0t+12at2=9 m,y=8 m,合位移l=x2+y2=145 m≈12m,D正确.针对训练2 质量为1 kg的物体在水平面内做曲线运动,已知该物体在两个互相垂直方向上的分运动的速度-时间图像分别如图5甲、乙所示,则下列说法正确的是( )图5A.2 s末物体速度大小为7 m/sB.物体所受的合外力大小为3 NC.物体的初速度大小为5 m/sD.物体初速度的方向与合外力方向垂直,做匀变速曲线运动答案 D解析根据题意可知,物体在两个互相垂直方向上运动,即x方向与y方向垂直,且物体在x方向做初速度为零的匀加速直线运动,在y方向做匀速直线运动,2 s 末,v x =3 m/s ,v y =4 m/s ,因而v =v 2x +v 2y =5m/s ,A 错误;a x =ΔvΔt=1.5 m/s 2,a y =0,根据牛顿第二定律F x =ma x =1×1.5 N=1.5 N ,F y =0,因而F =1.5 N ,B 错误;t =0时,v x =0,v y =4 m/s.因而初速度v 0=4 m/s ,C 错误;由于初速度v 0=4 m/s ,且沿y 方向,F =1.5 N ,且沿x 方向,故物体做匀变速曲线运动,D 正确.如图6所示,在光滑水平面上有两条互相平行的直线l 1、l 2,AB 是这两条平行直线的垂线,其中A 点在直线l 1上,B 、C 两点在直线l 2上.一个物体正沿直线l 1以恒定的速度匀速向右运动,如果物体要从A 点运动到C 点,图中1、2、3为可能的路径,则可以使物体通过A 点时( )图6A.获得由A 指向B 的任意瞬时速度,物体的路径是2B.获得由A 指向B 的确定瞬时速度,物体的路径是2C.持续受到平行AB 的任意大小的恒力,物体的路径可能是1D.持续受到平行AB 的确定大小的恒力,物体的路径可能是3 答案 B解析 获得由A 指向B 的确定瞬时速度,即两个匀速直线运动的合运动轨迹可能是2,A 错误,B 正确.持续受到平行AB 的确定大小的恒力,即合加速度与合初速度垂直,轨迹偏向加速度一侧,轨迹可能是1,C 、D 错误.1.(运动的合成和分解)(多选)关于运动的合成和分解,下列说法正确的是( )A.合运动的时间就是分运动的时间之和B.已知两分运动的速度大小,就可以确定合速度的大小C.已知两分运动的速度大小和方向,可以用平行四边形定则确定合速度的大小和方向D.若两匀速直线运动的速度大小分别为v 1、v 2,则合速度v 大小的范围为|v 1-v 2|≤v ≤v 1+v 2答案 CD解析 合运动与分运动具有等时性,故A 错误;已知两分运动的速度大小和方向,可以用平行四边形定则确定合速度的大小和方向,故B 错误,C 正确;两匀速直线运动的速度大小分别为v 1、v 2,则合速度v 大小的范围为|v 1-v 2|≤v ≤v 1+v 2,故D 正确.2.(运动的合成和分解)在第十一届珠海国际航展上,歼-20战机是此次航展最大的“明星”.如图7,歼-20战机在降落过程中水平方向的初速度为60 m/s ,竖直方向的初速度为6 m/s ,已知歼-20战机在水平方向做加速度大小为2 m/s 2的匀减速直线运动,在竖直方向做加速度大小为0.2 m/s 2的匀减速直线运动,则歼-20战机在降落过程中,下列说法正确的是( )图7A.歼-20战机的运动轨迹为曲线B.经20 s ,歼-20战机水平方向的分速度与竖直方向的分速度大小相等C.在前20 s 内,歼-20战机在水平方向的分位移与竖直方向的分位移大小相等D.歼-20战机在前20 s 内,水平方向的平均速度为40 m/s 答案 D解析 歼-20战机的合初速度方向与水平方向夹角的正切值tan θ=660=110,歼-20战机的合加速度方向与水平方向夹角的正切值tan β=0.22=110,可以知道歼-20战机的合初速度的方向与合加速度的方向在同一直线上,歼-20战机做匀变速直线运动,故A 错误;经20 s ,歼-20战机水平方向的分速度v 1=60 m/s -2×20 m/s=20 m/s ,竖直方向上的分速度为v 2=6 m/s -0.2×20 m/s=2 m/s ,故B 错误;在前20 s 内,歼-20战机水平方向的平均速度v 水平=60+202m/s =40 m/s ,D 正确.歼-20战机在水平方向的分位移s 1=v水平×20 s=800 m ,在竖直方向的分位移h =6 m/s +2 m/s 2×20 s=80 m ,故C 错误. 3.(合运动轨迹的判断)如图8所示,在一次救灾工作中,一架离水面高为H m 、沿水平直线飞行的直升机A ,用悬索(重力可忽略不计)救护困在湖水中的伤员B ,在直升机A 和伤员B 以相同的水平速率匀速运动的同时,悬索将伤员吊起.设经t s 时间后,A 、B 之间的距离为l m ,且l =H -t 2,则在这段时间内伤员B 的受力情况和运动轨迹是下列哪个图( )图8答案 A解析 根据l =H -t 2,位移h =H -l =t 2,可知伤员B 在竖直方向上是匀加速上升的,悬索中拉力大于重力,即表示拉力F 的线段要比表示重力G 的线段长,伤员B 在水平方向匀速运动,所以F 、G 都在竖直方向上;向上加速,运动轨迹向上偏转,只有A 符合,所以在这段时间内伤员B 的受力情况和运动轨迹是A.4.(合运动性质的判断)(多选)如图9甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v -t 图像如图乙所示,同时人顶着杆沿水平地面运动的x -t 图像如图丙所示.若以地面为参考系,下列说法正确的是( )。
静力学1-11.图示ACD 杆与BC 杆,在C 点处用光滑铰链连接,A 、B 均为固定铰支座。
若以整体为研究对象,以下四个受力图中哪一个是正确的。
1-15.图示梁AD ,A 端为固定端,B 处由一无重直杆支撑。
以下四图中哪一个是其正确的受力图。
1-17.图示三角梯架,A 为固定铰支座,B 为滚轴支座,C 为铰链。
以下所取研究对象的受力图,哪一个是正确的?2-12. 图示机构中各杆的自重均忽略不计。
其中各杆哪些是二力构件?(A) O A 是二力构件。
(B) A BC 是二力构件。
(C) B E 是二力构件。
(D) C D 是二力构件。
2-2. 以下四个图所示的力三角形,哪一个图表示力矢R 是F 1和F 2两力矢的合力矢量2-3. 以下四个图所示的是一由F 1 、F 2 、F 3 三个力所组成的平面汇交力系的力三角形,哪一个图表示此汇交力系是平衡的2-11. 图示直杆重量不计,两端分别以铰链与一可在光滑的水平和垂直滑槽内滑动的滑块A和B 连接,若在细杆的中点C 作用一力P>0。
下列四图的作用力中,哪一个可使细杆处于平衡?F 1 F 2 R (A)F 1 F 2R (B)F 1 F 2 R (C)F 1 R F 2(D)F 1 F 2 F 3(A)F 1 F 2 F 3 (B)F 1F 2 F 3 (C)F 1 F 2 F 3 (D)点的运动学7-8点沿下图所示的轨迹作减速曲线运动,以下四种它的速度和加速度的组合,哪一种是可能的7-3点沿其轨迹运动时(A) 若aτ ≡ 0、,a n ≠ 0则点作变速曲线运动;(B)若a τ = 常量、a n ≠ 0,则点作匀变速曲线运动; (C) 若a τ ≠ 0、a n ≡ 0,则点作变速曲线运动;若a τ ≠ 0、a n ≡ 0,则点作匀速直线运动。
刚体的基本运动8-7.一直角形杆件绕定轴转动,在图示瞬时其转动的角速度为ω,角加速度为ε,它们的方向如图所示。
物理一轮知识点总结高中高中物理一轮知识点总结(人教版)一、运动的描述。
1. 质点。
- 定义:用来代替物体的有质量的点。
- 条件:物体的大小和形状对研究问题的影响可忽略不计。
例如研究地球绕太阳公转时,地球可视为质点;研究地球自转时,地球不能视为质点。
2. 参考系。
- 定义:为了描述物体的运动而假定为不动的物体。
- 选取原则:参考系的选取是任意的,但选取不同的参考系,物体的运动情况可能不同。
例如坐在行驶汽车中的乘客,以汽车为参考系是静止的,以路边的树木为参考系是运动的。
3. 坐标系。
- 为了定量地描述物体的位置及位置的变化,需要在参考系上建立坐标系。
常见的坐标系有直线坐标系、平面直角坐标系和空间直角坐标系。
4. 时间和时刻。
- 时刻:指某一瞬间,在时间轴上用点表示,如第3s末、第4s初。
- 时间:指两个时刻之间的间隔,在时间轴上用线段表示,如前3s、第3s内(指2s末到3s末这1s的时间间隔)。
5. 位移和路程。
- 位移:表示物体位置的变化,是矢量,其大小等于初位置到末位置的有向线段的长度,方向由初位置指向末位置。
- 路程:物体运动轨迹的长度,是标量。
只有在单向直线运动中,位移的大小才等于路程。
6. 速度。
- 平均速度:定义为位移与发生这个位移所用时间的比值,即v = (Δ x)/(Δ t),是矢量,其方向与位移方向相同。
- 瞬时速度:物体在某一时刻(或某一位置)的速度,是矢量。
瞬时速度的大小叫速率,是标量。
7. 加速度。
- 定义:速度的变化量与发生这一变化所用时间的比值,即a=(Δ v)/(Δ t)。
- 加速度是矢量,方向与速度变化量的方向相同。
加速度描述速度变化的快慢,与速度大小、位移大小没有必然联系。
二、匀变速直线运动的研究。
1. 匀变速直线运动的基本公式。
- 速度公式:v = v_0+at。
- 位移公式:x=v_0t+(1)/(2)at^2。
- 速度 - 位移公式:v^2 - v_0^2 = 2ax。